Aspartame (BioDeep_00000002148)
human metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C14H18N2O5 (294.1215658)
中文名称: 3-氨基-4-[(1-苄基-2-甲氧基-2-氧代乙基)氨基]-4-氧代丁酸, 阿斯巴甜
谱图信息:
最多检出来源 Viridiplantae(plant) 4.07%
分子结构信息
SMILES: COC(=O)C(CC1=CC=CC=C1)NC(=O)C(CC(=O)O)N
InChI: InChI=1S/C14H18N2O5/c1-21-14(20)11(7-9-5-3-2-4-6-9)16-13(19)10(15)8-12(17)18/h2-6,10-11H,7-8,15H2,1H3,(H,16,19)(H,17,18)
描述信息
Aspartame is the name for an artificial, non-carbohydrate sweetener, aspartyl-phenylalanine-1-methyl ester; i.e., the methyl ester of the dipeptide of the amino acids aspartic acid and phenylalanine. It is marketed under a number of trademark names, such as Equal, and Canderel, and is an ingredient of approximately 6,000 consumer foods and beverages sold worldwide. It is commonly used in diet soft drinks, and is often provided as a table condiment. It is also used in some brands of chewable vitamin supplements. In the European Union, it is also known under the E number (additive code) E951. Aspartame is also one of the sugar substitutes used by diabetics. Upon ingestion, aspartame breaks down into several constituent chemicals, including the naturally-occurring essential amino acid phenylalanine which is a health hazard to the few people born with phenylketonuria, a congenital inability to process phenylalanine. Aspartic acid is an amino acid commonly found in foods. Approximately 40\\\% of aspartame (by mass) is broken down into aspartic acid. Because aspartame is metabolized and absorbed very quickly (unlike aspartic acid-containing proteins in foods), it is known that aspartame could spike blood plasma levels of aspartate. Aspartic acid is in a class of chemicals known as excitotoxins. Abnormally high levels of excitotoxins have been shown in hundreds of animals studies to cause damage to areas of the brain unprotected by the blood-brain barrier and a variety of chronic diseases arising out of this neurotoxicity.
Compd. with 100 times the sweetness of sucrose. Artificial sweetener permitted in foods in EU at 300-5500 ppmand is also permitted in USA. Widely used in foods, beverages and pharmaceutical formulations
D000074385 - Food Ingredients > D005503 - Food Additives
D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents
CONFIDENCE standard compound; EAWAG_UCHEM_ID 2770
Aspartame (SC-18862) is a methyl ester of a dipeptide. Aspartame can be used as a synthetic nonnutritive sweetener[1][2].
同义名列表
64 个代谢物同义名
(3S)-3-amino-4-[[(2S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]amino]-4-oxobutanoic acid; (3S)-3-amino-3-{[(2S)-1-methoxy-1-oxo-3-phenylpropan-2-yl]carbamoyl}propanoic acid; 3-Amino-4-[(1-benzyl-2-methoxy-2-oxoethyl)amino]-4-oxobutanoic acid; 3-Amino-N-(alpha-carboxyphenethyl)succinamic acid N-methyl ester; 3-Amino-N-(a-carboxyphenethyl)succinamic acid N-methyl ester; 3-Amino-N-(alpha-carboxyphenethyl)succinamate N-methyl ester; 3-Amino-N-(α-carboxyphenethyl)succinamic acid N-methyl ester; 3-Amino-N-(alpha-methoxycarbonylphenethyl) succinamic acid; 3-Amino-N-(a-carboxyphenethyl)succinamate N-methyl ester; 3-Amino-N-(α-carboxyphenethyl)succinamate N-methyl ester; 3-Amino-N-(a-methoxycarbonylphenethyl) succinamic acid; 3-Amino-N-(alpha-methoxycarbonylphenethyl) succinamate; 3-Amino-N-(α-methoxycarbonylphenethyl) succinamic acid; N-(L-α-Aspartyl)-L-phenylalanine methyl ester; 3-Amino-N-(α-methoxycarbonylphenethyl) succinamate; 3-Amino-N-(a-methoxycarbonylphenethyl) succinamate; 1-Methyl N-L-alpha-aspartyl-L-phenylalanic acid; 1-Methyl N-L-a-aspartyl-L-phenylalanic acid; 1-Methyl N-L-α-aspartyl-L-phenylalanic acid; 1-Methyl N-L-alpha-aspartyl-L-phenylalanate; L-Aspartyl-L-3-phenylalanine methyl ester; 1-Methyl N-L-α-aspartyl-L-phenylalanate; Diététiques et santé brand OF aspartame; 1-Methyl N-L-a-aspartyl-L-phenylalanate; L-Aspartyl-L-phenylalanine methyl ester; L-Aspartyl-L-phenylalanyl methyl ester; Methyl ester, aspartylphenylalanine; Aspartylphenylalanine methyl ester; Aspartylphenylalanine, methyl; Methyl aspartylphenylalanine; Methyl aspartylphenylalanate; Prodes brand OF aspartame; Hermes brand OF aspartame; Fuca brand OF aspartame; Muro brand OF aspartame; Aspartame hermes brand; Aspartame prodes brand; Aspartame muro brand; Aspartame fuca brand; Asp-Phe methyl ester; Dipeptide sweetener; Gold, hermesetas; Sweet dipeptide; Hermesetas gold; Palsweet diet; Asp-phe-ome; NutraSweet; Aspartamum; AminoSweet; Tri sweet; Aspartame; Goldswite; Tri-sweet; Pal sweet; Aspartamo; Milisucre; TriSweet; Canderel; Aspartam; Nozucar; Sanecta; e 951; SC-18862; Aspartame
