Indoleacetaldehyde (BioDeep_00000003530)
Secondary id: BioDeep_00000400107, BioDeep_00001894521
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C10H9NO (159.0684)
中文名称: 吲哚-3-乙醛, 2-(1H-吲哚-3-基)乙醛
谱图信息:
最多检出来源 Homo sapiens(plant) 9.36%
分子结构信息
SMILES: C1=CC=C2C(=C1)C(=CN2)CC=O
InChI: InChI=1S/C10H9NO/c12-6-5-8-7-11-10-4-2-1-3-9(8)10/h1-4,6-7,11H,5H2
描述信息
Indoleacetaldehyde, also known as tryptaldehyde, belongs to the class of organic compounds known as 3-alkylindoles. 3-Alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indoleacetaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Indoleacetaldehyde exists in all living species, ranging from bacteria to humans. Within humans, indoleacetaldehyde participates in a number of enzymatic reactions. In particular, indoleacetaldehyde can be biosynthesized from tryptamine; which is mediated by the enzyme kynurenine 3-monooxygenase. In addition, indoleacetaldehyde can be converted into indoleacetic acid; which is catalyzed by the enzyme aldehyde dehydrogenase, mitochondrial. In humans, indoleacetaldehyde is involved in tryptophan metabolism. Outside of the human body, indoleacetaldehyde has been detected, but not quantified in, several different foods, such as nuts, turmerics, Alaska blueberries, summer savouries, and black raspberries. This could make indoleacetaldehyde a potential biomarker for the consumption of these foods. Indoleacetaldehyde is also a substrate for amine oxidase and 4-trimethylaminobutyraldehyde dehydrogenase.
Indoleacetaldehyde is a substrate for Retina-specific copper amine oxidase, Aldehyde dehydrogenase X (mitochondrial), Amine oxidase B, Amiloride-sensitive amine oxidase, Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Amine oxidase A, Aldehyde dehydrogenase 1A3 and Membrane copper amine oxidase. [HMDB]. 1H-Indole-3-acetaldehyde is found in many foods, some of which are oil palm, rowanberry, cherimoya, and japanese persimmon.
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
12 个代谢物同义名
2-(1H-indol-3-yl)Acetaldehyde; 2-(indol-3-yl)Acetaldehyde; 1H-indol-3-Ylacetaldehyde; 2-(3-Indolyl)acetaldehyde; 1H-Indole-3-acetaldehyde; indol-3-Ylacetaldehyde; indole-3-acetaldehyde; Indoleacetaldehyde; Tryptaldehyde; Indole-3-acetaldehyde; Indole-3-acetaldehyde; 2-(1H-indol-3-yl)acetaldehyde
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:18086
- KEGG: C00637
- PubChem: 800
- HMDB: HMDB0001190
- Metlin: METLIN6068
- MetaCyc: INDOLE_ACETALDEHYDE
- KNApSAcK: C00000109
- foodb: FDB013950
- chemspider: 778
- CAS: 2591-98-2
- MoNA: PR100569
- MoNA: PR100147
- PMhub: MS000009925
- PubChem: 3910
- 3DMET: B00152
- NIKKAJI: J398.271H
- RefMet: Indoleacetaldehyde
- KNApSAcK: 18086
- LOTUS: LTS0254206
分类词条
相关代谢途径
Reactome(0)
BioCyc(3)
PlantCyc(0)
代谢反应
315 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(13)
- tryptophan degradation:
α-ketoglutarate + L-tryptophan ⟶ L-glutamate + indolepyruvate
- tryptophan degradation via tryptamine:
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- superpathway of tryptophan utilization:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation V (side chain pathway):
NAD(P)+ + indole-3-ethanol ⟶ (indol-3-yl)acetaldehyde + H+ + NAD(P)H
- L-tryptophan degradation X (mammalian, via tryptamine):
(indol-3-yl)acetaldehyde + H+ + NADPH ⟶ NADP+ + indole-3-ethanol
- L-tryptophan degradation VIII (to tryptophol):
