13-L-Hydroperoxylinoleic acid (BioDeep_00000003299)
Secondary id: BioDeep_00001868772
human metabolite Endogenous blood metabolite
代谢物信息卡片
化学式: C18H32O4 (312.23)
中文名称: 13-氢过氧-9Z,11E-十八碳二烯酸
谱图信息:
最多检出来源 Homo sapiens(plant) 13.19%
分子结构信息
SMILES: C(CCCCCC/C=C\C=C\[C@H](CCCCC)OO)C(=O)O
InChI: InChI=1S/C18H32O4/c1-2-3-11-14-17(22-21)15-12-9-7-5-4-6-8-10-13-16-18(19)20/h7,9,12,15,17,21H,2-6,8,10-11,13-14,16H2,1H3,(H,19,20)/b9-7?,15-12+
描述信息
(9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate, also known as 13s-hydroperoxy-9z,11e-octadecadienoic acid or 13(S)-hpode, belongs to lineolic acids and derivatives class of compounds. Those are derivatives of lineolic acid. Lineolic acid is a polyunsaturated omega-6 18 carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Thus, (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate is considered to be an octadecanoid lipid molecule (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be synthesized from octadeca-9,11-dienoic acid (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can also be synthesized into pinellic acid and 13(S)-HPODE methyl ester (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be found in a number of food items such as lingonberry, lemon thyme, watermelon, and agave, which makes (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate a potential biomarker for the consumption of these food products (9z,11e)-(13s)-13-hydroperoxyoctadeca-9,11-dienoate can be found primarily in blood.
13-L-Hydroperoxylinoleic acid (13(S)-HPODE) is one of the primary products of the major polyunsaturated fatty acids (linoleic acid and arachidonic acid) from the 15-lipoxygenase pathway (EC 1.13.11.31). 13(S)-HPODE is a rather unstable metabolite and is rapidly metabolized to more stable secondary products such as diverse forms of hydroxy fatty acids (via reduction of the hydroperoxy group), alkoxy radicals (via homolytic cleavage of the peroxy group), forms of dihydro(pero)xy fatty acids (via lipoxygenase-catalysed double and triple oxygenation), or epoxy leukotrienes (via a hydrogen abstraction from a doubly allylic methylene group and a homolytic cleavage of the hydroperoxy group) (PMID: 9082450).
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides
同义名列表
28 个代谢物同义名
(9Z,11E)-(13S)-13-Hydroperoxyoctadeca-9,11-dienoic acid; 13-Hydroperoxy-9,11-octadecadienoic acid, (Z,e)-isomer; (9Z,11E,13S)-13-Hydroperoxyoctadeca-9,11-dienoic acid; (13S,9Z,11E)-13-Hydroperoxy-9,11-octadecadienoic acid; 13-L-Hydroperoxy-9-cis,11-trans-octadecadienoic acid; 13-L-Hydroperoxy-cis-9,trans-11-octadecadienoic acid; (9Z,11E)-(13S)-13-Hydroperoxyoctadeca-9,11-dienoate; (13S,9Z,11E)-13-Hydroperoxy-9,11-octadecadienoate; (9Z,11E,13S)-13-Hydroperoxyoctadeca-9,11-dienoate; 13-L-Hydroperoxy-cis-9,trans-11-octadecadienoate; 13-L-Hydroperoxy-9-cis,11-trans-octadecadienoate; 13(S)-Hydroperoxy-9Z,11E-octadecadienoic acid; 13S-hydroperoxy-9Z,11E-octadecadienoic acid; 13(S)-Hydroperoxy-9Z,11E-octadecadienoate; 13-hydroperoxyoctadeca-9,11-dienoic acid; 13-Hydroperoxy-9,11-octadecadienoic acid; 13S-Hydroperoxy-9Z,11E-octadecadienoate; 13-Hydroperoxyoctadecadienoic acid; Linoleic acid 13(S)-hydroperoxide; 13(S)-Hydroperoxylinoleic acid; 13-L-Hydroperoxylinoleic acid; 13-L-Hydroperoxylinoleate; 13(S)-HPODE; 13-HpODE; 13-HPOD; Hpode; (9Z,11E)-(13S)-13-Hydroperoxyoctadeca-9,11-dienoic acid; 13-Hydroperoxy-9Z,11E-octadecadienoic acid
数据库引用编号
30 个数据库交叉引用编号
- ChEBI: CHEBI:15655
- KEGG: C04717
- PubChem: 5280720
- PubChem: 1426
- PubChem: 7289
- HMDB: HMDB0003871
- Metlin: METLIN36036
- ChEMBL: CHEMBL1229641
- MetaCyc: 13-HYDROPEROXYOCTADECA-911-DIENOATE
- KNApSAcK: C00000394
- foodb: FDB030136
- chemspider: 4444304
- CAS: 23017-93-8
- CAS: 33964-75-9
- MoNA: UT000070
- MoNA: UT000072
- MoNA: UT000065
- MoNA: UT000067
- MoNA: UT000064
- MoNA: UT000066
- MoNA: UT000068
- MoNA: UT000069
- MoNA: UT000071
- PMhub: MS000008750
- LipidMAPS: LMFA02000034
- PDB-CCD: 13S
- 3DMET: B01779
- NIKKAJI: J293.198B
- RefMet: HpODE
- KNApSAcK: 15655
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
305 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(304)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- 13-LOX and 13-HPL pathway:
LA + Oxygen ⟶ 13-HPOD
- Divinyl ether biosynthesis II (13-LOX):
LA + Oxygen ⟶ 13-HPOD
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
7 个相关的物种来源信息
- 3078 - Auxenochlorella pyrenoidosa: 10.1007/BF02531902
- 3077 - Chlorella vulgaris: 10.1007/BF02531902
- 5507 - Fusarium oxysporum: 10.1080/00021369.1976.10862149
- 5507 - Fusarium oxysporum: 10.1271/BBB1961.40.953
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yong Fan, Jing Lu, Jinghui Fan, Shuang Guan. 1,3-dichloro-2-propanol caused lipid droplets accumulation by suppressing neutral lipases via BMAL1 in hepatocytes.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2023 Feb; 174(?):113670. doi:
10.1016/j.fct.2023.113670
. [PMID: 36805544] - Ruriko Miyazaki, Shunji Kato, Yurika Otoki, Halida Rahmania, Masayoshi Sakaino, Shigeo Takeuchi, Toshiro Sato, Jun Imagi, Kiyotaka Nakagawa. Elucidation of decomposition pathways of linoleic acid hydroperoxide isomers by GC-MS and LC-MS/MS.