数据库引用编号
53 个数据库交叉引用编号
- ChEBI: CHEBI:177838
- ChEBI: CHEBI:2877
- KEGG: C11045
- PubChem: 134601
- PubChem: 2242
- HMDB: HMDB0001894
- Metlin: METLIN6377
- DrugBank: DB00168
- ChEMBL: CHEMBL312245
- ChEMBL: CHEMBL171679
- Wikipedia: Aspartame
- MeSH: Aspartame
- MetaCyc: CPD-5583
- foodb: FDB000569
- chemspider: 118630
- CAS: 53906-69-7
- CAS: 25548-16-7
- CAS: 22839-47-0
- CAS: 7421-84-3
- MoNA: EA277054
- MoNA: EA277003
- MoNA: EA277014
- MoNA: EA277002
- MoNA: EA277004
- MoNA: EA277060
- MoNA: EA277001
- MoNA: EA277008
- MoNA: EA277051
- MoNA: EA277062
- MoNA: EA277011
- MoNA: EA277053
- MoNA: EA277056
- MoNA: EA277058
- MoNA: EA277055
- MoNA: EA277007
- MoNA: EA277005
- MoNA: EA277057
- MoNA: EA277012
- MoNA: EA277064
- MoNA: EA277010
- MoNA: EA277013
- MoNA: EA277061
- MoNA: EA277052
- MoNA: EA277009
- MoNA: EA277006
- MoNA: EA277059
- PMhub: MS000001961
- PubChem: 13228
- PDB-CCD: PME
- NIKKAJI: J11.477D
- RefMet: Aspartame
- medchemexpress: HY-B0361
- KNApSAcK: 177838
分类词条
相关代谢途径
Reactome(6)
BioCyc(0)
PlantCyc(0)
代谢反应
60 个相关的代谢反应过程信息。
Reactome(60)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dandan Chen, Xianbing Hou. Aspartame carcinogenic potential revealed through network toxicology and molecular docking insights.
Scientific reports.
2024 05; 14(1):11492. doi:
10.1038/s41598-024-62461-w
. [PMID: 38769413] - Daniel J Kushigian, Okeanis E Vaou. Aspartame use and Parkinson's disease: review of associated effects on neurotransmitters, oxidative stress, and cognition.
Nutritional neuroscience.
2024 May; 27(5):506-519. doi:
10.1080/1028415x.2023.2228561
. [PMID: 37395401] - Ab Qayoom Naik, Tabassum Zafar, Vinoy K Shrivastava. Physiological Impact of the Non-Nutritive Artificial Sweetener, Aspartame, and the Therapeutic Potential of Aqueous Extract of Phyllanthus niruri.
Journal of medicinal food.
2023 May; ?(?):. doi:
10.1089/jmf.2022.k.0136
. [PMID: 37204311] - Lea Victoria Griebsch, Elena Leoni Theiss, Daniel Janitschke, Vincent Konrad Johannes Erhardt, Tobias Erhardt, Elodie Christiane Haas, Konstantin Nicolas Kuppler, Juliane Radermacher, Oliver Walzer, Anna Andrea Lauer, Veronika Matschke, Tobias Hartmann, Marcus Otto Walter Grimm, Heike Sabine Grimm. Aspartame and Its Metabolites Cause Oxidative Stress and Mitochondrial and Lipid Alterations in SH-SY5Y Cells.
Nutrients.
2023 Mar; 15(6):. doi:
10.3390/nu15061467
. [PMID: 36986196] - Naienne da Silva Santana, Cheila Gonçalves Mothé, Marcio Nele de Souza, Michelle Gonçalves Mothé. Thermal and rheological study of artificial and natural powder tabletop sweeteners.
Food research international (Ottawa, Ont.).
2022 12; 162(Pt A):112039. doi:
10.1016/j.foodres.2022.112039
. [PMID: 36461258] - Anahita Izadyar, My Ni Van, Marcela Miranda, Scout Weatherford, Elizabeth E Hood, Ilwoo Seok. Development of a highly sensitive glucose nanocomposite biosensor based on recombinant enzyme from corn.
Journal of the science of food and agriculture.
2022 Nov; 102(14):6530-6538. doi:
10.1002/jsfa.12019
. [PMID: 35587543] - Qian-Hui Zhang, Yin Tian, Min Qiu, Xue Han, Hong-Yan Ma, Li Han, Ding-Kun Zhang. [Combined anti-bitterness strategy for extremely bitter characteristics of Andrographis Herba decoction and mechanism].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Oct; 47(20):5424-5433. doi:
10.19540/j.cnki.cjcmm.20220630.301
. [PMID: 36471956] - Rasha Y M Ibrahim, Huda B I Hammad, Alaa A Gaafar, Abdullah A Saber. The possible role of the seaweed Sargassum vulgare as a promising functional food ingredient minimizing aspartame-associated toxicity in rats.
International journal of environmental health research.
2022 Apr; 32(4):752-771. doi:
10.1080/09603123.2020.1797642
. [PMID: 32705899] - Mohan Zhang, Shuai Chen, Yuhua Dai, Ting Duan, Yuying Xu, Xiaolin Li, Jun Yang, Xinqiang Zhu. Aspartame and sucralose extend the lifespan and improve the health status of C. elegans.
Food & function.
2021 Oct; 12(20):9912-9921. doi:
10.1039/d1fo01579f
. [PMID: 34486601] - Emmanuella Enuwosa, Lata Gautam, Linda King, Havovi Chichger. Saccharin and Sucralose Protect the Glomerular Microvasculature In Vitro against VEGF-Induced Permeability.
