Artemisinin (BioDeep_00000002616)

 

Secondary id: BioDeep_00000628638

natural product PANOMIX_OTCML-2023 Chemicals and Drugs


代谢物信息卡片


3,12-Epoxy-12H-pyranol(4,3-j)-1,2-benzodioxepin-10(3H)-one, octahydro-3,6,9-trimethyl-, (3-alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12aR*)-(+)-

化学式: C15H22O5 (282.1467)
中文名称: 青蒿素
谱图信息: 最多检出来源 Viridiplantae(plant) 9.54%

分子结构信息

SMILES: CC1CCC2C(C(=O)OC3C24C1CCC(O3)(OO4)C)C
InChI: InChI=1S/C15H22O5/c1-8-4-5-11-9(2)12(16)17-13-15(11)10(8)6-7-14(3,18-13)19-20-15/h8-11,13H,4-7H2,1-3H3

描述信息

D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
D000890 - Anti-Infective Agents
(+)-artemisinin is a sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. It has a role as an antimalarial and a plant metabolite. It is a sesquiterpene lactone and an organic peroxide.
Artemisinin has been used in trials studying the treatment of Schizophrenia, Malaria, Falciparum, and Plasmodium Falciparum.
Artemisinin is a natural product found in Microliabum polymnioides, Artemisia tenuisecta, and other organisms with data available.
A sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria.
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BE - Artemisinin and derivatives, plain
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Origin: Plant; SubCategory_DNP: Sesquiterpenoids
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9
INTERNAL_ID 9; CONFIDENCE Reference Standard (Level 1)
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.152
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.156
[Raw Data] CB176_Artemisinin_pos_30eV_isCID-10eV_rep000004.txt
[Raw Data] CB176_Artemisinin_pos_20eV_isCID-10eV_rep000004.txt
[Raw Data] CB176_Artemisinin_pos_10eV_isCID-10eV_rep000004.txt
[Raw Data] CB176_Artemisinin_pos_40eV_isCID-10eV_rep000004.txt
[Raw Data] CB176_Artemisinin_pos_50eV_isCID-10eV_rep000004.txt
Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2].
Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2].
Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2].

同义名列表

77 个代谢物同义名

Qing Hau Sau; Artemisinin; 3,12-Epoxy-12H-pyranol(4,3-j)-1,2-benzodioxepin-10(3H)-one, octahydro-3,6,9-trimethyl-, (3-alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12aR*)-(+)-; (1R,4S,5R,8S,9R,12S,13R)-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.0^{4,13}.0^{8,13}]hexadecan-10-one; (3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1, 2-benzodioxepin-10(3H)-one; (3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10(3H)-one; (3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano(4,3-j)-1,2-benzodioxepin-10(3H)-one; (3R,5aS,6R,8aS,9R,12S,12aR)-3,6,9-trimethyloctahydro-12H-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(3H)-one; (1R,4S,5R,8S,9R,12S,13R)-1,5,9-trimethyl-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecan-10-one; (3R,5AS,6R,8AS,9R,12S,12AR)-3,6,9-TRIMETHYLOCTAHYDRO-3,12-EPOXYPYRANO(4,3-J )-1,2-BENZODIOXEPIN-10(3H)-ONE; (3R,5aS,6R,8aS,9R,12S,12aR)-3,6,9-trimethyloctahydro-3,12-epoxypyrano[4,3-j][1,2]benzodioxepin-10(3H)-one; (3R,5aS,6R,8aS,9R,12S,12aR)-3,6,9-Trimethyloctahydro-3,12-epoxypyrano(4,3-j)(1,2)benzodioxepin-10(3H)-one; (3R,5AS,6R,8AS,9R,12S,12aR)-3,6,9-trimethyloctahydro-3,12-epoxypyrano(4,3-j)-1,2-benzodioxepin-10(3H)-one; 1,5,9-trimethyl-(1R,4S,5R,9R,12S,13R)-11,14,15,16-tetraoxatetracyclo(10.3.1.04,13.08,13)hexadecan-10-one; 1,5,9-trimethyl-(1R,4S,5R,9R,12S,13R)-11,14,15,16-tetraoxatetracyclo[10.3.1.04,13.08,13]hexadecan-10-one; Octahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano(4,3-j)-1,2-benzodioxepin-10(3H)-one; 2AB44F63-5D0F-424A-AA3F-24062F9C1CED; ARTEMISININUM [WHO-IP LATIN]; BLUAFEHZUWYNDE-NNWCWBAJSA-N; Qinghaosu,Artemisinine; Qing Hau Sau [Chinese]; Artemisinina [Spanish]; Artemisinine [French]; Artemisininum [Latin]; Artemisininum (Latin); ARTEMISININ [WHO-IP]; ARTEMISININ [USP-RS]; ARTEMISININ [WHO-DD]; ARTEMISININ (USP-RS); ARTEMISININ [MART.]; Qinghaosu [Chinese]; ARTEMISININ (MART.); ARTEMISININ [INCI]; Artemisinin [INN]; Prestwick1_000498; Prestwick2_000498; Prestwick0_000498; Prestwick3_000498; Spectrum5_001098; Spectrum3_001549; Spectrum2_001512; Spectrum4_000721; ARTEMISININ [MI]; (+)-Artemisinin; UNII-9RMU91N5K2; Tox21_111750_1; (+)-Arteannuin; quing hau sau; DivK1c_000656; artemisininum; BPBio1_000435; huanghuahaosu; KBio1_000656; artemisinine; KBio2_004399; KBio2_006967; Artemisinina; KBio3_002498; KBio2_001831; Tox21_111750; IDI1_000656; qing hao su; Qing Hau SU; 9RMU91N5K2; artemsinin; quinghaosu; Artemisine; Arteannuin; qinghaosu; Qinghosu; P01BE01; Artesin; QHS; (3R)-3alpha,6beta,9-Trimethyl-3a,4,5,6,6abeta,7,8,9,10aalpha,10b-decahydro-9beta,10bbeta-epidioxypyrano[4,3,2-jk][2]benzoxepin-2(3H)-one; 3,6,9-trimethyloctahydro-3,12-epoxy[1,2]dioxepino[4,3-i]isochromen-10(3H)-one; NSC 369397; Qing Hau Sau



数据库引用编号

104 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

3 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

  • artemisinin biosynthesis: (+)-amorpha-4,11-diene + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + artemisinic alcohol

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(1)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(1)