Bioscience, biotechnology, and biochemistry.
2023 Jan; 87(2):179-190. doi:
10.1093/bbb/zbac189
. [PMID: 36416801] - Shuang Guan, Ranran Zhang, Yanan Zhao, Zhuoqun Meng, Jing Lu. 1,3-Dichloro-2-propanol induced ferroptosis through Nrf2/ARE signaling pathway in hepatocytes.
Environmental toxicology.
2022 Oct; 37(10):2515-2528. doi:
10.1002/tox.23615
. [PMID: 35870111] - Yong Fan, Jing Lu, Jinhua Liu, Ranran Zhang, Zelin Yu, Shuang Guan. 1,3-dichloro-2-propanol induced hepatic lipid accumulation by inhibiting autophagy via AKT/mTOR/FOXO1 pathway in mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Nov; 157(?):112578. doi:
10.1016/j.fct.2021.112578
. [PMID: 34560177] - Kohei Matsushita, Shinji Takasu, Yuji Ishii, Takeshi Toyoda, Takanori Yamada, Tomomi Morikawa, Kumiko Ogawa. In vivo mutagenicity and tumor-promoting activity of 1,3-dichloro-2-propanol in the liver and kidneys of gpt delta rats.
Archives of toxicology.
2021 09; 95(9):3117-3131. doi:
10.1007/s00204-021-03120-1
. [PMID: 34269859] - Jing Lu, Yong Fan, Meitong Liu, Qian Zhang, Shuang Guan. 1,3-dichloro-2-propanol induced lipid accumulation by blocking autophagy flux in HepG2 cells.
Toxicology.
2021 04; 454(?):152716. doi:
10.1016/j.tox.2021.152716
. [PMID: 33581215] - Michael Rohr, Chandrakala Aluganti Narasimhulu, Esra'a Keewan, Simran Hamid, Sampath Parthasarathy. The dietary peroxidized lipid, 13-HPODE, promotes intestinal inflammation by mediating granzyme B secretion from natural killer cells.
Food & function.
2020 Nov; 11(11):9526-9534. doi:
10.1039/d0fo02328k
. [PMID: 33089841] - Xiaojuan Wu, Fang Li, Wei Wu. Effects of oxidative modification by 13-hydroperoxyoctadecadienoic acid on the structure and functional properties of rice protein.
Food research international (Ottawa, Ont.).
2020 06; 132(?):109096. doi:
10.1016/j.foodres.2020.109096
. [PMID: 32331648] - Dillon Hershelman, Kirsten M Kahler, Morgan J Price, Iris Lu, Yuhan Fu, Patricia A Plumeri, Fred Karaisz, Natasha F Bassett, Peter M Findeis, Charles H Clapp. Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding.
Archives of biochemistry and biophysics.
2019 10; 674(?):108082. doi:
10.1016/j.abb.2019.108082
. [PMID: 31473191] - T O Ajiboye, R A Ajala-Lawal, A B Adeyiga. Caffeic acid abrogates 1,3-dichloro-2-propanol-induced hepatotoxicity by upregulating nuclear erythroid-related factor 2 and downregulating nuclear factor-kappa B.
Human & experimental toxicology.
2019 Sep; 38(9):1092-1101. doi:
10.1177/0960327119851257
. [PMID: 31142131] - Christopher Wolff, Christian Zoschke, Suresh Kumar Kalangi, Pallu Reddanna, Monika Schäfer-Korting. Tumor microenvironment determines drug efficacy in vitro - apoptotic and anti-inflammatory effects of 15-lipoxygenase metabolite, 13-HpOTrE.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2019 Sep; 142(?):1-7. doi:
10.1016/j.ejpb.2019.06.003
. [PMID: 31176725] - Jing Lu, Baochen Fang, Yixuan Huang, Siyu Tao, Bo Sun, Shuang Guan, Yingli Jin. Epigallocatechin-3-gallate protects against 1,3-dichloro-2-propanol-induced lipid accumulation in C57BL/6J mice.
Life sciences.
2018 Sep; 209(?):324-331. doi:
10.1016/j.lfs.2018.08.007
. [PMID: 30092300] - Yana Y Toporkova, Svetlana S Gorina, Elena K Bessolitsyna, Elena O Smirnova, Valeria S Fatykhova, Fredi Brühlmann, Tatiana M Ilyina, Lucia S Mukhtarova, Alexander N Grechkin. Double function hydroperoxide lyases/epoxyalcohol synthases (CYP74C) of higher plants: identification and conversion into allene oxide synthases by site-directed mutagenesis.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2018 Apr; 1863(4):369-378. doi:
10.1016/j.bbalip.2018.01.002
. [PMID: 29325723] - Jing Lu, Bijun Cheng, Zhuoqun Meng, Baochen Fang, Tianjiao Li, Maocheng Sun, Meitong Liu, Shuang Guan. Alliin attenuates 1, 3-dichloro-2-propanol-induced lipogenesis in HepG2 cells through activation of the AMP-activated protein kinase-dependent pathway.
