Dhurrin (BioDeep_00000014818)

 

Secondary id: BioDeep_00000000825, BioDeep_00001868579, BioDeep_00001890847

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


(2S)-2-(4-hydroxyphenyl)-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile

化学式: C14H17NO7 (311.1004972)
中文名称: 蜀黍苷, 蜀黍苷
谱图信息: 最多检出来源 Viridiplantae(plant) 0.03%

分子结构信息

SMILES: C1=CC(=CC=C1C(C#N)OC2C(C(C(C(O2)CO)O)O)O)O
InChI: InChI=1S/C14H17NO7/c15-5-9(7-1-3-8(17)4-2-7)21-14-13(20)12(19)11(18)10(6-16)22-14/h1-4,9-14,16-20H,6H2/t9-,10-,11-,12+,13-,14-/m1/s1

描述信息

Dhurrin is a cyanogenic glycoside occurring in plants. Its biosynthesis has been elucidated. Dhurrin is hydrolyzed in the stomach of an insect into a carbohydrate and aglycone. The aglycone is unstable and releases hydrogen cyanide. (Wikipedia) In biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor, the UDP-glucosyltransferase UGT85B1 catalyzes the conversion of p-hydroxymandelonitrile into dhurrin. (PMID: 16169969) In Sorghum, the cyanogenic glucoside dhurrin is derived from l-tyrosine in a pathway involving the two cytochromes P450 (CYPs) CYP79A1 and CYP71E1, a glucosyltransferase (UGT85B1), and the redox partner NADPH-dependent cytochrome P450 reductase (CPR). (PMID: 21620426) Synthesis of the tyrosine derived cyanogenic glucoside dhurrin in Sorghum bicolor is catalyzed by two multifunctional, membrane bound cytochromes P450, CYP79A1 and CYP71E1, and a soluble UDPG-glucosyltransferase, UGT85B1. In the presence of CYP79A1 and CYP71E1, the localization of UGT85B1 shifted towards the surface of the ER membrane in the periphery of biosynthetic active cells, demonstrating in planta dhurrin metabolon formation. (PMID: 17706731)

同义名列表

15 个代谢物同义名

(2S)-2-(4-hydroxyphenyl)-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile; (AlphaS)-alpha-(beta-D-glucopyranosyloxy)-4-hydroxybenzeneacetonitrile; (AlphaS)-a-(b-D-glucopyranosyloxy)-4-hydroxybenzeneacetonitrile; (AlphaS)-α-(β-D-glucopyranosyloxy)-4-hydroxybenzeneacetonitrile; (S)-(beta-D-Glucopyranosyloxy)(4-hydroxyphenyl)acetonitrile; (αS)-α-(β-D-Glucopyranosyloxy)-4-hydroxybenzeneacetonitrile; (S)-(b-D-Glucopyranosyloxy)(4-hydroxyphenyl)acetonitrile; (S)-(Β-D-glucopyranosyloxy)(4-hydroxyphenyl)acetonitrile; (S)-4-Hydroxymandelonitrile β-D-glucoside; (S)-4-Hydroxymandelonitrile beta-D-glucoside; (S)-alpha-Cyano-p-hydroxybenzyl glucoside; (S)-4-Hydroxymandelonitrile b-D-glucoside; (S)-4-Hydroxymandelonitrile β-D-glucoside; (S)-α-Cyano-p-hydroxybenzyl glucoside; Dhurrin



数据库引用编号

13 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

99 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(3)

  • dhurrin degradation: (S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (E)-4-hydroxyphenylacetaldehyde oxime ⟶ (Z)-[(4-hydroxyphenyl)acetaldehyde oxime]

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(96)

  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: (S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
  • dhurrin degradation: (S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
  • dhurrin degradation: (S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: (S)-4-hydroxymandelonitrile ⟶ 4-hydroxybenzaldehyde + hydrogen cyanide
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin degradation: H2O + dhurrin ⟶ (S)-4-hydroxymandelonitrile + D-glucopyranose
  • dhurrin biosynthesis: (E)-(4-hydroxyphenyl)acetaldehyde oxime ⟶ (Z)-[(4-hydroxyphenyl)acetaldehyde oxime]
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (4-hydroxyphenyl)acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (S)-4-hydroxymandelonitrile + H2O + an oxidized [NADPH-hemoprotein reductase]
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (4-hydroxyphenyl)acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (S)-4-hydroxymandelonitrile + H2O + an oxidized [NADPH-hemoprotein reductase]
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
  • dhurrin biosynthesis: (S)-4-hydroxymandelonitrile + UDP-α-D-glucose ⟶ H+ + UDP + dhurrin
  • dhurrin biosynthesis: (S)-4-hydroxymandelonitrile + UDP-α-D-glucose ⟶ H+ + UDP + dhurrin