NAD+ + indole-3-ethanol ⟶ (indol-3-yl)acetaldehyde + H+ + NADH
- tryptophan degradation VIII (to tryptophol):
2-oxoglutarate + trp ⟶ (indol-3-yl)pyruvate + glu
- tryptophan degradation X (mammalian, via tryptamine):
H2O + O2 + tryptamine ⟶ H+ + ammonia + hydrogen peroxide + indole acetaldehyde
- indole-3-acetate biosynthesis VI (bacteria):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + indole acetaldehyde ⟶ H+ + hydrogen peroxide + indole-3-acetate
- IAA biosynthesis I:
acetate + indole ⟶ H+ + indole-3-acetate
- IAA biosynthesis I:
H2O + indole-3-acetamide ⟶ H+ + ammonia + indole-3-acetate
Plant Reactome(231)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- IAA biosynthesis I:
indole-3-pyruvate ⟶ carbon dioxide + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA biosynthesis I:
CH3COO- + indole ⟶ IAA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + indole-3-acetonitrile ⟶ IAA + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA biosynthesis I:
H2O + Oxygen + tryptamine ⟶ H2O2 + ammonia + indole acetaldehyde
INOH(1)
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
PlantCyc(61)
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
H2O + O2 + tryptamine ⟶ (indol-3-yl)acetaldehyde + ammonium + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation VI (via tryptamine):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(7)
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
PharmGKB(0)
23 个相关的物种来源信息
- 7458 - Apidae: LTS0254206
- 7459 - Apis: LTS0254206
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0254206
- 6656 - Arthropoda: LTS0254206
- 4210 - Asteraceae: LTS0254206
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 2759 - Eukaryota: LTS0254206
- 3803 - Fabaceae: LTS0254206
- 4231 - Helianthus: LTS0254206
- 4232 - Helianthus annuus: 10.1111/J.1399-3054.1967.TB07207.X
- 4232 - Helianthus annuus: LTS0254206
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 50557 - Insecta: LTS0254206
- 3398 - Magnoliopsida: LTS0254206
- 33208 - Metazoa: LTS0254206
- 3887 - Pisum: LTS0254206
- 3888 - Pisum sativum: 10.1111/J.1399-3054.1967.TB07207.X
- 3888 - Pisum sativum: LTS0254206
- 35493 - Streptophyta: LTS0254206
- 58023 - Tracheophyta: LTS0254206
- 33090 - Viridiplantae: LTS0254206
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ateek Shah, Yamini Mathur, Amrita B Hazra. Double agent indole-3-acetic acid: mechanistic analysis of indole-3-acetaldehyde dehydrogenase AldA that synthesizes IAA, an auxin that aids bacterial virulence.
Bioscience reports.
2021 08; 41(8):. doi:
10.1042/bsr20210598
. [PMID: 34369556] - Linda Jahn, Uta Hofmann, Jutta Ludwig-Müller. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant.
International journal of molecular sciences.
2021 Mar; 22(5):. doi:
10.3390/ijms22052651
. [PMID: 33800748] - Kaleena Zhang, Josephine S Lee, Regina Liu, Zita T Chan, Trenton J Dawson, Elisa S De Togni, Chris T Edwards, Isabel K Eng, Ashley R Gao, Luis A Goicouria, Erin M Hall, Kelly A Hu, Katherine Huang, Alexander Kizhner, Kelsie C Kodama, Andrew Z Lin, Jennifer Y Liu, Alan Y Lu, Owen W Peng, Erica P Ryu, Sophia Shi, Maria L Sorkin, Patricia L Walker, Grace J Wang, Mark C Xu, Rebecca S Yang, Barrie Cascella, Wilhelm Cruz, Cynthia K Holland, Sheri A McClerkin, Barbara N Kunkel, Soon Goo Lee, Joseph M Jez. Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen Pseudomonas syringae PtoDC3000.
Bioscience reports.