Life sciences.
2018 Feb; 195(?):19-24. doi:
10.1016/j.lfs.2017.12.040
. [PMID: 29305303] - Jing Lu, Baochen Fang, Yiying Zheng, Xin Yu, Guoren Huang, Zhenning Wang, Xuming Deng, Shuang Guan. 1,3-dichloro-2-propanol induced lipid accumulation in HepG2 cells through cAMP/protein kinase A and AMP-activated protein kinase pathways via Gi/o-coupled receptors.
Environmental toxicology and pharmacology.
2017 Oct; 55(?):118-126. doi:
10.1016/j.etap.2017.07.013
. [PMID: 28843851] - Yana Y Toporkova, Valeria S Fatykhova, Yuri V Gogolev, Bulat I Khairutdinov, Lucia S Mukhtarova, Alexander N Grechkin. Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2017 Feb; 1862(2):167-175. doi:
10.1016/j.bbalip.2016.11.007
. [PMID: 27863255] - Junya Ito, Kiyotaka Nakagawa, Shunji Kato, Takafumi Hirokawa, Shigefumi Kuwahara, Toshiharu Nagai, Teruo Miyazawa. A novel chiral stationary phase HPLC-MS/MS method to discriminate between enzymatic oxidation and auto-oxidation of phosphatidylcholine.
Analytical and bioanalytical chemistry.
2016 Nov; 408(27):7785-7793. doi:
10.1007/s00216-016-9882-4
. [PMID: 27549797] - Barbara Soldo, Matilda Šprung, Gloria Mušac, Maja Pavela-Vrančić, Ivica Ljubenkov. Evaluation of Olive Fruit Lipoxygenase Extraction Protocols on 9- and 13-Z,E-HPODE Formation.
Molecules (Basel, Switzerland).
2016 Apr; 21(4):506. doi:
10.3390/molecules21040506
. [PMID: 27104512] - Svetlana S Gorina, Yana Y Toporkova, Lucia S Mukhtarova, Elena O Smirnova, Ivan R Chechetkin, Bulat I Khairutdinov, Yuri V Gogolev, Alexander N Grechkin. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3.
Biochimica et biophysica acta.
2016 Apr; 1861(4):301-9. doi:
10.1016/j.bbalip.2016.01.001
. [PMID: 26776054] - Gwang-Won Kim, Chang-Hyun Oh, Jong-Choon Kim, Woong Yoon, Yong-Yeon Jeong, Yun-Hyeon Kim, Jae-Kyu Kim, Jin-Gyoon Park, Heoung-Keun Kang, Gwang-Woo Jeong. Noninvasive biomarkers for acute hepatotoxicity induced by 1,3-dichloro-2-propanol: hyperpolarized 13C dynamic MR spectroscopy.
Magnetic resonance imaging.
2016 Feb; 34(2):159-65. doi:
10.1016/j.mri.2015.10.023
. [PMID: 26523652] - Valerie E Ryman, Nandakumar Packiriswamy, Lorraine M Sordillo. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity.
Mediators of inflammation.
2016; 2016(?):9867138. doi:
10.1155/2016/9867138
. [PMID: 27818578] - Ryo Takahashi, Takaaki Goto, Tomoyuki Oe, Seon Hwa Lee. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
Chemico-biological interactions.
2015 Sep; 239(?):87-99. doi:
10.1016/j.cbi.2015.06.029
. [PMID: 26111765] - In-Chul Lee, Je-Won Ko, Sang-Min Lee, Sung-Hwan Kim, In-Sik Shin, Og-Sung Moon, Won-Kee Yoon, Hyoung-Chin Kim, Jong-Choon Kim. Time-course and molecular mechanism of hepatotoxicity induced by 1,3-dichloro-2-propanol in rats.
Environmental toxicology and pharmacology.
2015 Jul; 40(1):191-8. doi:
10.1016/j.etap.2015.06.011
. [PMID: 26143167] - Chun-Hua Huang, Fu-Rong Ren, Guo-Qiang Shan, Hao Qin, Li Mao, Ben-Zhan Zhu. Molecular mechanism of metal-independent decomposition of organic hydroperoxides by halogenated quinoid carcinogens and the potential biological implications.
Chemical research in toxicology.
2015 May; 28(5):831-7. doi:
10.1021/tx500486z
. [PMID: 25789984] - Jing Lu, Baochen Fang, Mengrou Ren, Guoren Huang, Shuang Zhang, Yi Wang, Xuming Deng, Shuang Guan. Nonalcoholic fatty liver disease induced by 13-week oral administration of 1,3-dichloro-2-propanol in C57BL/6J mice.
Environmental toxicology and pharmacology.
2015 May; 39(3):1115-21. doi:
10.1016/j.etap.2015.04.007
. [PMID: 25910858] - Kiyotaka Nakagawa, Shunji Kato, Teruo Miyazawa. Determination of Phosphatidylcholine Hydroperoxide (PCOOH) as a Marker of Membrane Lipid Peroxidation.
Journal of nutritional science and vitaminology.