33 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, ANXA5, CTNNB1, CYP3A4, DHFR, DHPS, EGFR, G6PD, MSMP, MTOR, MYC, NFE2L2, PIK3CA, TP53
Peripheral membrane protein 3 ANXA5, G6PD, MTOR
Endosome membrane 2 EGFR, TF
Endoplasmic reticulum membrane 4 CYP3A4, EGFR, HMGCR, MTOR
Nucleus 7 AKT1, CTNNB1, EGFR, MTOR, MYC, NFE2L2, TP53
cytosol 11 AKT1, ANXA5, CTNNB1, DHFR, DHPS, G6PD, GSR, MTOR, NFE2L2, PIK3CA, TP53
dendrite 1 MTOR
phagocytic vesicle 1 MTOR
centrosome 3 CTNNB1, NFE2L2, TP53
nucleoplasm 7 AKT1, ATP2B1, CTNNB1, MTOR, MYC, NFE2L2, TP53
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 4 AKT1, ATP2B1, CTNNB1, EGFR
Cytoplasmic side 1 MTOR
lamellipodium 3 AKT1, CTNNB1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Multi-pass membrane protein 2 ATP2B1, HMGCR
Golgi apparatus membrane 1 MTOR
Synapse 2 ATP2B1, CTNNB1
cell cortex 2 AKT1, CTNNB1
cell junction 2 CTNNB1, EGFR
cell surface 2 EGFR, TF
glutamatergic synapse 4 AKT1, ATP2B1, CTNNB1, EGFR
Golgi apparatus 1 NFE2L2
Golgi membrane 2 EGFR, MTOR
lysosomal membrane 1 MTOR
postsynapse 1 AKT1
presynaptic membrane 2 ATP2B1, CTNNB1
sarcolemma 1 ANXA5
Cytoplasm, cytosol 2 G6PD, NFE2L2
Lysosome 1 MTOR
endosome 1 EGFR
plasma membrane 8 AKT1, ATP2B1, CTNNB1, EGFR, IFNLR1, NFE2L2, PIK3CA, TF
synaptic vesicle membrane 1 ATP2B1
Membrane 12 AKT1, ANXA5, ATP2B1, CTNNB1, CYP3A4, EGFR, G6PD, HMGCR, IFNLR1, MTOR, MYC, TP53
apical plasma membrane 2 EGFR, TF
basolateral plasma membrane 3 ATP2B1, CTNNB1, EGFR
extracellular exosome 6 ANXA5, ATP2B1, CTNNB1, G6PD, GSR, TF
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 HMGCR, TP53
extracellular space 4 EGFR, IL4, MSMP, TF
perinuclear region of cytoplasm 4 CTNNB1, EGFR, PIK3CA, TF
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 3 DHFR, GSR, TP53
protein-containing complex 5 AKT1, CTNNB1, EGFR, MYC, TP53
intracellular membrane-bounded organelle 3 ATP2B1, CYP3A4, G6PD
Microsome membrane 2 CYP3A4, MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 EGFR, IFNLR1
Secreted 3 IL4, MSMP, TF
extracellular region 3 ANXA5, IL4, TF
cytoplasmic side of plasma membrane 1 G6PD
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 1 MTOR
basal part of cell 1 TF
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 GSR, TP53
transcription regulator complex 2 CTNNB1, TP53
centriolar satellite 1 G6PD
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
nuclear membrane 1 EGFR
external side of plasma membrane 2 ANXA5, GSR
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
cytoplasmic vesicle 1 TF
microtubule cytoskeleton 1 AKT1
nucleolus 2 MYC, TP53
Wnt signalosome 1 CTNNB1
Early endosome 1 TF
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
clathrin-coated pit 1 TF
recycling endosome 1 TF
vesicle 2 AKT1, TF
postsynaptic membrane 1 CTNNB1
Membrane raft 1 EGFR
Cytoplasm, cytoskeleton 2 CTNNB1, TP53
focal adhesion 3 ANXA5, CTNNB1, EGFR
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
intracellular vesicle 1 EGFR
peroxisomal membrane 1 HMGCR
Nucleus, PML body 2 MTOR, TP53
PML body 2 MTOR, TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 ANXA5
fascia adherens 1 CTNNB1
lateral plasma membrane 2 ATP2B1, CTNNB1
Late endosome 1 TF
receptor complex 1 EGFR
Zymogen granule membrane 1 ANXA5
ciliary basal body 1 AKT1
chromatin 3 MYC, NFE2L2, TP53
mediator complex 1 NFE2L2
cell projection 1 ATP2B1
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Nucleus, nucleolus 1 MYC
spindle pole 1 CTNNB1
blood microparticle 1 TF
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 ATP2B1
microvillus membrane 1 CTNNB1
site of double-strand break 1 TP53
nuclear envelope 2 MTOR, MYC
Endomembrane system 2 CTNNB1, MTOR
Nucleus, nucleoplasm 1 MYC
euchromatin 1 CTNNB1
Presynaptic cell membrane 1 ATP2B1
germ cell nucleus 1 TP53
replication fork 1 TP53
Peroxisome membrane 1 HMGCR
basal plasma membrane 2 EGFR, TF
synaptic membrane 1 EGFR
secretory granule lumen 1 TF
HFE-transferrin receptor complex 1 TF
endoplasmic reticulum lumen 1 TF
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
endocytic vesicle 1 TF
RNA polymerase II transcription repressor complex 1 MYC
beta-catenin-TCF complex 1 CTNNB1
immunological synapse 1 ATP2B1
presynaptic active zone cytoplasmic component 1 CTNNB1
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 2 EGFR, TF
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 2 CTNNB1, NFE2L2
Rough endoplasmic reticulum 1 MYC
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
vesicle coat 1 TF
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
Myc-Max complex 1 MYC
endothelial microparticle 1 ANXA5
photoreceptor ribbon synapse 1 ATP2B1
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
dense body 1 TF
interleukin-28 receptor complex 1 IFNLR1
nucleoplasmic reticulum 1 MYC


