D-Alanyl-D-alanine (BioDeep_00000001318)

 

Secondary id: BioDeep_00000172621, BioDeep_00000400308, BioDeep_00001868569

natural product human metabolite PANOMIX_OTCML-2023 Endogenous


代谢物信息卡片


(2R)-2-[(2R)-2-aminopropanamido]propanoic acid

化学式: C6H12N2O3 (160.0848)
中文名称: D-丙氨酰-D-丙氨酸, DL-丙氨酰-DL-氨基丙酸, L-丙氨酰-L-丙氨酸, L-丙氨酰-L-氨基丙酸, DL-丙氨酰DL-丙氨酸
谱图信息: 最多检出来源 Homo sapiens(natural_products) 2.09%

分子结构信息

SMILES: CC(C(=O)NC(C)C(=O)O)N
InChI: InChI=1S/C6H12N2O3/c1-3(7)5(9)8-4(2)6(10)11/h3-4H,7H2,1-2H3,(H,8,9)(H,10,11)

描述信息

The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, one of which is d-alanyl-d-alanine.(PMID: 16030213). The glycopeptide antibiotic vancomycin acts by binding to the D-alanyl-D-alanine terminus of the cell wall precursor lipid II in the cytoplasmic membrane.(PMID: 17418637). D-alanine-D-alanine ligase from Thermotoga maritima ATCC 43589 (TmDdl) was a useful biocatalyst for synthesizing D-amino acid dipeptides.D-Alanine-D-alanine ligase (Ddl) catalyzes the biosynthesis of an essential bacterial peptidoglycan precursor D-alanyl-D-alanine and it represents an important target for development of new antibacterial drugs. (PMID: 17267218). D-Alanyl-D-alanine is a microbial metabolite.
Alanyl-alanine, also known as ala-ala or A-a dipeptide, is a member of the class of compounds known as dipeptides. Dipeptides are organic compounds containing a sequence of exactly two alpha-amino acids joined by a peptide bond. Alanyl-alanine is soluble (in water) and a weakly acidic compound (based on its pKa). Alanyl-alanine can be found in chives, which makes alanyl-alanine a potential biomarker for the consumption of this food product. Alanyl-alanine can be found primarily in feces. Alanyl-alanine exists in all living organisms, ranging from bacteria to humans.
Acquisition and generation of the data is financially supported in part by CREST/JST.
D-Ala-D-Ala constitutes the terminus of the peptide part of the peptidoglycan monomer unit and is involved in the transpeptidation reaction as the substrate. D-Ala-D-Ala is catalyzed by D-Alanine-D-Alanine ligase. D-Ala-D-Ala is a bacterial endogenous metabolite[1][2].

同义名列表

27 个代谢物同义名

(2R)-2-[(2R)-2-aminopropanamido]propanoic acid; Alanylalanine, (L-ala)-(DL-ala)-isomer; Alanylalanine, (D-ala)-(L-ala)-isomer; Alanylalanine, (L-ala)-(D-ala)-isomer; Alanylalanine, (D)-isomer; Alanylalanine, (L)-isomer; N-L-Alanyl-D-alanine; DL-Alanyl-DL-alanine; N-D-Alanyl-L-alanine; L-Alanyl-L-alanine; H-DL-Ala-DL-Ala-OH; D-Alanyl-L-alanine; D-Alanyl-D-alanine; L-Alanyl-D-alanine; H-D-Ala-D-Ala-OH; Alanyl-D-alanine; D-Alanylalanine; Alanylalanine; H-Ala-Ala-OH; Di-L-alanine; D-Ala-D-ala; Dialanine; (D-Ala)2; Ala-ala; D-Alanyl-D-alanine; L-Alanyl-L-alanine; DL-Alanyl-DL-alanine



数据库引用编号

31 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

249 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

WikiPathways(1)