Nutrients.
2021 Aug; 13(8):. doi:
10.3390/nu13082746
. [PMID: 34444906] - Hojat Anbara, Mohammad Taghi Sheibani, Mazdak Razi, Mehdi Kian. Insight into the mechanism of aspartame-induced toxicity in male reproductive system following long-term consumption in mice model.
Environmental toxicology.
2021 Feb; 36(2):223-237. doi:
10.1002/tox.23028
. [PMID: 32951320] - Jianhui Zhu, Jiaxin Liu, Zhengyi Li, Ranhui Xi, Yuqing Li, Xian Peng, Xin Xu, Xin Zheng, Xuedong Zhou. The Effects of Nonnutritive Sweeteners on the Cariogenic Potential of Oral Microbiome.
BioMed research international.
2021; 2021(?):9967035. doi:
10.1155/2021/9967035
. [PMID: 34258285] - Shimaa Anter Fareed, Heba El-Sayed Mostafa. Could aspartame exacerbate caffeine effects on renal maturation in rat's offspring? A biochemical and histological study.
Birth defects research.
2021 01; 113(1):90-107. doi:
10.1002/bdr2.1836
. [PMID: 33128303] - Fahimeh Kheirdoosh, Soheila Kashanian, Mohammad Mehdi Khodaei, Mahya Sariaslani, Monireh Falsafi, Neda Hosseinpour Moghadam, Sadegh Salehzadeh, Mahsa Pazhavand, Mahdi Kashanian. Spectroscopic studies on the interaction of aspartame with human serum albumin.
Nucleosides, nucleotides & nucleic acids.
2021; 40(3):300-316. doi:
10.1080/15257770.2021.1872792
. [PMID: 33455539] - Samar Y Ahmad, James Friel, Dylan Mackay. The Effects of Non-Nutritive Artificial Sweeteners, Aspartame and Sucralose, on the Gut Microbiome in Healthy Adults: Secondary Outcomes of a Randomized Double-Blinded Crossover Clinical Trial.
Nutrients.
2020 Nov; 12(11):. doi:
10.3390/nu12113408
. [PMID: 33171964] - Suzan G Haddad, Mariam Mohammad, Karim Raafat, Fatima A Saleh. Antihyperglycemic and hepatoprotective properties of miracle fruit (Synsepalum dulcificum) compared to aspartame in alloxan-induced diabetic mice.
Journal of integrative medicine.
2020 Nov; 18(6):514-521. doi:
10.1016/j.joim.2020.09.001
. [PMID: 32958414] - Nondumiso Prosperity Mbambo, Siphiwe Ndumiso Dlamini, Chika Ifeanyi Chukwuma, Md Shahidul Islam. Comparative effects of commonly used commercially available non-nutritive sweeteners on diabetes-related parameters in non-diabetic rats.
Journal of food biochemistry.
2020 11; 44(11):e13453. doi:
10.1111/jfbc.13453
. [PMID: 32869881] - Bettina Hieronimus, Valentina Medici, Andrew A Bremer, Vivien Lee, Marinelle V Nunez, Desiree M Sigala, Nancy L Keim, Peter J Havel, Kimber L Stanhope. Synergistic effects of fructose and glucose on lipoprotein risk factors for cardiovascular disease in young adults.
Metabolism: clinical and experimental.
2020 11; 112(?):154356. doi:
10.1016/j.metabol.2020.154356
. [PMID: 32916151] - Meghan B Azad, Alyssa Archibald, Mateusz M Tomczyk, Alanna Head, Kyle G Cheung, Russell J de Souza, Allan B Becker, Piushkumar J Mandhane, Stuart E Turvey, Theo J Moraes, Malcolm R Sears, Padmaja Subbarao, Vernon W Dolinsky. Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells.
International journal of obesity (2005).
2020 10; 44(10):2137-2148. doi:
10.1038/s41366-020-0575-x
. [PMID: 32366959] - Nathaniel H O Harder, Bettina Hieronimus, Kimber L Stanhope, Noreene M Shibata, Vivien Lee, Marinelle V Nunez, Nancy L Keim, Andrew Bremer, Peter J Havel, Marie C Heffern, Valentina Medici. Effects of Dietary Glucose and Fructose on Copper, Iron, and Zinc Metabolism Parameters in Humans.
Nutrients.
2020 Aug; 12(9):. doi:
10.3390/nu12092581
. [PMID: 32854403] - Concetta Schiano, Vincenzo Grimaldi, Monica Franzese, Carmela Fiorito, Filomena De Nigris, Francesco Donatelli, Andrea Soricelli, Marco Salvatore, Claudio Napoli. Non-nutritional sweeteners effects on endothelial vascular function.
Toxicology in vitro : an international journal published in association with BIBRA.
2020 Feb; 62(?):104694. doi:
10.1016/j.tiv.2019.104694
. [PMID: 31655124] - Daming Sun, Lixiang Liu, Shengyong Mao, Weiyun Zhu, Junhua Liu. Aspartame supplementation in starter accelerates small intestinal epithelial cell cycle and stimulates secretion of glucagon-like peptide-2 in pre-weaned lambs.
Journal of animal physiology and animal nutrition.
2019 Sep; 103(5):1338-1350. doi:
10.1111/jpn.13159
. [PMID: 31342562] - Hideaki Kashima, Kana Taniyama, Kana Sugimura, Masako Yamaoka Endo, Toshio Kobayashi, Yoshiyuki Fukuba. Suppression of sweet sensing with glucose, but not aspartame, delays gastric emptying and glycemic response.