2015; 61 Suppl(?):S78-80. doi:
10.3177/jnsv.61.s78
. [PMID: 26598897] - Josefin Zschaler, Juergen Arnhold. The hydroperoxide moiety of aliphatic lipid hydroperoxides is not affected by hypochlorous acid.
Chemistry and physics of lipids.
2014 Dec; 184(?):42-51. doi:
10.1016/j.chemphyslip.2014.09.005
. [PMID: 25260666] - Suramya Waidyanatha, Norman F Gaudette, Yan Hong, Timothy R Fennell. Formation of epichlorohydrin, a known rodent carcinogen, following oral administration of 1,3-dichloro-2-propanol in rats.
Chemical research in toxicology.
2014 Oct; 27(10):1787-95. doi:
10.1021/tx500239q
. [PMID: 25254956] - Jing Lu, Guoren Huang, Sizhuo Hu, Zhenning Wang, Shuang Guan. 1,3-Dichloro-2-propanol induced hyperlipidemia in C57BL/6J mice via AMPK signaling pathway.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2014 Feb; 64(?):403-9. doi:
10.1016/j.fct.2013.11.049
. [PMID: 24333398] - Danilo Meyer, Cornelia Herrfurth, Florian Brodhun, Ivo Feussner. Degradation of lipoxygenase-derived oxylipins by glyoxysomes from sunflower and cucumber cotyledons.
BMC plant biology.
2013 Nov; 13(?):177. doi:
10.1186/1471-2229-13-177
. [PMID: 24207097] - Xu-Hua Wan, Shu-Xia Chen, Cong-Ying Wang, Ran-Ran Zhang, Si-Qiong Cheng, Huan-Wen Meng, Xiao-Qing Shen. Isolation, expression, and characterization of a hydroperoxide lyase gene from cucumber.
International journal of molecular sciences.
2013 Nov; 14(11):22082-101. doi:
10.3390/ijms141122082
. [PMID: 24213607] - Hao Qin, Chun-Hua Huang, Li Mao, Hai-Ying Xia, Balaraman Kalyanaraman, Jie Shao, Guo-Qiang Shan, Ben-Zhan Zhu. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.
Free radical biology & medicine.
2013 Oct; 63(?):459-66. doi:
10.1016/j.freeradbiomed.2013.05.008
. [PMID: 23680403] - Eric K Hoobler, Charles Holz, Theodore R Holman. Pseudoperoxidase investigations of hydroperoxides and inhibitors with human lipoxygenases.
Bioorganic & medicinal chemistry.
2013 Jul; 21(13):3894-9. doi:
10.1016/j.bmc.2013.04.016
. [PMID: 23669189] - Reynier Suardíaz, Laura Masgrau, José M Lluch, Angels González-Lafont. An insight into the regiospecificity of linoleic acid peroxidation catalyzed by mammalian 15-lipoxygenases.
The journal of physical chemistry. B.
2013 Apr; 117(14):3747-54. doi:
10.1021/jp312747q
. [PMID: 23496802] - Jeong-Hyeon Lim, Sung-Hwan Kim, In-Chul Lee, Changjong Moon, Sung-Ho Kim, Dong-Ho Shin, Hyoung-Chin Kim, Jong-Choon Kim. Evaluation of Maternal Toxicity in Rats Exposed to Multi-Wall Carbon Nanotubes during Pregnancy.
Environmental health and toxicology.
2011; 26(?):e2011006. doi:
10.5620/eht.2011.26.e2011006
. [PMID: 22125767] - Mohd Suhail, Shridhar Patil, Salma Khan, Sana Siddiqui. Antioxidant Vitamins and Lipoperoxidation in Non-pregnant, Pregnant, and Gestational Diabetic Women: Erythrocytes Osmotic Fragility Profiles.
Journal of clinical medicine research.
2010 Dec; 2(6):266-73. doi:
10.4021/jocmr454w
. [PMID: 22043260] - Natsuki Otaki, Miho Chikazawa, Ritsuko Nagae, Yuki Shimozu, Takahiro Shibata, Sohei Ito, Yoshinari Takasaki, Junichi Fujii, Koji Uchida. Identification of a lipid peroxidation product as the source of oxidation-specific epitopes recognized by anti-DNA autoantibodies.
The Journal of biological chemistry.
2010 Oct; 285(44):33834-42. doi:
10.1074/jbc.m110.165175
. [PMID: 20736172] - Satoshi Imaizumi, Victor Grijalva, Mohamad Navab, Brian J Van Lenten, Alan C Wagner, G M Anantharamiah, Alan M Fogelman, Srinivasa T Reddy. L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL in mice.
Drug metabolism letters.
2010 Aug; 4(3):139-48. doi:
10.2174/187231210791698438
. [PMID: 20642447] - Peter G Slade, Michelle V Williams, Viral Brahmbhatt, Ajit Dash, John S Wishnok, Steven R Tannenbaum. Proteins modified by the lipid peroxidation aldehyde 9,12-dioxo-10(E)-dodecenoic acid in MCF7 breast cancer cells.
Chemical research in toxicology.
2010 Mar; 23(3):557-67. doi:
10.1021/tx9002808
. [PMID: 20131800] - Gary Williams, Jean-Charles Leblanc, R Woodrow Setzer. Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: (CAS No. 96-23-1) 1,3-dichloro-2-propanol (DCP).
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2010 Jan; 48 Suppl 1(?):S57-62. doi:
10.1016/j.fct.2009.10.038
. [PMID: 20113855] - Keiichi Ishihara, Kenji Amano, Eiichi Takaki, Abdul Shukkur Ebrahim, Atsushi Shimohata, Noriko Shibazaki, Ikuyo Inoue, Mayuko Takaki, Yuto Ueda, Haruhiko Sago, Charles J Epstein, Kazuhiro Yamakawa. Increased lipid peroxidation in Down's syndrome mouse models.