Plant Reactome(237)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(8)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ALB, ATG5, CCR1, CCR3, DHFR, ELANE, LGMN, PMP2
Peripheral membrane protein 1 ATG5
Nucleus 2 ALB, PMP2
autophagosome 1 ATG5
cytosol 5 ALB, ATG5, DHFR, ELANE, PMP2
dendrite 1 SLC6A6
phagocytic vesicle 1 ELANE
centrosome 1 ALB
Cell membrane 4 CCR1, CCR3, ITGAM, SLC6A6
Multi-pass membrane protein 3 CCR1, CCR3, SLC6A6
cell surface 2 ELANE, ITGAM
glutamatergic synapse 1 ATG5
Golgi apparatus 2 ALB, SERPINA1
neuronal cell body 1 SLC6A6
postsynapse 1 ATG5
Lysosome 1 LGMN
plasma membrane 5 CCR1, CCR3, ITGAM, SIGIRR, SLC6A6
Membrane 6 ATG5, CCR3, ITGAM, PGLYRP2, SIGIRR, SLC6A6
apical plasma membrane 1 SLC6A6
axon 1 ATG5
basolateral plasma membrane 1 SLC6A6
extracellular exosome 10 ALB, CPVL, ELANE, ITGAM, LGMN, LYZ, PGLYRP2, PMP2, SERPINA1, SOD2
endoplasmic reticulum 2 ALB, SERPINA1
extracellular space 7 ALB, CCL15, ELANE, IL6, ITGAM, LYZ, SERPINA1
lysosomal lumen 1 LGMN
perinuclear region of cytoplasm 1 LGMN
Schaffer collateral - CA1 synapse 1 ATG5
mitochondrion 2 DHFR, SOD2
protein-containing complex 2 ALB, ATG5
intracellular membrane-bounded organelle 1 SERPINA1
Single-pass type I membrane protein 1 ITGAM
Secreted 2 ALB, IL6
extracellular region 7 ALB, ELANE, IL6, LGMN, LYZ, PGLYRP2, SERPINA1
Mitochondrion matrix 1 SOD2
mitochondrial matrix 1 SOD2
anchoring junction 1 ALB
external side of plasma membrane 3 CCR1, CCR3, ITGAM
apical part of cell 1 LGMN
COPII-coated ER to Golgi transport vesicle 1 SERPINA1
postsynaptic membrane 1 SLC6A6
Membrane raft 1 ITGAM
GABA-ergic synapse 1 SLC6A6
mitochondrial nucleoid 1 SOD2
collagen-containing extracellular matrix 2 ELANE, SERPINA1
secretory granule 1 ELANE
axoneme 1 ATG5
Late endosome 1 LGMN
ciliary basal body 1 ALB
cell projection 1 SLC6A6
phagocytic vesicle membrane 1 ATG5
centriole 1 ALB
plasma membrane protein complex 1 SLC6A6
spindle pole 1 ALB
blood microparticle 1 ALB
microvillus membrane 1 SLC6A6
Preautophagosomal structure membrane 1 ATG5
Atg12-Atg5-Atg16 complex 1 ATG5
mitochondria-associated endoplasmic reticulum membrane contact site 1 ATG5
phagophore assembly site membrane 1 ATG5
specific granule membrane 1 ITGAM
tertiary granule membrane 1 ITGAM
myelin sheath 1 PMP2
plasma membrane raft 1 ITGAM
ficolin-1-rich granule lumen 1 SERPINA1
endoplasmic reticulum lumen 3 ALB, IL6, SERPINA1
transcription repressor complex 1 ELANE
platelet alpha granule lumen 2 ALB, SERPINA1
specific granule lumen 2 ELANE, LYZ
tertiary granule lumen 1 LYZ
Single-pass type III membrane protein 1 SIGIRR
azurophil granule lumen 2 ELANE, LYZ
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 SERPINA1
Cytoplasmic vesicle, phagosome 1 ELANE
integrin complex 1 ITGAM
transferase complex 1 ATG5
integrin alphaM-beta2 complex 1 ITGAM
interleukin-6 receptor complex 1 IL6
endolysosome lumen 1 LGMN
ciliary transition fiber 1 ALB
phagophore 1 ATG5