Nutrition research (New York, N.Y.).
2019 08; 68(?):62-69. doi:
10.1016/j.nutres.2019.06.005
. [PMID: 31421394] - Kelly A Higgins, Richard D Mattes. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity.
The American journal of clinical nutrition.
2019 05; 109(5):1288-1301. doi:
10.1093/ajcn/nqy381
. [PMID: 30997499] - Nomcebo Mchunu, Chika Ifeanyi Chukwuma, Mohammed Auwal Ibrahim, Olajumoke A Oyebode, Siphiwe Ndumiso Dlamini, Md Shahidul Islam. Commercially available non-nutritive sweeteners modulate the antioxidant status of type 2 diabetic rats.
Journal of food biochemistry.
2019 03; 43(3):e12775. doi:
10.1111/jfbc.12775
. [PMID: 31353552] - Yusuke Shibui, Shoji Fujitani, Hijiri Iwata, Barry Lynch, Ashley Roberts. Histological analyses of the Ishii (1981) rat carcinogenicity study of aspartame and comparison with the Ramazzini Institute studies.
Regulatory toxicology and pharmacology : RTP.
2019 Mar; 102(?):23-29. doi:
10.1016/j.yrtph.2018.12.010
. [PMID: 30572082] - Reham Z Hamza, Rasha A Al-Eisa, Amir E Mehana, Nahla S El-Shenawy. Effect of l-carnitine on aspartame-induced oxidative stress, histopathological changes, and genotoxicity in liver of male rats.
Journal of basic and clinical physiology and pharmacology.
2019 Jan; 30(2):219-232. doi:
10.1515/jbcpp-2018-0064
. [PMID: 30645201] - Arbind Kumar Choudhary, Yeong Yeh Lee. The debate over neurotransmitter interaction in aspartame usage.
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia.
2018 Oct; 56(?):7-15. doi:
10.1016/j.jocn.2018.06.043
. [PMID: 30318075] - Candice Allister Price, Donovan A Argueta, Valentina Medici, Andrew A Bremer, Vivien Lee, Marinelle V Nunez, Guoxia X Chen, Nancy L Keim, Peter J Havel, Kimber L Stanhope, Nicholas V DiPatrizio. Plasma fatty acid ethanolamides are associated with postprandial triglycerides, ApoCIII, and ApoE in humans consuming a high-fructose corn syrup-sweetened beverage.
American journal of physiology. Endocrinology and metabolism.
2018 08; 315(2):E141-E149. doi:
10.1152/ajpendo.00406.2017
. [PMID: 29634315] - Fucheng Zhu, Tianyue Jiang, Bin Wu, Bingfang He. Enhancement of Z-aspartame synthesis by rational engineering of metalloprotease.
Food chemistry.
2018 Jul; 253(?):30-36. doi:
10.1016/j.foodchem.2018.01.108
. [PMID: 29502835] - Arbind Kumar Choudhary, Yeong Yeh Lee. Neurophysiological symptoms and aspartame: What is the connection?.
Nutritional neuroscience.
2018 Jun; 21(5):306-316. doi:
10.1080/1028415x.2017.1288340
. [PMID: 28198207] - Oytun Erbaş, Mümin Alper Erdoğan, Asghar Khalilnezhad, Volkan Solmaz, Fulya Tuzcu Gürkan, Gürkan Yiğittürk, Hüseyin Avni Eroglu, Dilek Taskiran. Evaluation of long-term effects of artificial sweeteners on rat brain: a biochemical, behavioral, and histological study.
Journal of biochemical and molecular toxicology.
2018 Jun; 32(6):e22053. doi:
10.1002/jbt.22053
. [PMID: 29660801] - Kelly A Higgins, Robert V Considine, Richard D Mattes. Aspartame Consumption for 12 Weeks Does Not Affect Glycemia, Appetite, or Body Weight of Healthy, Lean Adults in a Randomized Controlled Trial.
The Journal of nutrition.
2018 04; 148(4):650-657. doi:
10.1093/jn/nxy021
. [PMID: 29659969] - Natalia Cardoso Santos, Laiza Magalhaes de Araujo, Graziela De Luca Canto, Eliete Neves Silva Guerra, Michella Soares Coelho, Maria de Fatima Borin. Metabolic effects of aspartame in adulthood: A systematic review and meta-analysis of randomized clinical trials.
Critical reviews in food science and nutrition.
2018; 58(12):2068-2081. doi:
10.1080/10408398.2017.1304358
. [PMID: 28394643] - Rasha A Al-Eisa, Fawziah A Al-Salmi, Reham Z Hamza, Nahla S El-Shenawy. Role of L-carnitine in protection against the cardiac oxidative stress induced by aspartame in Wistar albino rats.
PloS one.
2018; 13(11):e0204913. doi:
10.1371/journal.pone.0204913
. [PMID: 30403670] - Muthuraman Pandurangan, Gansukh Enkhtaivan, Muthuviveganandavel Veerappan, Bhupendra Mistry, Rahul Patel, So Hyun Moon, Patnamsetty Chidanandha Nagajyothi, Doo Hwan Kim. Renal-protective and ameliorating impacts of omega-3 fatty acids against aspartame damaged MDCK cells.
BioFactors (Oxford, England).
2017 Nov; 43(6):847-857. doi:
10.1002/biof.1387
. [PMID: 28881099] - Tomonori Kimura, Akane Kanasaki, Noriko Hayashi, Takako Yamada, Tetsuo Iida, Yasuo Nagata, Kazuhiro Okuma. d-Allulose enhances postprandial fat oxidation in healthy humans.