文献列表

  • Annabelle Walz, Ursula Lehmann, Urs Duthaler, Pascal Mäser, Sergio Wittlin. In vivo antimalarial efficacy of Artemisia afra powder suspensions. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jul; 129(?):155644. doi: 10.1016/j.phymed.2024.155644. [PMID: 38761524]
  • Wenlu Sang, Cunhao Du, Lixiao Ni, Shiyin Li, Amar Ali Adam Hamad, Chu Xu, Chenxi Shao. Physiological and molecular mechanisms of the inhibitory effects of artemisinin on Microcystis aeruginosa and Chlorella pyrenoidosa. Journal of hazardous materials. 2024 May; 470(?):134241. doi: 10.1016/j.jhazmat.2024.134241. [PMID: 38608594]
  • Ishfaq Majid Hurrah, Amit Kumar, Nazia Abbas. Functional characterisation of Artemisia annua jasmonic acid carboxyl methyltransferase: a key enzyme enhancing artemisinin biosynthesis. Planta. 2024 May; 259(6):152. doi: 10.1007/s00425-024-04433-y. [PMID: 38735012]
  • Pamela Weathers, Melissa Towler, Bushra Hafeez Kiani, David Dolivo, Tanja Dominko. Differential Anti-Fibrotic and Remodeling Responses of Human Dermal Fibroblasts to Artemisia sp., Artemisinin, and Its Derivatives. Molecules (Basel, Switzerland). 2024 May; 29(9):. doi: 10.3390/molecules29092107. [PMID: 38731597]
  • Eva Kiss, Stefan Kins, Karin Gorgas, Kinga Hajnal Venczel Szakács, Joachim Kirsch, Jochen Kuhse. Another Use for a Proven Drug: Experimental Evidence for the Potential of Artemisinin and Its Derivatives to Treat Alzheimer's Disease. International journal of molecular sciences. 2024 Apr; 25(8):. doi: 10.3390/ijms25084165. [PMID: 38673751]
  • Maria Beatriz Viana Dos Santos, Alaíde Braga de Oliveira, Rosa Helena Veras Mourão. Brazilian plants with antimalarial activity: A review of the period from 2011 to 2022. Journal of ethnopharmacology. 2024 Mar; 322(?):117595. doi: 10.1016/j.jep.2023.117595. [PMID: 38122914]
  • Tian-Yu Cai, Jian-Bo Ji, Xin Wang, Jie Xing. Targeted screening of the synergistic components in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin based on a "top down" PD-PK approach. Journal of ethnopharmacology. 2024 Mar; 322(?):117612. doi: 10.1016/j.jep.2023.117612. [PMID: 38135228]
  • Camilla Valente Pires, Debora Cassandra, Shulin Xu, Benoit Laleu, Jeremy N Burrows, John H Adams. Oxidative stress changes the effectiveness of artemisinin in Plasmodium falciparum. mBio. 2024 Mar; 15(3):e0316923. doi: 10.1128/mbio.03169-23. [PMID: 38323831]
  • Wahengbam Kabita Chanu, Aditi Chatterjee, Nalini Singh, Viswanathan Arun Nagaraj, Chingakham Brajakishor Singh. Phytochemical screening, antioxidant analyses, and in vitro and in vivo antimalarial activities of herbal medicinal plant - Rotheca serrata (L.) Steane & Mabb. Journal of ethnopharmacology. 2024 Mar; 321(?):117466. doi: 10.1016/j.jep.2023.117466. [PMID: 37981115]
  • Meng-Yue Wang, Hui-Hua Wan, Li Xiang, Yu-Ting Pu, Qing-Gang Yin, Ran-Ran Gao, Yu-Hua Shi, Lan Wu. [Simultaneous determination of seven artemisinin-related compounds in Artemisia annua by UPLC-QQQ-MS/MS]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2024 Mar; 49(5):1260-1265. doi: 10.19540/j.cnki.cjcmm.2023105.101. [PMID: 38621973]
  • Stefano Negri, Fabio Pietrolucci, Sebastiano Andreatta, Ruth Chinyere Njoku, Carolina Antunes Silva Nogueira Ramos, Massimo Crimi, Mauro Commisso, Flavia Guzzo, Linda Avesani. Bioprospecting of Artemisia genus: from artemisinin to other potentially bioactive compounds. Scientific reports. 2024 02; 14(1):4791. doi: 10.1038/s41598-024-55128-z. [PMID: 38413638]
  • Jia-He Liao, Qian He, Zi-Wei Huang, Xin-Bo Yu, Jian-Ying Yang, Yan Zhang, Wei-Jiang Song, Jing Luo, Qing-Wen Tao. Network pharmacology-based strategy to investigate the mechanisms of artemisinin in treating primary Sjögren's syndrome. BMC immunology. 2024 02; 25(1):16. doi: 10.1186/s12865-024-00605-3. [PMID: 38347480]
  • Yiyun Geng, Weichao Li, Nai-Kei Wong, Fuchong Xue, Qing Li, Yang Zhang, Jingyuan Xu, Zhangshuang Deng, Yiqing Zhou. Discovery of Artemisinins as Microsomal Prostaglandins Synthase-2 Inhibitors for the Treatment of Colorectal Cancer via Chemoproteomics. Journal of medicinal chemistry. 2024 Feb; 67(3):2083-2094. doi: 10.1021/acs.jmedchem.3c01989. [PMID: 38287228]
  • Lingyun Wan, Juan Huo, Qiulan Huang, Xiaowen Ji, Lisha Song, Zhanjiang Zhang, Limei Pan, Jine Fu, Mohamed A Abd Elhamid, Salma A Soaud, Rania M Y Heakel, Jihai Gao, Shugen Wei, Ahmed H El-Sappah. Genetics and metabolic responses of Artemisia annua L to the lake of phosphorus under the sparingly soluble phosphorus fertilizer: evidence from transcriptomics analysis. Functional & integrative genomics. 2024 Feb; 24(1):26. doi: 10.1007/s10142-024-01301-6. [PMID: 38329581]
  • Xueqing Fu, Han Zheng, Yuting Wang, Hang Liu, Pin Liu, Ling Li, Jingya Zhao, Xiaofen Sun, Kexuan Tang. AaABCG20 transporter involved in cutin and wax secretion affects the initiation and development of glandular trichomes in Artemisia annua. Plant science : an international journal of experimental plant biology. 2024 Feb; 339(?):111959. doi: 10.1016/j.plantsci.2023.111959. [PMID: 38101619]
  • Youke Wang, Xiang Yuan, Min Ren, Zhiyu Wang. Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment. The American journal of Chinese medicine. 2024; 52(1):161-181. doi: 10.1142/s0192415x24500071. [PMID: 38328829]