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

16 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Muhammad N Sohail, Natalie H O'Donnell, Brent N Kaiser, Cecilia K Blomstedt, Roslyn M Gleadow. Wounding and methyl jasmonate increase cyanogenic glucoside concentrations in Sorghum bicolor via upregulation of biosynthesis. Plant biology (Stuttgart, Germany). 2023 Mar; ?(?):. doi: 10.1111/plb.13522. [PMID: 36992539]
  • Huijun Liu, Nikola Micic, Sara Miller, Christoph Crocoll, Nanna Bjarnholt. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics. Plant physiology and biochemistry : PPB. 2023 Mar; 196(?):807-820. doi: 10.1016/j.plaphy.2023.02.031. [PMID: 36863218]
  • Shelby M Gruss, Manoj Ghaste, Joshua R Widhalm, Mitchell R Tuinstra. Seedling growth and fall armyworm feeding preference influenced by dhurrin production in sorghum. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2022 Mar; 135(3):1037-1047. doi: 10.1007/s00122-021-04017-4. [PMID: 35001177]
  • M N Sohail, A A Quinn, C K Blomstedt, R M Gleadow. Dhurrin increases but does not mitigate oxidative stress in droughted Sorghum bicolor. Planta. 2022 Feb; 255(4):74. doi: 10.1007/s00425-022-03844-z. [PMID: 35226202]
  • Galaihalage K S Ananda, Sally L Norton, Cecilia Blomstedt, Agnelo Furtado, Birger Lindberg Møller, Roslyn Gleadow, Robert J Henry. Transcript profiles of wild and domesticated sorghum under water-stressed conditions and the differential impact on dhurrin metabolism. Planta. 2022 Jan; 255(2):51. doi: 10.1007/s00425-022-03831-4. [PMID: 35084593]
  • Max Cowan, Birger Lindberg Møller, Sally Norton, Camilla Knudsen, Christoph Crocoll, Agnelo Furtado, Robert Henry, Cecilia Blomstedt, Roslyn M Gleadow. Cyanogenesis in the Sorghum Genus: From Genotype to Phenotype. Genes. 2022 01; 13(1):. doi: 10.3390/genes13010140. [PMID: 35052482]
  • Roslyn M Gleadow, Brian A McKinley, Cecilia K Blomstedt, Austin C Lamb, Birger Lindberg Møller, John E Mullet. Regulation of dhurrin pathway gene expression during Sorghum bicolor development. Planta. 2021 Nov; 254(6):119. doi: 10.1007/s00425-021-03774-2. [PMID: 34762174]
  • Lucia Montini, Christoph Crocoll, Roslyn M Gleadow, Mohammed Saddik Motawia, Christian Janfelt, Nanna Bjarnholt. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination. Plant physiology. 2020 07; 183(3):925-942. doi: 10.1104/pp.19.01357. [PMID: 32350122]
  • Camilla Knudsen, Krutika Bavishi, Ketil Mathiasen Viborg, Damian Paul Drew, Henrik Toft Simonsen, Mohammed Saddik Motawia, Birger Lindberg Møller, Tomas Laursen. Stabilization of dhurrin biosynthetic enzymes from Sorghum bicolor using a natural deep eutectic solvent. Phytochemistry. 2020 Feb; 170(?):112214. doi: 10.1016/j.phytochem.2019.112214. [PMID: 31794881]
  • Jean-Etienne Bassard, Tomas Laursen. Molecular snapshots of dynamic membrane-bound metabolons. Methods in enzymology. 2019; 617(?):1-27. doi: 10.1016/bs.mie.2018.12.001. [PMID: 30784399]
  • Nanna Bjarnholt, Elizabeth H J Neilson, Christoph Crocoll, Kirsten Jørgensen, Mohammed Saddik Motawia, Carl Erik Olsen, David P Dixon, Robert Edwards, Birger Lindberg Møller. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum. The Plant journal : for cell and molecular biology. 2018 06; 94(6):1109-1125. doi: 10.1111/tpj.13923. [PMID: 29659075]
  • Philip Heraud, Max F Cowan, Katarzyna Maria Marzec, Birger Lindberg Møller, Cecilia K Blomstedt, Ros Gleadow. Label-free Raman hyperspectral imaging analysis localizes the cyanogenic glucoside dhurrin to the cytoplasm in sorghum cells. Scientific reports. 2018 02; 8(1):2691. doi: 10.1038/s41598-018-20928-7. [PMID: 29426935]
  • Maria Perestrello Ramos Henriques de Jesus, Agnieszka Zygadlo Nielsen, Silas Busck Mellor, Annemarie Matthes, Meike Burow, Colin Robinson, Poul Erik Jensen. Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold. Metabolic engineering. 2017 11; 44(?):108-116. doi: 10.1016/j.ymben.2017.09.014. [PMID: 28962875]