Nutrition (Burbank, Los Angeles County, Calif.).
2017 Nov; 43-44(?):16-20. doi:
10.1016/j.nut.2017.06.007
. [PMID: 28935140] - Mohammad Reza Ardalan, Hadi Tabibi, Vahideh Ebrahimzadeh Attari, Aida Malek Mahdavi. Nephrotoxic Effect of Aspartame as an Artificial Sweetener: a Brief Review.
Iranian journal of kidney diseases.
2017 Oct; 11(5):339-343. doi:
. [PMID: 29038387]
- Mohamed A Lebda, Kadry M Sadek, Yasser S El-Sayed. Aspartame and Soft Drink-Mediated Neurotoxicity in Rats: Implication of Oxidative Stress, Apoptotic Signaling Pathways, Electrolytes and Hormonal Levels.
Metabolic brain disease.
2017 10; 32(5):1639-1647. doi:
10.1007/s11011-017-0052-y
. [PMID: 28660358] - Arbind Kumar Choudhary, Etheresia Pretorius. Revisiting the safety of aspartame.
Nutrition reviews.
2017 Sep; 75(9):718-730. doi:
10.1093/nutrit/nux035
. [PMID: 28938797] - I Ashok, P S Poornima, D Wankhar, R Ravindran, R Sheeladevi. Oxidative stress evoked damages on rat sperm and attenuated antioxidant status on consumption of aspartame.
International journal of impotence research.
2017 Jul; 29(4):164-170. doi:
10.1038/ijir.2017.17
. [PMID: 28446800] - Mohamed A Lebda, Hossam G Tohamy, Yasser S El-Sayed. Long-term soft drink and aspartame intake induces hepatic damage via dysregulation of adipocytokines and alteration of the lipid profile and antioxidant status.
Nutrition research (New York, N.Y.).
2017 May; 41(?):47-55. doi:
10.1016/j.nutres.2017.04.002
. [PMID: 28465000] - Nicoletta A Miele, Rossella Di Monaco, Francesca Dell'Amura, Michele F Rega, Delia Picone, Silvana Cavella. A preliminary study on the application of natural sweet proteins in agar-based gels.
Journal of texture studies.
2017 04; 48(2):103-113. doi:
10.1111/jtxs.12215
. [PMID: 28370108] - Isabela Finamor, Salvador Pérez, Caroline A Bressan, Carlos E Brenner, Sergio Rius-Pérez, Patricia C Brittes, Gabriele Cheiran, Maria I Rocha, Marcelo da Veiga, Juan Sastre, Maria A Pavanato. Chronic aspartame intake causes changes in the trans-sulphuration pathway, glutathione depletion and liver damage in mice.
Redox biology.
2017 04; 11(?):701-707. doi:
10.1016/j.redox.2017.01.019
. [PMID: 28187322] - Tao Zhang, Zhiwei Gan, Chuanzi Gao, Ling Ma, Yanxi Li, Xiao Li, Hongwen Sun. Occurrence of artificial sweeteners in human liver and paired blood and urine samples from adults in Tianjin, China and their implications for human exposure.
Environmental science. Processes & impacts.
2016 Sep; 18(9):1169-76. doi:
10.1039/c6em00130k
. [PMID: 27383923] - Oluwatosin A Adaramoye, Olubukola O Akanni. Effects of long-term administration of aspartame on biochemical indices, lipid profile and redox status of cellular system of male rats.
Journal of basic and clinical physiology and pharmacology.
2016 Jan; 27(1):29-37. doi:
10.1515/jbcpp-2014-0130
. [PMID: 26247507] - J B Rodrigues, J A Paixão, A G Cruz, H M A Bolini. Chocolate Milk with Chia Oil: Ideal Sweetness, Sweeteners Equivalence, and Dynamic Sensory Evaluation Using a Time-Intensity Methodology.
Journal of food science.
2015 Dec; 80(12):S2944-9. doi:
10.1111/1750-3841.13120
. [PMID: 26523944] - Gun-Dong Kim, Yong Seek Park, Hyun-Jong Ahn, Jeong-Je Cho, Cheung-Seog Park. Aspartame Attenuates 2, 4-Dinitrofluorobenzene-Induced Atopic Dermatitis-Like Clinical Symptoms in NC/Nga Mice.
The Journal of investigative dermatology.
2015 Nov; 135(11):2705-2713. doi:
10.1038/jid.2015.234
. [PMID: 26099025] - Cara L Frankenfeld, Masoumeh Sikaroodi, Evan Lamb, Sarah Shoemaker, Patrick M Gillevet. High-intensity sweetener consumption and gut microbiome content and predicted gene function in a cross-sectional study of adults in the United States.
Annals of epidemiology.
2015 Oct; 25(10):736-42.e4. doi:
10.1016/j.annepidem.2015.06.083
. [PMID: 26272781] - Ryo Takahashi, Takaaki Goto, Tomoyuki Oe, Seon Hwa Lee. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
Chemico-biological interactions.
2015 Sep; 239(?):87-99. doi:
10.1016/j.cbi.2015.06.029
. [PMID: 26111765] - Mohamed El-Sayed Alkafafy, Zein Shaban Ibrahim, Mohamed Mohamed Ahmed, Samir Ahmed El-Shazly. Impact of aspartame and saccharin on the rat liver: Biochemical, molecular, and histological approach.
International journal of immunopathology and pharmacology.