  • Yongpeng Li, Yinkai Yang, Pengyang Li, Miaomiao Sheng, Ling Li, Xiaojing Ma, Zhiyan Du, Kexuan Tang, Xiaolong Hao, Guoyin Kai. AaABI5 transcription factor mediates light and abscisic acid signaling to promote anti-malarial drug artemisinin biosynthesis in Artemisia annua. International journal of biological macromolecules. 2023 Dec; 253(Pt 6):127345. doi: 10.1016/j.ijbiomac.2023.127345. [PMID: 37820909]
  • Jieting Chen, Wenguang Wu, Xiaoxia Ding, Danchun Zhang, Chunyan Dai, Hengyu Pan, Peiqi Shi, Chanjuan Wu, Jun Zhang, Jianmin Zhao, Baosheng Liao, Xiaohui Qiu, Zhihai Huang. Genome-wide characterization of regulator of chromosome condensation 1 (RCC1) gene family in Artemisia annua L. revealed a conservation evolutionary pattern. BMC genomics. 2023 Nov; 24(1):692. doi: 10.1186/s12864-023-09786-4. [PMID: 37980503]
  • Adi Nath, Abhijeet Sharma, Shailendra Kumar Singh, Shanthy Sundaram. Bio Prospecting of Endophytes and PGPRs in Artemisinin Production for the Socio-economic Advancement. Current microbiology. 2023 Nov; 81(1):4. doi: 10.1007/s00284-023-03516-5. [PMID: 37947887]
  • Junfeng Cao, Zhiwen Chen, Luyao Wang, Ning Yan, Jialing Lin, Lipan Hou, Yongyan Zhao, Chaochen Huang, Tingting Wen, Chenyi Li, Saeed Ur Rahman, Zehui Liu, Jun Qiao, Jianguo Zhao, Jie Wang, Yannan Shi, Wei Qin, Tong Si, Yuliang Wang, Kexuan Tang. Graphene enhances artemisinin production in traditional medicinal plant Artemisia annua via dynamic physiological progress and miRNA regulation. Plant communications. 2023 Nov; ?(?):100742. doi: 10.1016/j.xplc.2023.100742. [PMID: 37919898]
  • Jingsai Gu, Yishuang Xu, Dihao Hua, Zhen Chen. Role of artesunate in autoimmune diseases and signaling pathways. Immunotherapy. 2023 10; 15(14):1183-1193. doi: 10.2217/imt-2023-0052. [PMID: 37431601]
  • Xingxing Wang, Wenjing Sun, Shiyuan Fang, Boran Dong, JinXing Li, Zongyou Lv, Wankui Li, Wansheng Chen. AaWRKY6 contributes to artemisinin accumulation during growth in Artemisia annua. Plant science : an international journal of experimental plant biology. 2023 Oct; 335(?):111789. doi: 10.1016/j.plantsci.2023.111789. [PMID: 37421981]
  • Zhaoyu Liu, Yupeng Du, Zhihao Sun, Bohan Cheng, Zenghao Bi, Zhicheng Yao, Yuting Liang, Huiling Zhang, Run Yao, Shen Kang, Yuhua Shi, Huihua Wan, Dou Qin, Li Xiang, Liang Leng, Shilin Chen. Manual correction of genome annotation improved alternative splicing identification of Artemisia annua. Planta. 2023 Sep; 258(4):83. doi: 10.1007/s00425-023-04237-6. [PMID: 37721598]
  • Xuejiao Liao, Shuai Guo, Baosheng Liao, Xiaofeng Shen, Wenrui He, Ying Meng, Conglian Liang, Jin Pei, Jiushi Liu, Yongqing Zhang, Jiang Xu, Shilin Chen. Chromatin architecture of two different strains of Artemisia annua reveals the alterations in interaction and gene expression. Planta. 2023 Sep; 258(4):74. doi: 10.1007/s00425-023-04223-y. [PMID: 37668722]
  • Jiayun Chen, Peng Gao, Wei Xiao, Guangqing Cheng, Sanjeev Krishna, Jianyou Wang, Yin Kwan Wong, Chen Wang, Liwei Gu, Dong Hua Yang, Jigang Wang. Multi-omics dissection of stage-specific artemisinin tolerance mechanisms in Kelch13-mutant Plasmodium falciparum. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy. 2023 09; 70(?):100978. doi: 10.1016/j.drup.2023.100978. [PMID: 37385107]
  • Hui Yu, Jia-Mi Li, Kai Deng, Wei Zhou, Kun-Heng Li, Cai-Xia Wang, Qian Wang, Meng Wu, Shi-Wen Huang. GPX4 inhibition synergistically boosts mitochondria targeting nanoartemisinin-induced apoptosis/ferroptosis combination cancer therapy. Biomaterials science. 2023 Aug; 11(17):5831-5845. doi: 10.1039/d3bm00601h. [PMID: 37439624]
  • Hang Liu, Weizhi He, Xinghao Yao, Xin Yan, Xiuyun Wang, Bowen Peng, Yaojie Zhang, Jin Shao, Xinyi Hu, Qing Miao, Ling Li, Kexuan Tang. The Light- and Jasmonic Acid-Induced AaMYB108-like Positive Regulates the Initiation of Glandular Secretory Trichome in Artemisia annua L. International journal of molecular sciences. 2023 Aug; 24(16):. doi: 10.3390/ijms241612929. [PMID: 37629108]
  • Yan Li, Zi Wei Zeng, Di Chen, Zhi Cheng Gu, Wan Li Yan, Ling Yun Yue, Ren Guang Zhu, Yong Long Zhao, Lei Chen, Qing Jie Zhao, Bin He. Facilitated Drug Repurposing with Artemisinin-Derived PROTACs: Unveiling PCLAF as a Therapeutic Target. Journal of medicinal chemistry. 2023 Aug; ?(?):. doi: 10.1021/acs.jmedchem.3c00824. [PMID: 37552639]
  • Neelofer Nabi, Seema Singh, Peer Saffeullah. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. Phytochemistry. 2023 Jul; 214(?):113798. doi: 10.1016/j.phytochem.2023.113798. [PMID: 37517615]
  • Xiaoxia Ding, Jieting Chen, Chunyan Dai, Peiqi Shi, Hengyu Pan, Yanqi Lin, Yikang Chen, Lu Gong, Linming Chen, Wenguang Wu, Xiaohui Qiu, Jiang Xu, Zhihai Huang, Baosheng Liao. Developing population identification tool based on polymorphism of rDNA for traditional Chinese medicine: Artemisia annua L. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Jul; 116(?):154882. doi: 10.1016/j.phymed.2023.154882. [PMID: 37210961]
  • Pamela J Weathers. Artemisinin as a therapeutic vs. its more complex Artemisia source material. Natural product reports. 2023 07; 40(7):1158-1169. doi: 10.1039/d2np00072e. [PMID: 36541391]
  • Zhiying Guo, Qin Zhang, Yitong Zhang, Changlin Wu, Yijuan Zheng, Fupeng Tong, Linhui Zhang, Ruyu Lu, Xiusong Pan, Hexin Tan, Zongyou Lv. Effects of exogenous indole-3-acetic acid on the density of trichomes, expression of artemisinin biosynthetic genes, and artemisinin biosynthesis in Artemisia annua. Biotechnology and applied biochemistry. 2023 Jul; ?(?):. doi: 10.1002/bab.2489. [PMID: 37424116]