Journal of neurochemistry.
2009 Sep; 110(6):1965-76. doi:
10.1111/j.1471-4159.2009.06294.x
. [PMID: 19645748] - Aaron T Wecksler, Cyril Jacquot, Wilfred A van der Donk, Theodore R Holman. Mechanistic investigations of human reticulocyte 15- and platelet 12-lipoxygenases with arachidonic acid.
Biochemistry.
2009 Jul; 48(26):6259-67. doi:
10.1021/bi802332j
. [PMID: 19469483] - Achuthan Raghavamenon, Mahdi Garelnabi, Sainath Babu, Alex Aldrich, Dmitry Litvinov, Sampath Parthasarathy. Alpha-tocopherol is ineffective in preventing the decomposition of preformed lipid peroxides and may promote the accumulation of toxic aldehydes: a potential explanation for the failure of antioxidants to affect human atherosclerosis.
Antioxidants & redox signaling.
2009 Jun; 11(6):1237-48. doi:
10.1089/ars.2008.2248
. [PMID: 19186999] - Ryosuke Iijima, Takatsugu Ichikawa, Masatoshi Yamazaki. Sialic acid attenuates the cytotoxicity of the lipid hydroperoxides HpODE and HpETE.
Carbohydrate research.
2009 May; 344(7):933-5. doi:
10.1016/j.carres.2009.02.025
. [PMID: 19329108] - Yo Omata, Yoshiro Saito, Katsuhide Fujita, Yoko Ogawa, Keiko Nishio, Yasukazu Yoshida, Etsuo Niki. Induction of adaptive response and enhancement of PC12 cell tolerance by lipopolysaccharide primarily through the upregulation of glutathione S-transferase A3 via Nrf2 activation.
Free radical biology & medicine.
2008 Nov; 45(10):1437-45. doi:
10.1016/j.freeradbiomed.2008.08.018
. [PMID: 18793714] - Hideo Iwahashi. High performance liquid chromatography/electron spin resonance/mass spectrometry analyses of lipid-derived radicals.
Methods in molecular biology (Clifton, N.J.).
2008; 477(?):65-73. doi:
10.1007/978-1-60327-517-0_6
. [PMID: 19082939] - Sonia Patui, Carlo Peresson, Enrico Braidot, Franco Tubaro, Alessio Colussi, Bernd Bonnländer, Francesco Macrì, Angelo Vianello. Lipoxygenase distribution in coffee (Coffea arabica L.) berries.
Journal of agricultural and food chemistry.
2007 Oct; 55(20):8223-30. doi:
10.1021/jf070982s
. [PMID: 17848084] - Hyeon-Yeong Kim, Sung-Bae Lee, Kyung-Taek Lim, Moo-Kang Kim, Jong-Choon Kim. subchronic inhalation toxicity study of 1,3-dichloro-2-propanol in rats.
The Annals of occupational hygiene.
2007 Oct; 51(7):633-43. doi:
10.1093/annhyg/mem041
. [PMID: 17921239] - Michelle V Williams, John S Wishnok, Steven R Tannenbaum. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome c.
Chemical research in toxicology.
2007 May; 20(5):767-75. doi:
10.1021/tx600289r
. [PMID: 17407328] - Hideo Iwahashi, Tomihiro Hirai, Kazumasa Kumamoto. High performance liquid chromatography/electron spin resonance/mass spectrometry analyses of radicals formed in an anaerobic reaction of 9- (or 13-) hydroperoxide octadecadienoic acids with ferrous ions.
Journal of chromatography. A.
2006 Nov; 1132(1-2):67-75. doi:
10.1016/j.chroma.2006.07.028
. [PMID: 16889785] - Sebastian Luci, Anja Bettzieche, Corinna Brandsch, Klaus Eder. Research paper effects of 13-HPODE on expression of genes involved in thyroid hormone synthesis, iodide uptake and formation of hydrogen peroxide in porcine thyrocytes.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2006 Nov; 76(6):398-406. doi:
10.1024/0300-9831.76.6.398
. [PMID: 17607960] - Mutsuko Shirai, Yoshichika Kawai, Rintaro Yamanishi, Takashi Kinoshita, Hiroshi Chuman, Junji Terao. Effect of a conjugated quercetin metabolite, quercetin 3-glucuronide, on lipid hydroperoxide-dependent formation of reactive oxygen species in differentiated PC-12 cells.
Free radical research.
2006 Oct; 40(10):1047-53. doi:
10.1080/10715760600794287
. [PMID: 17015249] - Stacy K Seeley, Julie A Poposki, John Maksimchuk, Jill Tebbe, Jon Gaudreau, Bengt Mannervik, Arthur W Bull. Metabolism of oxidized linoleic acid by glutathione transferases: peroxidase activity toward 13-hydroperoxyoctadecadienoic acid.
Biochimica et biophysica acta.
2006 Jul; 1760(7):1064-70. doi:
10.1016/j.bbagen.2006.02.020
. [PMID: 16624487] - Ernst H Oliw, Ulrike Garscha, Tomas Nilsson, Mirela Cristea. Payne rearrangement during analysis of epoxyalcohols of linoleic and alpha-linolenic acids by normal phase liquid chromatography with tandem mass spectrometry.
Analytical biochemistry.
2006 Jul; 354(1):111-26. doi:
10.1016/j.ab.2006.04.010
. [PMID: 16712763] - Su Duy Nguyen, Tae-Sook Jeong, Dai-Eun Sok. Apolipoprotein A-I-mimetic peptides with antioxidant actions.