2020 12; 40(12):. doi:
10.1042/bsr20202959
. [PMID: 33325526] - Qixia Shen, Wenyu Xiang, Sen Ye, Xin Lei, Lefeng Wang, Sha Jia, Xue Shao, Chunhua Weng, Xiujin Shen, Yucheng Wang, Shi Feng, Lihui Qu, Cuili Wang, Jianghua Chen, Ping Zhang, Hong Jiang. Plasma metabolite biomarkers related to secondary hyperparathyroidism and parathyroid hormone.
Journal of cellular biochemistry.
2019 09; 120(9):15766-15775. doi:
10.1002/jcb.28846
. [PMID: 31069832] - Sheri A McClerklin, Soon Goo Lee, Christopher P Harper, Ron Nwumeh, Joseph M Jez, Barbara N Kunkel. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000.
PLoS pathogens.
2018 01; 14(1):e1006811. doi:
10.1371/journal.ppat.1006811
. [PMID: 29293681] - Aatif Amin, Zakia Latif. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L.
Journal of basic microbiology.
2017 Mar; 57(3):204-217. doi:
10.1002/jobm.201600352
. [PMID: 27911010] - Hexon Angel Contreras-Cornejo, Jesús Salvador López-Bucio, Alejandro Méndez-Bravo, Lourdes Macías-Rodríguez, Maricela Ramos-Vega, Ángel Arturo Guevara-García, José López-Bucio. Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride.
Molecular plant-microbe interactions : MPMI.
2015 Jun; 28(6):701-10. doi:
10.1094/mpmi-01-15-0005-r
. [PMID: 26067203] - Michael P Torrens-Spence, Renee von Guggenberg, Michael Lazear, Haizhen Ding, Jianyong Li. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates.
BMC plant biology.
2014 Sep; 14(?):247. doi:
10.1186/s12870-014-0247-x
. [PMID: 25230835] - Mohammed Mujahid, Ch Sasikala, Ch V Ramana. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.
PloS one.
2014; 9(2):e87503. doi:
10.1371/journal.pone.0087503
. [PMID: 24533057] - Michael P Torrens-Spence, Pingyang Liu, Haizhen Ding, Kim Harich, Glenda Gillaspy, Jianyong Li. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases.
The Journal of biological chemistry.
2013 Jan; 288(4):2376-87. doi:
10.1074/jbc.m112.401752
. [PMID: 23204519] - Jin-Hyung Lee, Yong-Guy Kim, Chang-Jin Kim, Jae-Chan Lee, Moo Hwan Cho, Jintae Lee. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation.
Applied microbiology and biotechnology.
2012 Nov; 96(4):1071-8. doi:
10.1007/s00253-012-3881-y
. [PMID: 22274708] - Jessica A Palmer, Ashley M Poenitzsch, Susan M Smith, Kevin R Conard, Paul R West, Gabriela G Cezar. Metabolic biomarkers of prenatal alcohol exposure in human embryonic stem cell-derived neural lineages.
Alcoholism, clinical and experimental research.
2012 Aug; 36(8):1314-24. doi:
10.1111/j.1530-0277.2011.01732.x
. [PMID: 22324771] - Dimas M Ribeiro, Wagner L Araújo, Alisdair R Fernie, Jos H M Schippers, Bernd Mueller-Roeber. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis.
Journal of experimental botany.
2012 Apr; 63(7):2769-86. doi:
10.1093/jxb/err463
. [PMID: 22291129] - Hongbo Liu, Xianghua Li, Jinghua Xiao, Shiping Wang. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction.
Plant methods.
2012 Jan; 8(1):2. doi:
10.1186/1746-4811-8-2
. [PMID: 22243810] - Xiao Wu, Sébastien Monchy, Safiyh Taghavi, Wei Zhu, Juan Ramos, Daniel van der Lelie. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida.
FEMS microbiology reviews.