  • Anna Maria Posadino, Roberta Giordo, Gianfranco Pintus, Soheb Anwar Mohammed, Ilkay Erdogan Orhan, Patrick Valere Tsouh Fokou, Farukh Sharopov, Charles Oluwaseun Adetunji, Zehra Gulsunoglu-Konuskan, Alibek Ydyrys, Lorene Armstrong, Oksana Sytar, Miquel Martorell, Ahmad Faizal Abdull Razis, Babagana Modu, Daniela Calina, Solomon Habtemariam, Javad Sharifi-Rad, William C Cho. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Jul; 163(?):114866. doi: 10.1016/j.biopha.2023.114866. [PMID: 37182516]
  • Wei Xu, Xiaosu Zou, Yufeng Zha, Jinghua Zhang, Hongzhu Bian, Zhengwu Shen. Novel Bis-Artemisinin-Phloroglucinol hybrid molecules with dual anticancer and immunomodulatory Activities: Synthesis and evaluation. Bioorganic chemistry. 2023 Jun; 139(?):106705. doi: 10.1016/j.bioorg.2023.106705. [PMID: 37406517]
  • Lingjuan Kong, Xiaoqing Ji, Yan Liu, YingJie Du. Effect of artemisinin combined with allicin on improving cardiac function, fibrosis and NF-κB signaling pathway in rats with diabetic cardiomyopathy. Acta biochimica Polonica. 2023 Jun; 70(2):401-405. doi: 10.18388/abp.2020_6692. [PMID: 37307593]
  • Qinggang Yin, Tianze Wu, Ranran Gao, Lan Wu, Yuhua Shi, Xingwen Wang, Mengyue Wang, Zhichao Xu, Yueliang Zhao, Xiaojia Su, Yanyan Su, Xiaoyan Han, Ling Yuan, Li Xiang, Shilin Chen. Multi-omics reveal key enzymes involved in the formation of phenylpropanoid glucosides in Artemisia annua. Plant physiology and biochemistry : PPB. 2023 Jun; 201(?):107795. doi: 10.1016/j.plaphy.2023.107795. [PMID: 37301186]
  • Xin-Na Gao, Jing-Jie Kang, Peng Sun, Yi-Fan Zhao, Dong Zhang, Lan Yang, Yue Ma, Hui-Min Gao. [Microbial transformation of artemisinin and its derivatives]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2023 Jun; 48(11):2876-2895. doi: 10.19540/j.cnki.cjcmm.20230327.301. [PMID: 37381950]
  • Lingyun Yue, Yanna Pan, Jiaoying Wang, Lin Yue, Yuxuan Luo, Fang Lv, Jiagang Lv, Jianping Chen, Qingjie Zhao, Haixia Lin. Design, Synthesis, and Anti-tumor Activities of Isomers of Artemisinin Dimer Derivatives. Chemistry & biodiversity. 2023 May; ?(?):e202300615. doi: 10.1002/cbdv.202300615. [PMID: 37256824]
  • Maryam Akbari, Hossein Heli, Ahmad Oryan, Gholamreza Hatam. A novel outlook in the delivery of artemisinin: production and efficacy in experimental visceral leishmaniasis. Pathogens and global health. 2023 May; ?(?):1-7. doi: 10.1080/20477724.2023.2212347. [PMID: 37183476]
  • Lin Guan, Huiyong Wang, Xiaolong Xu, Huahao Fan. Therapeutical Utilization and Repurposing of Artemisinin and Its Derivatives: A Narrative Review. Advanced biology. 2023 May; ?(?):e2300086. doi: 10.1002/adbi.202300086. [PMID: 37178448]
  • Dawei Huang, Guixian Zhong, Shiyang Zhang, Kerui Jiang, Chen Wang, Jian Wu, Bo Wang. Trichome-Specific Analysis and Weighted Gene Co-Expression Correlation Network Analysis (WGCNA) Reveal Potential Regulation Mechanism of Artemisinin Biosynthesis in Artemisia annua. International journal of molecular sciences. 2023 May; 24(10):. doi: 10.3390/ijms24108473. [PMID: 37239820]
  • Lingyun Wan, Qiulan Huang, Xiaowen Ji, Lisha Song, Zhanjiang Zhang, Limei Pan, Jine Fu, Rania G Elbaiomy, Ahmed S Eldomiaty, Shabir A Rather, Mohamed M A Elashtokhy, Jihai Gao, Lingliang Guan, Shugen Wei, Ahmed H El-Sappah. RNA sequencing in Artemisia annua L explored the genetic and metabolic responses to hardly soluble aluminum phosphate treatment. Functional & integrative genomics. 2023 Apr; 23(2):141. doi: 10.1007/s10142-023-01067-3. [PMID: 37118364]
  • Mariana Elizabeth Troncoso, María José Germanó, Victoria J Arrieta, María Fernanda García Bustos, Diego Cifuente, Diego E Cargnelutti, Esteban S Lozano. Antiparasitic Activity of Two Natural Terpenes from Salvia cuspidata against Leishmania amazonensis. Journal of natural products. 2023 04; 86(4):797-803. doi: 10.1021/acs.jnatprod.2c00976. [PMID: 36857574]
  • Camilla Valente Pires, Jenna Oberstaller, Chengqi Wang, Debora Casandra, Min Zhang, Jyotsna Chawla, Swamy Rakesh Adapa, Thomas D Otto, Michael T Ferdig, Julian C Rayner, Rays H Y Jiang, John H Adams. Chemogenomic Profiling of a Plasmodium falciparum Transposon Mutant Library Reveals Shared Effects of Dihydroartemisinin and Bortezomib on Lipid Metabolism and Exported Proteins. Microbiology spectrum. 2023 Apr; ?(?):e0501422. doi: 10.1128/spectrum.05014-22. [PMID: 37067430]
  • Kaiser Iqbal Wani, M Naeem, M Masroor A Khan, Tariq Aftab. Insights into strigolactone (GR24) mediated regulation of cadmium-induced changes and ROS metabolism in Artemisia annua. Journal of hazardous materials. 2023 04; 448(?):130899. doi: 10.1016/j.jhazmat.2023.130899. [PMID: 36860066]
  • Nannan Chen, Dongjun Jiang, Baihui Shao, Tongtong Bai, Jinwei Chen, Yu Liu, Zecai Zhang, Yulong Zhou, Xue Wang, Zhanbo Zhu. Anti-BVDV Activity of Traditional Chinese Medicine Monomers Targeting NS5B (RNA-Dependent RNA Polymerase) In Vitro and In Vivo. Molecules (Basel, Switzerland). 2023 Apr; 28(8):. doi: 10.3390/molecules28083413. [PMID: 37110647]
  • Mengjiao Zhong, Chen Sun, Bing Zhou. Anti-Mitochondrial and Insecticidal Effects of Artemisinin against Drosophila melanogaster. International journal of molecular sciences. 2023 Apr; 24(8):. doi: 10.3390/ijms24086912. [PMID: 37108079]
  • Zulvikar Syambani Ulhaq. Synergistic anti-malarial effects of Ocimum sanctum leaf extract and artemisinin. Enfermedades infecciosas y microbiologia clinica (English ed.). 2023 04; 41(4):250-251. doi: 10.1016/j.eimce.2022.06.016. [PMID: 36707285]