文献列表

  • Paola Mantuano, Brigida Boccanegra, Gianluca Bianchini, Elena Conte, Michela De Bellis, Francesca Sanarica, Giulia Maria Camerino, Sabata Pierno, Ornella Cappellari, Marcello Allegretti, Andrea Aramini, Annamaria De Luca. BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: preclinical evaluation in a murine model of hind limb unloading. Pharmacological research. 2021 09; 171(?):105798. doi: 10.1016/j.phrs.2021.105798. [PMID: 34352400]
  • Venkatraman Ramanujam, Cyril Charlier, Ad Bax. Observation and Kinetic Characterization of Transient Schiff Base Intermediates by CEST NMR Spectroscopy. Angewandte Chemie (International ed. in English). 2019 10; 58(43):15309-15312. doi: 10.1002/anie.201908416. [PMID: 31449352]
  • Nersi Jafary Omid, Nika Bahari Javan, Ahmad-Reza Dehpour, Alireza Partoazar, Morteza Rafiee Tehrani, Farid Dorkoosh. In-vitro and in-vivo cytotoxicity and efficacy evaluation of novel glycyl-glycine and alanyl-alanine conjugates of chitosan and trimethyl chitosan nano-particles as carriers for oral insulin delivery. International journal of pharmaceutics. 2018 Jan; 535(1-2):293-307. doi: 10.1016/j.ijpharm.2017.11.020. [PMID: 29138048]
  • James D Chang, Erin E Foster, Hao Yang, Sung Joon Kim. Quantification of the d-Ala-d-Lac-Terminated Peptidoglycan Structure in Vancomycin-Resistant Enterococcus faecalis Using a Combined Solid-State Nuclear Magnetic Resonance and Mass Spectrometry Analysis. Biochemistry. 2017 01; 56(4):612-622. doi: 10.1021/acs.biochem.6b00774. [PMID: 28040891]
  • Matthew G Nosworthy, M Elaine Dodge, Robert F Bertolo, Janet A Brunton. Enterally delivered dipeptides improve small intestinal inflammatory status in a piglet model of intestinal resection. Clinical nutrition (Edinburgh, Scotland). 2016 08; 35(4):852-8. doi: 10.1016/j.clnu.2015.05.013. [PMID: 26073670]
  • Wenwei Zheng, David de Sancho, Robert B Best. Modulation of Folding Internal Friction by Local and Global Barrier Heights. The journal of physical chemistry letters. 2016 Mar; 7(6):1028-34. doi: 10.1021/acs.jpclett.6b00329. [PMID: 26947615]
  • Hedia Tnani, Ignacio López-Ribera, Nora García-Muniz, Carlos M Vicient. ZmPTR1, a maize peptide transporter expressed in the epithelial cells of the scutellum during germination. Plant science : an international journal of experimental plant biology. 2013 Jun; 207(?):140-7. doi: 10.1016/j.plantsci.2013.03.005. [PMID: 23602109]
  • Paul W Hill, Richard S Quilliam, Thomas H DeLuca, John Farrar, Mark Farrell, Paula Roberts, Kevin K Newsham, David W Hopkins, Richard D Bardgett, David L Jones. Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PloS one. 2011 Apr; 6(4):e19220. doi: 10.1371/journal.pone.0019220. [PMID: 21541281]
  • Lisheng Peng, William H Tepp, Eric A Johnson, Min Dong. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS pathogens. 2011 Mar; 7(3):e1002008. doi: 10.1371/journal.ppat.1002008. [PMID: 21483489]
  • Ulrich Z Hammes, Stefan Meier, Daniela Dietrich, John M Ward, Doris Rentsch. Functional properties of the Arabidopsis peptide transporters AtPTR1 and AtPTR5. The Journal of biological chemistry. 2010 Dec; 285(51):39710-7. doi: 10.1074/jbc.m110.141457. [PMID: 20937801]