2011 Mar; 35(2):299-323. doi:
10.1111/j.1574-6976.2010.00249.x
. [PMID: 20796030] - Kimberly A Phillips, Andrea L Skirpan, Xing Liu, Ashley Christensen, Thomas L Slewinski, Christopher Hudson, Solmaz Barazesh, Jerry D Cohen, Simon Malcomber, Paula McSteen. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize.
The Plant cell.
2011 Feb; 23(2):550-66. doi:
10.1105/tpc.110.075267
. [PMID: 21335375] - Jing Fu, Shiping Wang. Insights into auxin signaling in plant-pathogen interactions.
Frontiers in plant science.
2011; 2(?):74. doi:
10.3389/fpls.2011.00074
. [PMID: 22639609] - Pratibha Vyas, Robin Joshi, K C Sharma, Praveen Rahi, Ashu Gulati, Arvind Gulati. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential.
Journal of microbiology and biotechnology.
2010 Dec; 20(12):1724-34. doi:
. [PMID: 21193830]
- Nathan D Tivendale, Noel W Davies, Peter P Molesworth, Sandra E Davidson, Jason A Smith, Edwin K Lowe, James B Reid, John J Ross. Reassessing the role of N-hydroxytryptamine in auxin biosynthesis.
Plant physiology.
2010 Dec; 154(4):1957-65. doi:
10.1104/pp.110.165803
. [PMID: 20974893] - Pengjuan Gong, Junhong Zhang, Hanxia Li, Changxian Yang, Chanjuan Zhang, Xiaohui Zhang, Ziaf Khurram, Yuyang Zhang, Taotao Wang, Zhangjun Fei, Zhibiao Ye. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato.
Journal of experimental botany.
2010 Aug; 61(13):3563-75. doi:
10.1093/jxb/erq167
. [PMID: 20643807] - Safiyh Taghavi, Daniel van der Lelie, Adam Hoffman, Yian-Biao Zhang, Michael D Walla, Jaco Vangronsveld, Lee Newman, Sébastien Monchy. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638.
PLoS genetics.
2010 May; 6(5):e1000943. doi:
10.1371/journal.pgen.1000943
. [PMID: 20485560] - Sherry LeCLere, Eric A Schmelz, Prem S Chourey. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels.
Plant physiology.
2010 May; 153(1):306-18. doi:
10.1104/pp.110.155226
. [PMID: 20237017] - Takakazu Kaneko, Kiwamu Minamisawa, Tsuyoshi Isawa, Hiroki Nakatsukasa, Hisayuki Mitsui, Yasuyuki Kawaharada, Yasukazu Nakamura, Akiko Watanabe, Kumiko Kawashima, Akiko Ono, Yoshimi Shimizu, Chika Takahashi, Chiharu Minami, Tsunakazu Fujishiro, Mitsuyo Kohara, Midori Katoh, Naomi Nakazaki, Shinobu Nakayama, Manabu Yamada, Satoshi Tabata, Shusei Sato. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510.
DNA research : an international journal for rapid publication of reports on genes and genomes.
2010 Feb; 17(1):37-50. doi:
10.1093/dnares/dsp026
. [PMID: 20047946] - Laura J Quittenden, Noel W Davies, Jason A Smith, Peter P Molesworth, Nathan D Tivendale, John J Ross. Auxin biosynthesis in pea: characterization of the tryptamine pathway.
Plant physiology.
2009 Nov; 151(3):1130-8. doi:
10.1104/pp.109.141507
. [PMID: 19710233] - Véronique Chagué, Rudy Maor, Amir Sharon. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity.
BMC microbiology.
2009 Aug; 9(?):173. doi:
10.1186/1471-2180-9-173
. [PMID: 19698103] - Ming-Fang Wang, Chih-Li Han, Shih-Jiun Yin. Substrate specificity of human and yeast aldehyde dehydrogenases.
Chemico-biological interactions.
2009 Mar; 178(1-3):36-9. doi:
10.1016/j.cbi.2008.10.002
. [PMID: 18983993] - Hexon Angel Contreras-Cornejo, Lourdes Macías-Rodríguez, Carlos Cortés-Penagos, José López-Bucio. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.