  • Yisen Wang, Jingxuan Tian, Jie Chen, Shanhong Ni, Ying Yao, Lirong Wang, Xiuli Wu, Ruilong Song, Jing Chen. Nontargeted metabolomics integrated with 1 H NMR and LC-Q-TOF-MS/MS methods to depict a more comprehensive metabolic profile in response to chrysosplenetin and artemisinin co-treatment against artemisinin-sensitive and -resistant Plasmodium berghei K173. Biomedical chromatography : BMC. 2023 Mar; 37(3):e5561. doi: 10.1002/bmc.5561. [PMID: 36471489]
  • Hang Liu, Ling Li, Xueqing Fu, Yongpeng Li, Tiantian Chen, Wei Qin, Xin Yan, Zhangkuanyu Wu, Lihui Xie, Sadaf-Llyas Kayani, Danial Hassani, Xiaofen Sun, Kexuan Tang. AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. The New phytologist. 2023 03; 237(6):2224-2237. doi: 10.1111/nph.18702. [PMID: 36564967]
  • Zhiying Guo, Kai Hao, Zongyou Lv, Luyao Yu, Qitao Bu, Junze Ren, Henan Zhang, Ruibing Chen, Lei Zhang. Profiling of phytohormone-specific microRNAs and characterization of the miR160-ARF1 module involved in glandular trichome development and artemisinin biosynthesis in Artemisia annua. Plant biotechnology journal. 2023 03; 21(3):591-605. doi: 10.1111/pbi.13974. [PMID: 36478140]
  • Rika Judd, Yilun Dong, Xiaoyan Sun, Yue Zhu, Mingzhuo Li, De-Yu Xie. Metabolic engineering of the anthocyanin biosynthetic pathway in Artemisia annua and relation to the expression of the artemisinin biosynthetic pathway. Planta. 2023 Feb; 257(3):63. doi: 10.1007/s00425-023-04091-6. [PMID: 36807538]
  • M S Nair, Y Huang, M Wang, P J Weathers. SARS-CoV-2 omicron variants are susceptible in vitro to Artemisia annua hot water extracts. Journal of ethnopharmacology. 2023 Feb; 308(?):116291. doi: 10.1016/j.jep.2023.116291. [PMID: 36804200]
  • Zi-Wei Zeng, Di Chen, Lei Chen, Bin He, Yan Li. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. European journal of medicinal chemistry. 2023 Feb; 247(?):115000. doi: 10.1016/j.ejmech.2022.115000. [PMID: 36538859]
  • Shuwei Chang, Qi Li, Baokang Huang, Wansheng Chen, Hexin Tan. Genome-wide identification and characterisation of bHLH transcription factors in Artemisia annua. BMC plant biology. 2023 Feb; 23(1):63. doi: 10.1186/s12870-023-04063-8. [PMID: 36721100]
  • Yuanqing Jin, Shuguang Wu, Lingyan Zhang, Gang Yao, Hai Zhao, Penghai Qiao, Jian Zhang. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss. Basic & clinical pharmacology & toxicology. 2023 Feb; 132(2):144-153. doi: 10.1111/bcpt.13817. [PMID: 36433916]
  • Mingyuan Yuan, Guoping Shu, Jiaheng Zhou, Ping He, Lien Xiang, Chunxian Yang, Ming Chen, Zhihua Liao, Fangyuan Zhang. AabHLH113 integrates jasmonic acid and abscisic acid signaling to positively regulate artemisinin biosynthesis in Artemisia annua. The New phytologist. 2023 02; 237(3):885-899. doi: 10.1111/nph.18567. [PMID: 36271612]
  • Isaac A Adedara, Solomon E Owumi. Neurobehavioral and biochemical responses to artemisinin-based drug and aflatoxin B1 co-exposure in rats. Mycotoxin research. 2023 Jan; ?(?):. doi: 10.1007/s12550-023-00474-6. [PMID: 36701108]
  • Yixin Gu, Wenjie Wang, Yu Zhan, Xiaoyan Wei, Yanyan Shi, Dandan Cui, Tingting Peng, Jian Han, Xuejie Li, Yan Chen, Zhuang Xue, Wei Wang. Dietary artemisinin boosts intestinal immunity and healthy in fat greenling (Hexagrammos otakii). Frontiers in immunology. 2023; 14(?):1198902. doi: 10.3389/fimmu.2023.1198902. [PMID: 37529040]
  • Mohammad, Ishfaq Majid Hurrah, Amit Kumar, Nazia Abbas. Synergistic interaction of two bHLH transcription factors positively regulates artemisinin biosynthetic pathway in Artemisia annua L. Physiologia plantarum. 2023 Jan; 175(1):e13849. doi: 10.1111/ppl.13849. [PMID: 36636815]
  • Xueyan Zhang, Na Li, Guoqin Zhang, Jiayang Li, Yi Liu, Meng Wang, Xiaoliang Ren. Nano Strategies for Artemisinin Derivatives to Enhance Reverse Efficiency of Multidrug Resistance in Breast Cancer. Current pharmaceutical design. 2023; 29(43):3458-3466. doi: 10.2174/0113816128282248231205105408. [PMID: 38270162]
  • Monireh Marsafari, Fidelis Azi, Shaohua Dou, Peng Xu. Modular co-culture engineering of Yarrowia lipolytica for amorphadiene biosynthesis. Microbial cell factories. 2022 Dec; 21(1):279. doi: 10.1186/s12934-022-02010-0. [PMID: 36587216]
  • Roberta Salaroli, Giulia Andreani, Chiara Bernardini, Augusta Zannoni, Debora La Mantia, Michele Protti, Monica Forni, Laura Mercolini, Gloria Isani. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines. Research in veterinary science. 2022 Dec; 152(?):476-484. doi: 10.1016/j.rvsc.2022.09.012. [PMID: 36156377]
  • Hamza Ahmed-Laloui, Hadjer Zaak, Abderrahman Rahmani, Imad Kashi, Smain Chemat, Mohamed Djamel Miara, Nora Cherb, Mouna Derdour. Assessment of artemisinin and antioxidant activities of three wild Artemisia species of Algeria. Natural product research. 2022 Dec; 36(24):6344-6352. doi: 10.1080/14786419.2022.2025803. [PMID: 35001764]
  • Zhiyun Jiang, Lixiao Ni, Xianglan Li, Chu Xu, Xuqing Chen, Shiyin Li. Mechanistic insight into the inhibitory effect of artemisinin sustained-release inhibitors with different particle sizes on Microcystis aeruginosa. Environmental science and pollution research international. 2022 Dec; 29(58):87545-87554. doi: 10.1007/s11356-022-21534-x. [PMID: 35816254]
  • Xiao Tong, Li Chen, Shi-Jun He, Jian-Ping Zuo. Artemisinin derivative SM934 in the treatment of autoimmune and inflammatory diseases: therapeutic effects and molecular mechanisms. Acta pharmacologica Sinica. 2022 Dec; 43(12):3055-3061. doi: 10.1038/s41401-022-00978-4. [PMID: 36050518]