  • Felix L Yeh, Min Dong, Jun Yao, William H Tepp, Guangyun Lin, Eric A Johnson, Edwin R Chapman. SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS pathogens. 2010 Nov; 6(11):e1001207. doi: 10.1371/journal.ppat.1001207. [PMID: 21124874]
  • Dongdong Wu, Yanfeng Gao, Lixiang Chen, Yuanming Qi, Qiaozhen Kang, Haili Wang, Linyu Zhu, Yong Ye, Mingxia Zhai. Anti-tumor effects of a novel chimeric peptide on S180 and H22 xenografts bearing nude mice. Peptides. 2010 May; 31(5):850-64. doi: 10.1016/j.peptides.2010.01.007. [PMID: 20132854]
  • Esteban C Nannini, Martin E Stryjewski, G Ralph Corey. Telavancin's interactions with the bacterial cell membrane. Future microbiology. 2010 Mar; 5(3):355-8. doi: 10.2217/fmb.09.122. [PMID: 20210546]
  • Ahamed Ibrahim, Sanjay Basak, Nasreen Z Ehtesham. Impact of maternal dietary fatty acid composition on glucose and lipid metabolism in male rat offspring aged 105 d. The British journal of nutrition. 2009 Jul; 102(2):233-41. doi: 10.1017/s0007114508198993. [PMID: 19166630]
  • Winter J Smith, Richard H Drew. Telavancin: a new lipoglycopeptide for gram-positive infections. Drugs of today (Barcelona, Spain : 1998). 2009 Mar; 45(3):159-73. doi: 10.1358/dot.2009.45.3.1343792. [PMID: 19436839]
  • Yuhya Wakasa, Lijun Yang, Sakiko Hirose, Fumio Takaiwa. Expression of unprocessed glutelin precursor alters polymerization without affecting trafficking and accumulation. Journal of experimental botany. 2009; 60(12):3503-11. doi: 10.1093/jxb/erp187. [PMID: 19528530]
  • Peter Sass, Andrea Jansen, Christiane Szekat, Vera Sass, Hans-Georg Sahl, Gabriele Bierbaum. The lantibiotic mersacidin is a strong inducer of the cell wall stress response of Staphylococcus aureus. BMC microbiology. 2008 Oct; 8(?):186. doi: 10.1186/1471-2180-8-186. [PMID: 18947397]
  • Adrian J Lloyd, Andrea M Gilbey, Anne M Blewett, Gianfranco De Pascale, Ahmed El Zoeiby, Roger C Levesque, Anita C Catherwood, Alexander Tomasz, Timothy D H Bugg, David I Roper, Christopher G Dowson. Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan. The Journal of biological chemistry. 2008 Mar; 283(10):6402-17. doi: 10.1074/jbc.m708105200. [PMID: 18077448]
  • Pedro M Pereira, Sérgio R Filipe, Alexander Tomasz, Mariana G Pinho. Fluorescence ratio imaging microscopy shows decreased access of vancomycin to cell wall synthetic sites in vancomycin-resistant Staphylococcus aureus. Antimicrobial agents and chemotherapy. 2007 Oct; 51(10):3627-33. doi: 10.1128/aac.00431-07. [PMID: 17646417]
  • Annegret Biegel, Sabine Gebauer, Bianka Hartrodt, Ilka Knütter, Klaus Neubert, Matthias Brandsch, Iris Thondorf. Recognition of 2-aminothiazole-4-acetic acid derivatives by the peptide transporters PEPT1 and PEPT2. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2007 Sep; 32(1):69-76. doi: 10.1016/j.ejps.2007.06.002. [PMID: 17644326]