Plant physiology.
2009 Mar; 149(3):1579-92. doi:
10.1104/pp.108.130369
. [PMID: 19176721] - Jorge M C Mondego, Marcelo F Carazzolle, Gustavo G L Costa, Eduardo F Formighieri, Lucas P Parizzi, Johana Rincones, Carolina Cotomacci, Dirce M Carraro, Anderson F Cunha, Helaine Carrer, Ramon O Vidal, Raíssa C Estrela, Odalys García, Daniela P T Thomazella, Bruno V de Oliveira, Acássia Bl Pires, Maria Carolina S Rio, Marcos Renato R Araújo, Marcos H de Moraes, Luis A B Castro, Karina P Gramacho, Marilda S Gonçalves, José P Moura Neto, Aristóteles Góes Neto, Luciana V Barbosa, Mark J Guiltinan, Bryan A Bailey, Lyndel W Meinhardt, Julio Cm Cascardo, Gonçalo A G Pereira. A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao.
BMC genomics.
2008 Nov; 9(?):548. doi:
10.1186/1471-2164-9-548
. [PMID: 19019209] - Ko Hirano, Koichiro Aya, Tokunori Hobo, Hitoshi Sakakibara, Mikiko Kojima, Rosalyn Angeles Shim, Yasuko Hasegawa, Miyako Ueguchi-Tanaka, Makoto Matsuoka. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice.
Plant & cell physiology.
2008 Oct; 49(10):1429-50. doi:
10.1093/pcp/pcn123
. [PMID: 18718932] - Gavin Reineke, Bernadette Heinze, Jan Schirawski, Hermann Buettner, Regine Kahmann, Christoph W Basse. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation.
Molecular plant pathology.
2008 May; 9(3):339-55. doi:
10.1111/j.1364-3703.2008.00470.x
. [PMID: 18705875] - Mandira Malhotra, Sheela Srivastava. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion.
Antonie van Leeuwenhoek.
2008 May; 93(4):425-33. doi:
10.1007/s10482-007-9207-x
. [PMID: 17952626] - Britta Ehlert, Mark Aurel Schöttler, Gilbert Tischendorf, Jutta Ludwig-Müller, Ralph Bock. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis.
Journal of experimental botany.
2008; 59(13):3635-47. doi:
10.1093/jxb/ern213
. [PMID: 18757490] - Elena A Tsavkelova, Tatiana A Cherdyntseva, Svetlana Yu Klimova, Andrey I Shestakov, Svetlana G Botina, Alexander I Netrusov. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin.
Archives of microbiology.
2007 Dec; 188(6):655-64. doi:
10.1007/s00203-007-0286-x
. [PMID: 17687544] - Stylianos Kapiotis, Leopold Jirovetz, Marcela Hermann, Hildegard Laggner, Markus Exner, Harald Esterbauer, Bernhard M K Gmeiner. Products of the reaction of HOCl with tryptophan protect LDL from atherogenic modification.
Biochimie.
2006 Jul; 88(7):785-91. doi:
10.1016/j.biochi.2006.01.006
. [PMID: 16488068] - V Kriechbaumer, W J Park, A Gierl, E Glawischnig. Auxin biosynthesis in maize.
Plant biology (Stuttgart, Germany).
2006 May; 8(3):334-9. doi:
10.1055/s-2006-923883
. [PMID: 16807825] - Kuang Ren Chung, Turksen Shilts, Umran Ertürk, L W Timmer, Peter P Ueng. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus.
FEMS microbiology letters.
2003 Sep; 226(1):23-30. doi:
10.1016/s0378-1097(03)00605-0
. [PMID: 13129603] - Anja Schütz, Tatyana Sandalova, Stefano Ricagno, Gerhard Hübner, Stephan König, Gunter Schneider. Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid.
European journal of biochemistry.
2003 May; 270(10):2312-21. doi:
10.1046/j.1432-1033.2003.03601.x
. [PMID: 12752451]