2015 Jun; 28(2):247-55. doi:
10.1177/0394632015586134
. [PMID: 26015492] - Arbind Kumar Choudhary, Rathinasamy Sheela Devi. Longer period of oral administration of aspartame on cytokine response in Wistar albino rats.
Endocrinologia y nutricion : organo de la Sociedad Espanola de Endocrinologia y Nutricion.
2015 Mar; 62(3):114-22. doi:
10.1016/j.endonu.2014.11.004
. [PMID: 25681123] - Allison C Sylvetsky, Alexandra L Gardner, Viviana Bauman, Jenny E Blau, H Martin Garraffo, Peter J Walter, Kristina I Rother. Nonnutritive Sweeteners in Breast Milk.
Journal of toxicology and environmental health. Part A.
2015; 78(16):1029-32. doi:
10.1080/15287394.2015.1053646
. [PMID: 26267522] - Thozhukat Sathyapalan, Natalie J Thatcher, Richard Hammersley, Alan S Rigby, Fraser L Courts, Alexandros Pechlivanis, Nigel J Gooderham, Elaine Holmes, Carel W le Roux, Stephen L Atkin. Aspartame sensitivity? A double blind randomised crossover study.
PloS one.
2015; 10(3):e0116212. doi:
10.1371/journal.pone.0116212
. [PMID: 25786106] - Rakan Matsui, Shinya Uchida, Noriyuki Namiki. Combination effect of physical and gustatory taste masking for propiverine hydrochloride orally disintegrating tablets on palatability.
Biological & pharmaceutical bulletin.
2015; 38(1):17-22. doi:
10.1248/bpb.b14-00467
. [PMID: 25744453] - Armorel Diane van Eyk. The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells.
Drug and chemical toxicology.
2015; 38(3):318-27. doi:
10.3109/01480545.2014.966381
. [PMID: 25317478] - Xue Han, Shu-Zhen Xu, Wen-Rui Dong, Zhai Wu, Ren-Hai Wang, Zhong-Xiu Chen. Influence of carboxymethyl cellulose and sodium alginate on sweetness intensity of Aspartame.
Food chemistry.
2014 Dec; 164(?):278-85. doi:
10.1016/j.foodchem.2014.05.040
. [PMID: 24996335] - Marko D Prokic, Milica G Paunovic, Milos M Matic, Natasa Z Djordjevic, Branka I Ognjanovic, Andras S Stajn, Zorica S Saicic. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.
Journal of biosciences.
2014 Dec; 39(5):859-66. doi:
10.1007/s12038-014-9487-z
. [PMID: 25431414] - Jotham Suez, Tal Korem, David Zeevi, Gili Zilberman-Schapira, Christoph A Thaiss, Ori Maza, David Israeli, Niv Zmora, Shlomit Gilad, Adina Weinberger, Yael Kuperman, Alon Harmelin, Ilana Kolodkin-Gal, Hagit Shapiro, Zamir Halpern, Eran Segal, Eran Elinav. Artificial sweeteners induce glucose intolerance by altering the gut microbiota.
Nature.
2014 Oct; 514(7521):181-6. doi:
10.1038/nature13793
. [PMID: 25231862] - Muthuraman Pandurangan, Jeongeun Park, Eunjung Kim. Aspartame downregulates 3T3-L1 differentiation.
In vitro cellular & developmental biology. Animal.
2014 Oct; 50(9):851-7. doi:
10.1007/s11626-014-9789-3
. [PMID: 24961835] - Isabela A Finamor, Giovana M Ourique, Tanise S Pês, Etiane M H Saccol, Caroline A Bressan, Taína Scheid, Bernardo Baldisserotto, Susana F Llesuy, Wânia A Partata, Maria A Pavanato. The protective effect of N-acetylcysteine on oxidative stress in the brain caused by the long-term intake of aspartame by rats.
Neurochemical research.
2014 Sep; 39(9):1681-90. doi:
10.1007/s11064-014-1360-9
. [PMID: 24970110] - Erik Norén, Henrik Forssell. Very low calorie diet without aspartame in obese subjects: improved metabolic control after 4 weeks treatment.
Nutrition journal.
2014 Jul; 13(?):77. doi:
10.1186/1475-2891-13-77
. [PMID: 25069603] - Manal Abdul-Hamid, Sanaa Rida Gallaly. Ameliorative effect of Pimpinella anisum oil on immunohistochemical and ultrastuctural changes of cerebellum of albino rats induced by aspartame.
Ultrastructural pathology.
2014 May; 38(3):224-36. doi:
10.3109/01913123.2014.889259
. [PMID: 24684500] - Nahid Shahabadi, Mohammad Mehdi Khodaei, Soheila Kashanian, Fahimeh Kheirdoosh, Soraya Moradi Filli. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.
Molecular biology reports.
2014 May; 41(5):3271-8. doi:
10.1007/s11033-014-3189-3
. [PMID: 24481880] - Masato Yasuura, Yusuke Tahara, Hidekazu Ikezaki, Kiyoshi Toko. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.
Sensors (Basel, Switzerland).
2014 Apr; 14(4):7359-73. doi:
10.3390/s140407359
. [PMID: 24763213] - Gasem M Abu-Taweel, Zyadah M A, Jamaan S Ajarem, Mohammad Ahmad. Cognitive and biochemical effects of monosodium glutamate and aspartame, administered individually and in combination in male albino mice.
Neurotoxicology and teratology.
2014 Mar; 42(?):60-7. doi:
10.1016/j.ntt.2014.02.001
. [PMID: 24556450] - Marie Reid, Richard Hammersley, Maresa Duffy, Carrie Ballantyne. Effects on obese women of the sugar sucrose added to the diet over 28 d: a quasi-randomised, single-blind, controlled trial.