Archives of biochemistry and biophysics.
2006 Jul; 451(1):34-42. doi:
10.1016/j.abb.2006.04.010
. [PMID: 16759634] - Bettina König, Klaus Eder. Differential action of 13-HPODE on PPARalpha downstream genes in rat Fao and human HepG2 hepatoma cell lines.
The Journal of nutritional biochemistry.
2006 Jun; 17(6):410-8. doi:
10.1016/j.jnutbio.2005.08.011
. [PMID: 16216487] - Satoru Sakuma, Kumiko Usa, Yohko Fujimoto. The regulation of formation of prostaglandins and arachidonoyl-CoA from arachidonic acid in rabbit kidney medulla microsomes by linoleic acid hydroperoxide.
Prostaglandins & other lipid mediators.
2006 May; 79(3-4):271-7. doi:
10.1016/j.prostaglandins.2006.02.005
. [PMID: 16647640] - Sae Iimura, Hideo Iwahashi. Enhancement by cigarette smoke extract of the radical formation in a reaction mixture of 13-hydroperoxide octadecadienoic acid and ferric ions.
Journal of biochemistry.
2006 Apr; 139(4):671-6. doi:
10.1093/jb/mvj082
. [PMID: 16672267] - Shinichi Iwai, Ahmad Aljada, Akira Higa, Takako Nakanishi-Ueda, Shohei Fukuda, Maki Kamegawa, Shigehiro Iwabuchi, Toshihiko Ueda, Sergio Caballero, Richard Browne, Aqeela Afzal, Maria Grant, Hajime Yasuhara, Ryohei Koide, Katsuji Oguchi, Paresh Dandona, Donald Armstrong. Activation of AP-1 and increased synthesis of MMP-9 in the rabbit retina induced by lipid hydroperoxide.
Current eye research.
2006 Apr; 31(4):337-46. doi:
10.1080/02713680600577780
. [PMID: 16603467] - Isabelle Durot, Lisa Devillard, Cindy Tissier, David Vandroux, Sophie Voisin, Sabir Jaquir, Luc Rochette, Pierre Athias. Dependence on the phospholipid polyunsaturated fatty acids of the oxidative injury of isolated cardiomyocytes.
Free radical research.
2006 Mar; 40(3):251-61. doi:
10.1080/10715760500509165
. [PMID: 16484041] - Leif-Alexander Garbe, Roberto Barbosa de Almeida, Renate Nagel, Karl Wackerbauer, Roland Tressl. Dual positional and stereospecificity of lipoxygenase isoenzymes from germinating barley (green malt): biotransformation of free and esterified linoleic acid.
Journal of agricultural and food chemistry.
2006 Feb; 54(3):946-55. doi:
10.1021/jf051993t
. [PMID: 16448207] - Xiaomin Xu, Yiping Ren, Pinggu Wu, Jianlong Han, Xianghong Shen. The simultaneous separation and determination of chloropropanols in soy sauce and other flavoring with gas chromatography-mass spectrometry in negative chemical and electron impact ionization modes.
Food additives and contaminants.
2006 Feb; 23(2):110-9. doi:
10.1080/02652030500391929
. [PMID: 16449052] - Mutsuko Shirai, Yoshichika Kawai, Rintaro Yamanishi, Junji Terao. Approach to novel functional foods for stress control 5. Antioxidant activity profiles of antidepressant herbs and their active components.
The journal of medical investigation : JMI.
2005 Nov; 52 Suppl(?):249-51. doi:
10.2152/jmi.52.249
. [PMID: 16366510] - Dimitrios I Tsitsigiannis, Susan Kunze, David K Willis, Ivo Feussner, Nancy P Keller. Aspergillus infection inhibits the expression of peanut 13S-HPODE-forming seed lipoxygenases.
Molecular plant-microbe interactions : MPMI.
2005 Oct; 18(10):1081-9. doi:
10.1094/mpmi-18-1081
. [PMID: 16255247] - Manuela Pérez-Gilabert, Isabel Sánchez-Felipe, Asunción Morte, Francisco García-Carmona. Kinetic properties of lipoxygenase from desert truffle (Terfezia claveryi Chatin) ascocarps: effect of inhibitors and activators.
Journal of agricultural and food chemistry.
2005 Jul; 53(15):6140-5. doi:
10.1021/jf050521b
. [PMID: 16029008] - Ihsan Ergün, M Cenk Akbostanci, Başol Canbakan, Bilge Koçer, Arzu Ensari, Gökhan Nergizoglu, Kenan Keven. Minimal change nephrotic syndrome with stiff-person syndrome: is there a link?.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2005 Jul; 46(1):e11-4. doi:
10.1053/j.ajkd.2005.03.009
. [PMID: 15983949] - Seon Hwa Lee, Tomoyuki Oe, Jasbir S Arora, Ian A Blair. Analysis of FeII-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry.
Journal of mass spectrometry : JMS.
2005 May; 40(5):661-8. doi:
10.1002/jms.838
. [PMID: 15739161] - Igor Ivanov, Jan Saam, Hartmut Kuhn, Hermann-Georg Holzhütter. Dual role of oxygen during lipoxygenase reactions.
The FEBS journal.
2005 May; 272(10):2523-35. doi:
10.1111/j.1742-4658.2005.04673.x
. [PMID: 15885101] - Bernt Gerhardt, Kerstin Fischer, Thomas J Balkenhohl, Georg Pohnert, Hartmut Kühn, Claus Wasternack, Ivo Feussner. Lipoxygenase-mediated metabolism of storage lipids in germinating sunflower cotyledons and beta-oxidation of (9Z,11E,13S)-13-hydroxy-octadeca-9,11-dienoic acid by the cotyledonary glyoxysomes.