  • Henan Shi, Zhuqing Wang, Fujie Xu, Jialin Li, Jing Li, Manyuan Wang. A Discovery-Based Metabolomic Approach Using UPLC-Q-TOF-MS/MS Reveals Potential Antimalarial Compounds Present in Artemisia annua L. International journal of molecular sciences. 2022 Nov; 23(23):. doi: 10.3390/ijms232314903. [PMID: 36499227]
  • Xiang-Hua Yu, Jing-Biao Wu, Hua-Yang Fan, Li Dai, Hong-Chun Xian, Bing-Jun Chen, Peng Liao, Mei-Chang Huang, Xin Pang, Mei Zhang, Xin-Hua Liang, Ya-Ling Tang. Artemisinin suppressed tumour growth and induced vascular normalisation in oral squamous cell carcinoma via inhibition of macrophage migration inhibitory factor. Oral diseases. 2022 Nov; ?(?):. doi: 10.1111/odi.14418. [PMID: 36321394]
  • Wei Zhang, Guozhang Bao, Wenyi Tang, Gejun Dai, Jing Xiao, Jiapeng Liu, Zhao Wang, Jinghui Xi. Physiological response of barley seedlings to salinity and artemisinin combined stresses under freeze-thaw environment. Environmental science and pollution research international. 2022 Oct; 29(46):70552-70563. doi: 10.1007/s11356-022-20800-2. [PMID: 35588037]
  • Guoliang Xiong, Dakun Huang, Lingfei Lu, Xiuxian Luo, Yadong Wang, Shangwen Liu, Mianxiong Chen, Shaolong Yu, Marie Kappen, Changjiang You, Sheng Lu, Yingjie Yu, Jiandong Lu, Feng Lin. Near-Infrared-II Light Induced Mild Hyperthermia Activate Cisplatin-Artemisinin Nanoparticle for Enhanced Chemo/Chemodynamic Therapy and Immunotherapy. Small methods. 2022 09; 6(9):e2200379. doi: 10.1002/smtd.202200379. [PMID: 35978419]
  • Yawei Du, Carlo Giannangelo, Wei He, Gerald J Shami, Wenya Zhou, Tuo Yang, Darren J Creek, Con Dogovski, Xinsong Li, Leann Tilley. Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrobial agents and chemotherapy. 2022 05; 66(5):e0206521. doi: 10.1128/aac.02065-21. [PMID: 35416709]
  • Lars Herrmann, Ivan A Yaremenko, Aysun Çapcı, Julia Struwe, Dhanir Tailor, Arpit Dheeraj, Jan Hodek, Yulia Yu Belyakova, Peter S Radulov, Jan Weber, Sanjay V Malhotra, Alexander O Terent'ev, Lutz Ackermann, Svetlana B Tsogoeva. Synthesis and in vitro Study of Artemisinin/Synthetic Peroxide-Based Hybrid Compounds against SARS-CoV-2 and Cancer. ChemMedChem. 2022 05; 17(9):e202200005. doi: 10.1002/cmdc.202200005. [PMID: 35187791]
  • Kaitlyn Varela, Hafij Al Mahmud, Hadi D Arman, Luis R Martinez, Catherine A Wakeman, Francis K Yoshimoto. Autoxidation of a C2-Olefinated Dihydroartemisinic Acid Analogue to Form an Aromatic Ring: Application to Serrulatene Biosynthesis. Journal of natural products. 2022 04; 85(4):951-962. doi: 10.1021/acs.jnatprod.1c01101. [PMID: 35357832]
  • Shuo Li, Wenhui Xu, Huajing Wang, Tian Tang, Ji Ma, Zhao Cui, Hang Shi, Ting Qin, Hongying Zhou, Lanfang Li, Tingliang Jiang, Canghai Li. Ferroptosis plays an essential role in the antimalarial mechanism of low-dose dihydroartemisinin. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Apr; 148(?):112742. doi: 10.1016/j.biopha.2022.112742. [PMID: 35228063]
  • Nan Qiu, Daniel Abegg, Mara Guidi, Kerry Gilmore, Peter H Seeberger, Alexander Adibekian. Artemisinin inhibits NRas palmitoylation by targeting the protein acyltransferase ZDHHC6. Cell chemical biology. 2022 03; 29(3):530-537.e7. doi: 10.1016/j.chembiol.2021.07.012. [PMID: 34358442]
  • Xiaobo Li, Xingcheng Liao, Xiufang Yan, Yueming Yuan, Zheng Yuan, Ruidong Liu, Zhiyong Xu, Qi Wang, Qin Xu, Li Ru, Jianping Song. Acute and subacute oral toxicity of artemisinin-hydroxychloroquine sulfate tablets in rats. Regulatory toxicology and pharmacology : RTP. 2022 Mar; 129(?):105114. doi: 10.1016/j.yrtph.2022.105114. [PMID: 35007669]
  • Ella M E Forgie, Hannah M Brooks, Michelle Barton, Michael T Hawkes. Pediatric Malaria: Global and North American Perspectives. Pediatric clinics of North America. 2022 02; 69(1):47-64. doi: 10.1016/j.pcl.2021.08.008. [PMID: 34794676]
  • Eva Kiss, Stefan Kins, Karin Gorgas, Maret Orlik, Carolin Fischer, Kristina Endres, Andrea Schlicksupp, Joachim Kirsch, Jochen Kuhse. Artemisinin-treatment in pre-symptomatic APP-PS1 mice increases gephyrin phosphorylation at Ser270: a modification regulating postsynaptic GABAAR density. Biological chemistry. 2022 01; 403(1):73-87. doi: 10.1515/hsz-2021-0153. [PMID: 33878252]
  • Haoyue Feng, Tingchao Wu, Qi Zhou, Hui Li, Tianyi Liu, Xitao Ma, Rensong Yue. Protective Effect and Possible Mechanisms of Artemisinin and Its Derivatives for Diabetic Nephropathy: A Systematic Review and Meta-Analysis in Animal Models. Oxidative medicine and cellular longevity. 2022; 2022(?):5401760. doi: 10.1155/2022/5401760. [PMID: 35528521]
  • Yingying Hu, Nan Guo, Ting Yang, Jianghong Yan, Wenjun Wang, Xiang Li. The Potential Mechanisms by which Artemisinin and Its Derivatives Induce Ferroptosis in the Treatment of Cancer. Oxidative medicine and cellular longevity. 2022; 2022(?):1458143. doi: 10.1155/2022/1458143. [PMID: 35028002]
  • Jinlan Yang, Yulan Gao, Li Yang. Capillary-based fluorescence microsensor with polyoxometalates as nanozyme for rapid and ultrasensitive detection of artemisinin. Mikrochimica acta. 2021 12; 189(1):40. doi: 10.1007/s00604-021-05126-z. [PMID: 34964917]
  • Manreet Kaur, Vanessa Yardley, Ke Wang, Jinit Masania, Randolph R J Arroo, David B Turner, Mingzhong Li. Artemisinin Cocrystals for Bioavailability Enhancement. Part 2: In Vivo Bioavailability and Physiologically Based Pharmacokinetic Modeling. Molecular pharmaceutics. 2021 12; 18(12):4272-4289. doi: 10.1021/acs.molpharmaceut.1c00385. [PMID: 34748332]