The British journal of nutrition.
2014 Feb; 111(3):563-70. doi:
10.1017/s0007114513002687
. [PMID: 24164779] - Maria-Cristina Radulescu, Bogdan Bucur, Madalina-Petruta Bucur, Gabriel Lucian Radu. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.
Sensors (Basel, Switzerland).
2014 Jan; 14(1):1028-38. doi:
10.3390/s140101028
. [PMID: 24412899] - Marie S A Palmnäs, Theresa E Cowan, Marc R Bomhof, Juliet Su, Raylene A Reimer, Hans J Vogel, Dustin S Hittel, Jane Shearer. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.
PloS one.
2014; 9(10):e109841. doi:
10.1371/journal.pone.0109841
. [PMID: 25313461] - Iyaswamy Ashok, Rathinasamy Sheeladevi. Biochemical responses and mitochondrial mediated activation of apoptosis on long-term effect of aspartame in rat brain.
Redox biology.
2014; 2(?):820-31. doi:
10.1016/j.redox.2014.04.011
. [PMID: 25009784] - Janina S G Diogo, Liliana S O Silva, Angelina Pena, Celeste M Lino. Risk assessment of additives through soft drinks and nectars consumption on Portuguese population: a 2010 survey.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Dec; 62(?):548-53. doi:
10.1016/j.fct.2013.09.006
. [PMID: 24036138] - Marina Marinovich, Corrado L Galli, Cristina Bosetti, Silvano Gallus, Carlo La Vecchia. Aspartame, low-calorie sweeteners and disease: regulatory safety and epidemiological issues.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Oct; 60(?):109-15. doi:
10.1016/j.fct.2013.07.040
. [PMID: 23891579] - Masaru Mukai, Hiroyuki Minamikawa, Masaru Aoyagi, Masumi Asakawa, Toshimi Shimizu, Masaki Kogiso. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.
Journal of colloid and interface science.
2013 Apr; 395(?):154-60. doi:
10.1016/j.jcis.2012.12.060
. [PMID: 23394806] - Kate S Collison, Nadine J Makhoul, Marya Z Zaidi, Angela Inglis, Bernard L Andres, Rosario Ubungen, Soad Saleh, Futwan A Al-Mohanna. Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in Trans fat-fed C57Bl/6 J mice.
Nutrition & metabolism.
2013; 10(?):44. doi:
10.1186/1743-7075-10-44
. [PMID: 23783067] - Daniel J Warner, Hongming Chen, Louis-David Cantin, J Gerry Kenna, Simone Stahl, Clare L Walker, Tobias Noeske. Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Drug metabolism and disposition: the biological fate of chemicals.
2012 Dec; 40(12):2332-41. doi:
10.1124/dmd.112.047068
. [PMID: 22961681] - Bo Liu, Matthew Ha, Xuan-Yu Meng, Mohammed Khaleduzzaman, Zhe Zhang, Xia Li, Meng Cui. Functional characterization of the heterodimeric sweet taste receptor T1R2 and T1R3 from a New World monkey species (squirrel monkey) and its response to sweet-tasting proteins.
Biochemical and biophysical research communications.
2012 Oct; 427(2):431-7. doi:
10.1016/j.bbrc.2012.09.083
. [PMID: 23000410] - Gry T Dahl, Berit Woldseth, Rolf Lindemann. Metabolic acidosis mimicking diabetic ketoacidosis after use of calorie-free mineral water.
European journal of pediatrics.
2012 Sep; 171(9):1405-7. doi:
10.1007/s00431-012-1723-7
. [PMID: 22457081] - Ashok Iyyaswamy, Sheeladevi Rathinasamy. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.
Journal of biosciences.
2012 Sep; 37(4):679-88. doi:
10.1007/s12038-012-9236-0
. [PMID: 22922192] - Suresh Kumar Kailasa, Hui-Fen Wu. Functionalized quantum dots with dopamine dithiocarbamate as the matrix for the quantification of efavirenz in human plasma and as affinity probes for rapid identification of microwave tryptic digested proteins in MALDI-TOF-MS.
Journal of proteomics.
2012 Jun; 75(10):2924-33. doi:
10.1016/j.jprot.2011.12.008
. [PMID: 22202183] - Omar M E Abdel-Salam, Neveen A Salem, Jihan Seid Hussein. Effect of aspartame on oxidative stress and monoamine neurotransmitter levels in lipopolysaccharide-treated mice.
Neurotoxicity research.
2012 Apr; 21(3):245-55. doi:
10.1007/s12640-011-9264-9
. [PMID: 21822758] - Sung Geon Park, Yoon Jung Bae, Yong Soo Lee, Byeong Jo Kim. Effects of rehydration fluid temperature and composition on body weight retention upon voluntary drinking following exercise-induced dehydration.
Nutrition research and practice.
2012 Apr; 6(2):126-31. doi:
10.4162/nrp.2012.6.2.126
. [PMID: 22586501] - Pauline Maes, Yulia B Monakhova, Thomas Kuballa, Helmut Reusch, Dirk W Lachenmeier. Qualitative and quantitative control of carbonated cola beverages using ¹H NMR spectroscopy.
Journal of agricultural and food chemistry.
2012 Mar; 60(11):2778-84. doi:
10.1021/jf204777m
. [PMID: 22356160] - Maartje C P Geraedts, Freddy J Troost, Wim H M Saris. Addition of sucralose enhances the release of satiety hormones in combination with pea protein.
Molecular nutrition & food research.