Planta.
2005 Apr; 220(6):919-30. doi:
10.1007/s00425-004-1408-1
. [PMID: 15526214] - Junji Terao, Mio Hiwada, Keiko Taguchi, Keigo Takahara, Satoshi Mohri. Glutathione peroxidase mimics as novel antioxidants from vegetables.
BioFactors (Oxford, England).
2005; 23(1):1-6. doi:
10.1002/biof.5520230101
. [PMID: 15817993] - Ivan R Chechetkin, Natalia V Medvedeva, Alexander N Grechkin. The novel pathway for ketodiene oxylipin biosynthesis in Jerusalem artichoke (Helianthus tuberosus) tubers.
Biochimica et biophysica acta.
2004 Nov; 1686(1-2):7-14. doi:
10.1016/j.bbalip.2004.07.001
. [PMID: 15522817] - Viola C Ruddat, Rakesh Mogul, Ilya Chorny, Cameron Chen, Noah Perrin, Stephanie Whitman, Victor Kenyon, Matthew P Jacobson, Claude F Bernasconi, Theodore R Holman. Tryptophan 500 and arginine 707 define product and substrate active site binding in soybean lipoxygenase-1.
Biochemistry.
2004 Oct; 43(41):13063-71. doi:
10.1021/bi0489098
. [PMID: 15476400] - Hideo Iwahashi, Kayo Akata, Atsuko Sunaga, Yoshiko Tone, Noriko Yamada, Keiko Iijima. The inhibitory effect of luteolin-7-O-glucoside on the formation of pentyl and 7-carboxyheptyl radicals from 13-hydroperoxy-9,11-octadecadienoic acid in the presence of iron(II) ions.
Free radical research.
2004 Aug; 38(8):869-76. doi:
10.1080/10715760410001722033
. [PMID: 15493461] - Michiharu Tanabe, Sadaharu Tabuchi, Masato Iwatsuki, Masamichi Kurosaki, Hideki Kamitani, Masayuki Yokota, Takashi Watanabe. Incorporation of arachidonic and linoleic acid hydroperoxides into cultured human umbilical vein endothelial cells.
Prostaglandins, leukotrienes, and essential fatty acids.
2004 Jun; 70(6):485-9. doi:
10.1016/j.plefa.2003.10.003
. [PMID: 15120710] - Roopashree S Dwarakanath, Saurabh Sahar, Marpadga A Reddy, Daniela Castanotto, John J Rossi, Rama Natarajan. Regulation of monocyte chemoattractant protein-1 by the oxidized lipid, 13-hydroperoxyoctadecadienoic acid, in vascular smooth muscle cells via nuclear factor-kappa B (NF-kappa B).
Journal of molecular and cellular cardiology.
2004 Apr; 36(4):585-95. doi:
10.1016/j.yjmcc.2004.02.007
. [PMID: 15081318] - Eva Bürkert, Christina Arnold, Tove Hammarberg, Olof Rådmark, Dieter Steinhilber, Oliver Werz. The C2-like beta-barrel domain mediates the Ca2+-dependent resistance of 5-lipoxygenase activity against inhibition by glutathione peroxidase-1.
The Journal of biological chemistry.
2003 Oct; 278(44):42846-53. doi:
10.1074/jbc.m302471200
. [PMID: 12893830] - Michael J Knapp, Judith P Klinman. Kinetic studies of oxygen reactivity in soybean lipoxygenase-1.
Biochemistry.
2003 Oct; 42(39):11466-75. doi:
10.1021/bi0300884
. [PMID: 14516198] - Nathalie Hill-Kapturczak, Christy Voakes, Jairo Garcia, Gary Visner, Harry S Nick, Anupam Agarwal. A cis-acting region regulates oxidized lipid-mediated induction of the human heme oxygenase-1 gene in endothelial cells.
Arteriosclerosis, thrombosis, and vascular biology.
2003 Aug; 23(8):1416-22. doi:
10.1161/01.atv.0000081656.76378.a7
. [PMID: 12805077] - Hideo Iwahashi, Kazumasa Kumamoto, Tomihiro Hirai. The formation of the 7-carboxyheptyl radical from 13-hydroperoxy-9,11-octadecadienoic acid catalyzed by hemoglobin and myoglobin under anaerobic conditions.
Journal of biochemistry.
2003 May; 133(5):679-85. doi:
10.1093/jb/mvg087
. [PMID: 12801921] - Wei-Gen Li, Lynn L Stoll, James B Rice, Shao-Ping Xu, Francis J Miller, Papri Chatterjee, Ling Hu, Larry W Oberley, Arthur A Spector, Neal L Weintraub. Activation of NAD(P)H oxidase by lipid hydroperoxides: mechanism of oxidant-mediated smooth muscle cytotoxicity.
Free radical biology & medicine.
2003 Apr; 34(7):937-46. doi:
10.1016/s0891-5849(03)00032-7
. [PMID: 12654483] - Alberto Nuñez, Brett J Savary, Thomas A Foglia, George J Piazza. Purification of lipoxygenase from Chlorella: production of 9- and 13-hydroperoxide derivatives of linoleic acid.
Lipids.
2002 Nov; 37(11):1027-32. doi:
10.1007/s11745-002-0996-x
. [PMID: 12558051] - Charles H Clapp, Anna Marie Grandizio, Yingmei Yang, Michael Kagey, Douglas Turner, Alan Bicker, Danny Muskardin. Irreversible inactivation of soybean lipoxygenase-1 by hydrophobic thiols.