  • Qiao Jin, Siqi Yan, Hao Hu, Long Jin, Yuliang Pan, Jun Zhang, Jia Huang, Haihua Xiao, Peiguo Cao. Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodo-Click Reaction Mediated Glutathione Consumption. Small methods. 2021 12; 5(12):e2101047. doi: 10.1002/smtd.202101047. [PMID: 34928038]
  • Henriette Bosson-Vanga, Nicolas Primas, Jean-François Franetich, Catherine Lavazec, Lina Gomez, Kutub Ashraf, Maurel Tefit, Valérie Soulard, Nathalie Dereuddre-Bosquet, Roger Le Grand, Mélanie Donnette, Romain Mustière, Nadia Amanzougaghene, Shahin Tajeri, Peggy Suzanne, Aurélie Malzert-Fréon, Sylvain Rault, Patrice Vanelle, Sébastien Hutter, Anita Cohen, Georges Snounou, Pierre Roques, Nadine Azas, Prisca Lagardère, Vincent Lisowski, Nicolas Masurier, Michel Nguyen, Lucie Paloque, Françoise Benoit-Vical, Pierre Verhaeghe, Dominique Mazier. A New Thienopyrimidinone Chemotype Shows Multistage Activity against Plasmodium falciparum, Including Artemisinin-Resistant Parasites. Microbiology spectrum. 2021 10; 9(2):e0027421. doi: 10.1128/spectrum.00274-21. [PMID: 34724729]
  • Margarita Y Zhelyazkova, Nadya G Hristova-Avakumova, Georgi Tsv Momekov. Antitumor activity of the combination of artemisinin and epirubicin in human leukemia cells. Folia medica. 2021 Aug; 63(4):488-495. doi: 10.3897/folmed.63.e55938. [PMID: 35851170]
  • Yan Peng, Yan Ma, Yu Bao, Zulan Liu, Li Chen, Fangyin Dai, Zhi Li. Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. International journal of biological macromolecules. 2021 Jul; 183(?):68-78. doi: 10.1016/j.ijbiomac.2021.04.021. [PMID: 33892031]
  • Min Zhang, Chengqi Wang, Jenna Oberstaller, Phaedra Thomas, Thomas D Otto, Debora Casandra, Sandhya Boyapalle, Swamy R Adapa, Shulin Xu, Katrina Button-Simons, Matthew Mayho, Julian C Rayner, Michael T Ferdig, Rays H Y Jiang, John H Adams. The apicoplast link to fever-survival and artemisinin-resistance in the malaria parasite. Nature communications. 2021 07; 12(1):4563. doi: 10.1038/s41467-021-24814-1. [PMID: 34315897]
  • Zhangkuanyu Wu, Ling Li, Hang Liu, Xin Yan, Yanan Ma, Yongpeng Li, Tiantian Chen, Chen Wang, Lihui Xie, Xiaolong Hao, Sadaf-Llyas Kayani, Kexuan Tang. AaMYB15, an R2R3-MYB TF in Artemisia annua, acts as a negative regulator of artemisinin biosynthesis. Plant science : an international journal of experimental plant biology. 2021 Jul; 308(?):110920. doi: 10.1016/j.plantsci.2021.110920. [PMID: 34034870]
  • M S Nair, Y Huang, D A Fidock, S J Polyak, J Wagoner, M J Towler, P J Weathers. Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of ethnopharmacology. 2021 Jun; 274(?):114016. doi: 10.1016/j.jep.2021.114016. [PMID: 33716085]
  • Jiao Li, Xiao-Hui Chu, Xiao-Yu Wang, Bao-Min Feng, Zong-Xia Yu. Aging affects artemisinin synthesis in Artemisia annua. Scientific reports. 2021 05; 11(1):11297. doi: 10.1038/s41598-021-90807-1. [PMID: 34050229]
  • Yuqin Gou, Fangyuan Zhang, Yueli Tang, Chunxue Jiang, Ge Bai, He Xie, Min Chen, Zhihua Liao. Engineering Nootkatone Biosynthesis in Artemisia annua. ACS synthetic biology. 2021 05; 10(5):957-963. doi: 10.1021/acssynbio.1c00016. [PMID: 33973783]
  • Alicja K Surowiak, Lucyna Balcerzak, Stanisław Lochyński, Daniel J Strub. Biological Activity of Selected Natural and Synthetic Terpenoid Lactones. International journal of molecular sciences. 2021 May; 22(9):. doi: 10.3390/ijms22095036. [PMID: 34068609]
  • Tianshu Zhang, Xiaozheng Zhang, Cong Lin, Siru Wu, Fanfan Wang, Hongshuang Wang, Yibo Wang, Yinghua Peng, Mark R Hutchinson, Hongyuan Li, Xiaohui Wang. Artemisinin inhibits TLR4 signaling by targeting co-receptor MD2 in microglial BV-2 cells and prevents lipopolysaccharide-induced blood-brain barrier leakage in mice. Journal of neurochemistry. 2021 05; 157(3):611-623. doi: 10.1111/jnc.15302. [PMID: 33453127]
  • Danielle Snider, Pamela J Weathers. In vitro reduction of Plasmodium falciparum gametocytes: Artemisia spp. tea infusions vs. artemisinin. Journal of ethnopharmacology. 2021 Mar; 268(?):113638. doi: 10.1016/j.jep.2020.113638. [PMID: 33271239]
  • Limeng Zhou, Yingzhang Huang, Qi Wang, Dianjing Guo. Chromatin Accessibility Is Associated with Artemisinin Biosynthesis Regulation in Artemisia annua. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26041194. [PMID: 33672342]
  • Qiang Zhang, Zhuo Ao, Nan Hu, Xiajun Hu, Fulong Liao, Dong Han. Artemisinin-Ginkgo biloba extract combination therapy for Plasmodium yoelii. Parasitology international. 2021 Feb; 80(?):102226. doi: 10.1016/j.parint.2020.102226. [PMID: 33137498]
  • Nathalia Grazzia, Sinésio Boaventura, Vera Lucia Garcia, Fernanda R Gadelha, Danilo C Miguel. Dihydroartemisinin, an active metabolite of artemisinin, interferes with Leishmania braziliensis mitochondrial bioenergetics and survival. Parasitology research. 2021 Feb; 120(2):705-713. doi: 10.1007/s00436-020-07019-1. [PMID: 33415404]
  • Maryam Sadat Hosseini-Zare, Mozhgan Sarhadi, Mehdi Zarei, Ramasamy Thilagavathi, Chelliah Selvam. Synergistic effects of curcumin and its analogs with other bioactive compounds: A comprehensive review. European journal of medicinal chemistry. 2021 Jan; 210(?):113072. doi: 10.1016/j.ejmech.2020.113072. [PMID: 33310285]
  • Anupam Maurya, Sweta Mohan, Subash C Verma. Antidiabetic Potential of Naturally Occurring Sesquiterpenes: A Review. Current topics in medicinal chemistry. 2021; 21(10):851-862. doi: 10.2174/1568026621666210305102500. [PMID: 33676391]