2012 Mar; 56(3):417-24. doi:
10.1002/mnfr.201100297
. [PMID: 22378494] - Yan Yin, Ming Yan, Tao Zhu. Minimum alveolar concentration of sevoflurane in rabbits with liver fibrosis.
Anesthesia and analgesia.
2012 Mar; 114(3):561-5. doi:
10.1213/ane.0b013e31823feca7
. [PMID: 22190556] - Maria Maersk, Anita Belza, Hans Stødkilde-Jørgensen, Steffen Ringgaard, Elizaveta Chabanova, Henrik Thomsen, Steen B Pedersen, Arne Astrup, Bjørn Richelsen. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study.
The American journal of clinical nutrition.
2012 Feb; 95(2):283-9. doi:
10.3945/ajcn.111.022533
. [PMID: 22205311] - Janette H Hope, Bradley E Hope. A review of the diagnosis and treatment of Ochratoxin A inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis.
Journal of environmental and public health.
2012; 2012(?):835059. doi:
10.1155/2012/835059
. [PMID: 22253638] - Yuri L Dorokhov, Tatiana V Komarova, Igor V Petrunia, Vyacheslav S Kosorukov, Roman A Zinovkin, Anastasia V Shindyapina, Olga Y Frolova, Yuri Y Gleba. Methanol may function as a cross-kingdom signal.
PloS one.
2012; 7(4):e36122. doi:
10.1371/journal.pone.0036122
. [PMID: 22563443] - Rania Abou-Samra, Lian Keersmaekers, Dino Brienza, Rajat Mukherjee, Katherine Macé. Effect of different protein sources on satiation and short-term satiety when consumed as a starter.
Nutrition journal.
2011 Dec; 10(?):139. doi:
10.1186/1475-2891-10-139
. [PMID: 22196620] - Nikos Emmanouilidis, Mark Dietrich Jäger, Michael Winkler, Jürgen Klempnauer. Boerhaave syndrome as a complication of colonoscopy preparation: a case report.
Journal of medical case reports.
2011 Nov; 5(?):544. doi:
10.1186/1752-1947-5-544
. [PMID: 22054124] - Jae-Yong Kim, Juyi Seo, Kyung-Hyun Cho. Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Nov; 49(11):2899-905. doi:
10.1016/j.fct.2011.08.001
. [PMID: 21855599] - Sachin S Kunde, James R Roede, Miriam B Vos, Michael L Orr, Young-Mi Go, Youngja Park, Thomas R Ziegler, Dean P Jones. Hepatic oxidative stress in fructose-induced fatty liver is not caused by sulfur amino acid insufficiency.
Nutrients.
2011 11; 3(11):987-1002. doi:
10.3390/nu3110987
. [PMID: 22254090] - William F Jaynes, Richard E Zartman. Aflatoxin toxicity reduction in feed by enhanced binding to surface-modified clay additives.
Toxins.
2011 06; 3(6):551-65. doi:
10.3390/toxins3060551
. [PMID: 22069725] - Robert E Steinert, Florian Frey, Antonia Töpfer, Jürgen Drewe, Christoph Beglinger. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides.
The British journal of nutrition.
2011 May; 105(9):1320-8. doi:
10.1017/s000711451000512x
. [PMID: 21255472] - Wookju Jang, Nam Ho Jeoung, Kyung-Hyun Cho. Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state.
Molecules and cells.
2011 May; 31(5):461-70. doi:
10.1007/s10059-011-1009-3
. [PMID: 21533907] - Ken-ichiro Nakajima, Kanako Yokoyama, Taichi Koizumi, Ayako Koizumi, Tomiko Asakura, Tohru Terada, Katsuyoshi Masuda, Keisuke Ito, Akiko Shimizu-Ibuka, Takumi Misaka, Keiko Abe. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.
PloS one.
2011 Apr; 6(4):e19448. doi:
10.1371/journal.pone.0019448
. [PMID: 21559382] - Paul Chidoka Chikezie, Augustine Amadikwa Uwakwe. Membrane stability of sickle erythrocytes incubated in extracts of three medicinal plants: Anacardium occidentale, Psidium guajava, and Terminalia catappa.
Pharmacognosy magazine.
2011 Apr; 7(26):121-5. doi:
10.4103/0973-1296.80669
. [PMID: 21716621] - Denis Khnykin, Jeffrey H Miner, Frode Jahnsen. Role of fatty acid transporters in epidermis: Implications for health and disease.
Dermato-endocrinology.
2011 Apr; 3(2):53-61. doi:
10.4161/derm.3.2.14816
. [PMID: 21695012] - H Knechten, C Stephan, F A Mosthaf, H Jaeger, A Carganico, T Lutz, K Schewe, C Mayr, E Wolf, E Wellmann, A Tappe. The rainbow cohort: 96 week follow-up of saquinavir-containing regimens in previously antiretroviral therapy (ART)-naive and pre-treated but protease inhibitor (PI)-naive HIV-infected patients.
European journal of medical research.
2011 Mar; 16(3):93-100. doi:
10.1186/2047-783x-16-3-93
. [PMID: 21486721] - Motohiro Miyano, Haruyuki Yamashita, Takanobu Sakurai, Ken-ichiro Nakajima, Keisuke Ito, Takumi Misaka, Yoshiro Ishimaru, Keiko Abe, Tomiko Asakura. Surface plasmon resonance analysis on interactions of food components with a taste epithelial cell model.
Journal of agricultural and food chemistry.
2010 Nov; 58(22):11870-5. doi:
10.1021/jf102573w
. [PMID: 21038889]