Biochemistry.
2002 Sep; 41(38):11504-11. doi:
10.1021/bi020229m
. [PMID: 12234194] - Yoshiki Kuroda, Yukiko Fueta, Kiyotaka Kohshi, Hiroyuki Nakao, Hirohisa Imai, Takahiko Katoh. [Toxicity of dichloropropanols].
Journal of UOEH.
2002 Sep; 24(3):271-80. doi:
10.7888/juoeh.24.271
. [PMID: 12235957] - John S Moody, Lawrence J Marnett. Kinetics of inhibition of leukocyte 12-lipoxygenase by the isoform-specific inhibitor 4-(2-oxapentadeca-4-yne)phenylpropanoic acid.
Biochemistry.
2002 Aug; 41(32):10297-303. doi:
10.1021/bi020320q
. [PMID: 12162745] - F Husson, J M Belin. Purification of hydroperoxide lyase from green bell pepper (Capsicum annuum L.) fruits for the generation of C6-aldehydes in vitro.
Journal of agricultural and food chemistry.
2002 Mar; 50(7):1991-5. doi:
10.1021/jf011043h
. [PMID: 11902945] - Cordula Müller, Bärbel Friedrichs, Kirstin Wingler, Regina Brigelius-Flohé. Perturbation of lipid metabolism by linoleic acid hydroperoxide in CaCo-2 cells.
Biological chemistry.
2002 Mar; 383(3-4):637-48. doi:
10.1515/bc.2002.066
. [PMID: 12033453] - Wayne C Glasgow, Rutai Hui, Hideto Kameda, Thomas E Eling. 13(S)-HpODE modulates mitogenic signal transduction through enhancing the phosphorylation and association of EGF receptor with the tyrosine phosphatase SHP-2.
Advances in experimental medicine and biology.
2002; 507(?):463-7. doi:
10.1007/978-1-4615-0193-0_72
. [PMID: 12664627] - Hideo Iwahashi, Koji Nishizaki, Ichiro Takagi. Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide.
The Biochemical journal.
2002 Jan; 361(Pt 1):57-66. doi:
10.1042/0264-6021:3610057
. [PMID: 11742529] - E Skrzypczak-Jankun, R A Bross, R T Carroll, W R Dunham, M O Funk. Three-dimensional structure of a purple lipoxygenase.
Journal of the American Chemical Society.
2001 Nov; 123(44):10814-20. doi:
10.1021/ja011759t
. [PMID: 11686682] - M A Dessí, M Deiana, A Rosa, M Piredda, F Cottiglia, L Bonsignore, D Deidda, R Pompei, F P Corongiu. Antioxidant activity of extracts from plants growing in Sardinia.
Phytotherapy research : PTR.
2001 Sep; 15(6):511-8. doi:
10.1002/ptr.799
. [PMID: 11536381] - R Natarajan, M A Reddy, K U Malik, S Fatima, B V Khan. Signaling mechanisms of nuclear factor-kappab-mediated activation of inflammatory genes by 13-hydroperoxyoctadecadienoic acid in cultured vascular smooth muscle cells.
Arteriosclerosis, thrombosis, and vascular biology.
2001 Sep; 21(9):1408-13. doi:
10.1161/hq0901.095278
. [PMID: 11557664] - J Delcarte, P Jacques, M L Fauconnier, P Hoyaux, K Matsui, M Marlier, P Thonart. The homolytic and heterolytic fatty acid hydroperoxide lyase-like activities of hematin.
Biochemical and biophysical research communications.
2001 Aug; 286(1):28-32. doi:
10.1006/bbrc.2001.5334
. [PMID: 11485303] - A Nuñez, T A Foglia, G J Piazza. Characterization of lipoxygenase oxidation products by high-performance liquid chromatography with electron impact-mass spectrometric detection.
Lipids.
2001 Aug; 36(8):851-6. doi:
10.1007/s11745-001-0795-4
. [PMID: 11592738] - R A Wilson, H W Gardner, N P Keller. Cultivar-dependent expression of a maize lipoxygenase responsive to seed infesting fungi.
Molecular plant-microbe interactions : MPMI.
2001 Aug; 14(8):980-7. doi:
10.1094/mpmi.2001.14.8.980
. [PMID: 11497470] - C Schneider, K A Tallman, N A Porter, A R Brash. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals.
The Journal of biological chemistry.
2001 Jun; 276(24):20831-8. doi:
10.1074/jbc.m101821200
. [PMID: 11259420] - S H Lee, T Oe, I A Blair. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins.
Science (New York, N.Y.).
2001 Jun; 292(5524):2083-6. doi:
10.1126/science.1059501
. [PMID: 11408659] - H W Gardner, N Deighton. Effect of 4-hydroxy-2(E)-nonenal on soybean lipoxygenase-1.
Lipids.
2001 Jun; 36(6):623-8. doi:
10.1007/s11745-001-0766-9
. [PMID: 11485167] - P Spiteller, W Kern, J Reiner, G Spiteller. Aldehydic lipid peroxidation products derived from linoleic acid.
Biochimica et biophysica acta.
2001 Apr; 1531(3):188-208. doi:
10.1016/s1388-1981(01)00100-7
. [PMID: 11325611] - M Ouellet, M D Percival. Mechanism of acetaminophen inhibition of cyclooxygenase isoforms.
Archives of biochemistry and biophysics.
2001 Mar; 387(2):273-80. doi:
10.1006/abbi.2000.2232
. [PMID: 11370851]