  • Andrea Jansen, Michael Türck, Christiane Szekat, Michael Nagel, Indra Clever, Gabriele Bierbaum. Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. International journal of medical microbiology : IJMM. 2007 Jul; 297(4):205-15. doi: 10.1016/j.ijmm.2007.02.002. [PMID: 17418637]
  • Keyung-Jo Seul, Seung-Hwan Park, Choong-Min Ryu, Yong-Hyun Lee, Sa-Youl Ghim. Proteome analysis of Paenibacillus polymyxa E681 affected by barley. Journal of microbiology and biotechnology. 2007 Jun; 17(6):934-44. doi: . [PMID: 18050911]
  • Yoshiaki Tsubota, Chie Yasuda, Yoshinobu Kariya, Takashi Ogawa, Tomomi Hirosaki, Hiroto Mizushima, Kaoru Miyazaki. Regulation of biological activity and matrix assembly of laminin-5 by COOH-terminal, LG4-5 domain of alpha3 chain. The Journal of biological chemistry. 2005 Apr; 280(15):14370-7. doi: 10.1074/jbc.m413051200. [PMID: 15695818]
  • Ya-Shiuan Lin, Pei-Jane Tsai, Mao-Feng Weng, Yu-Chie Chen. Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Analytical chemistry. 2005 Mar; 77(6):1753-60. doi: 10.1021/ac048990k. [PMID: 15762582]
  • Daniela Dietrich, Ulrich Hammes, Kathrin Thor, Marianne Suter-Grotemeyer, Ricardo Flückiger, Alan J Slusarenko, John M Ward, Doris Rentsch. AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. The Plant journal : for cell and molecular biology. 2004 Nov; 40(4):488-99. doi: 10.1111/j.1365-313x.2004.02224.x. [PMID: 15500465]
  • Ian R Bates, Joan M Boggs, Jimmy B Feix, George Harauz. Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling. The Journal of biological chemistry. 2003 Aug; 278(31):29041-7. doi: 10.1074/jbc.m302766200. [PMID: 12748174]
  • M Ge, Z Chen, H R Onishi, J Kohler, L L Silver, R Kerns, S Fukuzawa, C Thompson, D Kahne. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science (New York, N.Y.). 1999 Apr; 284(5413):507-11. doi: 10.1126/science.284.5413.507. [PMID: 10205063]
  • Y van Heijenoort, M Gómez, M Derrien, J Ayala, J van Heijenoort. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. Journal of bacteriology. 1992 Jun; 174(11):3549-57. doi: 10.1128/jb.174.11.3549-3557.1992. [PMID: 1592809]
  • R P Oomen, H Kaplan. Binding of glucagon to lipid bilayers. Biochemistry and cell biology = Biochimie et biologie cellulaire. 1990 Jan; 68(1):284-91. doi: 10.1139/o90-039. [PMID: 2350493]
  • A Trani, P Ferrari, R Pallanza, G Tarzia. Deaminoteicoplanin and its derivatives. Synthesis, antibacterial activity, and binding strength to Ac-D-Ala-D-Ala. Journal of medicinal chemistry. 1989 Feb; 32(2):310-4. doi: 10.1021/jm00122a007. [PMID: 2521516]
  • Y Ito, Y Watanabe, K Hirano, M Sugiura, S Sawaki, T Ogiso. A fluorometric method for dipeptidase activity measurement in urine, using L-alanyl-L-alanine as substrate. Journal of biochemistry. 1984 Jul; 96(1):1-8. doi: 10.1093/oxfordjournals.jbchem.a134801. [PMID: 6436229]
  • R Birnbaum, T Unger, M Nagelschmidt, H Struck. Amino acid-p-nitroanilide and -beta-naphthylamide cleaving activities in rat serum. Research in experimental medicine. Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimenteller Chirurgie. 1982; 181(2):105-12. doi: 10.1007/bf01852187. [PMID: 6817397]