  • Konstantinos Vavitsas, Emil Østergaard Rue, Lára Kristín Stefánsdóttir, Thiyagarajan Gnanasekaran, Andreas Blennow, Christoph Crocoll, Steinn Gudmundsson, Poul Erik Jensen. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microbial cell factories. 2017 Aug; 16(1):140. doi: 10.1186/s12934-017-0757-y. [PMID: 28806958]
  • Lasse Janniche Nielsen, Peter Stuart, Martina Pičmanová, Simon Rasmussen, Carl Erik Olsen, Jesper Harholt, Birger Lindberg Møller, Nanna Bjarnholt. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC genomics. 2016 12; 17(1):1021. doi: 10.1186/s12864-016-3360-4. [PMID: 27964718]
  • Tomas Laursen, Jonas Borch, Camilla Knudsen, Krutika Bavishi, Federico Torta, Helle Juel Martens, Daniele Silvestro, Nikos S Hatzakis, Markus R Wenk, Timothy R Dafforn, Carl Erik Olsen, Mohammed Saddik Motawia, Björn Hamberger, Birger Lindberg Møller, Jean-Etienne Bassard. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science (New York, N.Y.). 2016 11; 354(6314):890-893. doi: 10.1126/science.aag2347. [PMID: 27856908]
  • Behrooz Darbani, Mohammed Saddik Motawia, Carl Erik Olsen, Hussam H Nour-Eldin, Birger Lindberg Møller, Fred Rook. The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter. Scientific reports. 2016 11; 6(?):37079. doi: 10.1038/srep37079. [PMID: 27841372]
  • Birger L Møller, Carl E Olsen, Mohammed S Motawia. General and Stereocontrolled Approach to the Chemical Synthesis of Naturally Occurring Cyanogenic Glucosides. Journal of natural products. 2016 Apr; 79(4):1198-202. doi: 10.1021/acs.jnatprod.5b01121. [PMID: 26959700]
  • Thiyagarajan Gnanasekaran, Daniel Karcher, Agnieszka Zygadlo Nielsen, Helle Juel Martens, Stephanie Ruf, Xenia Kroop, Carl Erik Olsen, Mohammed Saddik Motawie, Mathias Pribil, Birger Lindberg Møller, Ralph Bock, Poul Erik Jensen. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis. Journal of experimental botany. 2016 Apr; 67(8):2495-506. doi: 10.1093/jxb/erw067. [PMID: 26969746]
  • Cecilia K Blomstedt, Natalie H O'Donnell, Nanna Bjarnholt, Alan D Neale, John D Hamill, Birger Lindberg Møller, Roslyn M Gleadow. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench). Plant & cell physiology. 2016 Feb; 57(2):373-86. doi: 10.1093/pcp/pcv153. [PMID: 26493517]
  • Chavi Mahajan, Krunal Patel, Bashir M Khan, Shuban S Rawal. In silico ligand binding studies of cyanogenic β-glucosidase, dhurrinase-2 from Sorghum bicolor. Journal of molecular modeling. 2015 Jul; 21(7):184. doi: 10.1007/s00894-015-2730-1. [PMID: 26139075]
  • Natalie H O'Donnell, Birger Lindberg Møller, Alan D Neale, John D Hamill, Cecilia K Blomstedt, Roslyn M Gleadow. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum. Plant physiology and biochemistry : PPB. 2013 Dec; 73(?):83-92. doi: 10.1016/j.plaphy.2013.09.001. [PMID: 24080394]
  • Rebecca E Miller, Kellie L Tuck. The rare cyanogen proteacin, and dhurrin, from foliage of Polyscias australiana, a tropical Araliaceae. Phytochemistry. 2013 Sep; 93(?):210-5. doi: 10.1016/j.phytochem.2013.03.004. [PMID: 23566716]
  • Agnieszka Zygadlo Nielsen, Bibi Ziersen, Kenneth Jensen, Lærke Münter Lassen, Carl Erik Olsen, Birger Lindberg Møller, Poul Erik Jensen. Redirecting photosynthetic reducing power toward bioactive natural product synthesis. ACS synthetic biology. 2013 Jun; 2(6):308-15. doi: 10.1021/sb300128r. [PMID: 23654276]
  • Bin Li, Camilla Knudsen, Natascha Krahl Hansen, Kirsten Jørgensen, Rubini Kannangara, Søren Bak, Adam Takos, Fred Rook, Steen H Hansen, Birger Lindberg Møller, Christian Janfelt, Nanna Bjarnholt. Visualizing metabolite distribution and enzymatic conversion in plant tissues by desorption electrospray ionization mass spectrometry imaging. The Plant journal : for cell and molecular biology. 2013 Jun; 74(6):1059-71. doi: 10.1111/tpj.12183. [PMID: 23551340]
  • Wei-Ning Cheng, Jia-Xin Lei, William L Rooney, Tong-Xian Liu, Keyan Zhu-Salzman. High basal defense gene expression determines sorghum resistance to the whorl-feeding insect southwestern corn borer. Insect science. 2013 Jun; 20(3):307-17. doi: 10.1111/1744-7917.12002. [PMID: 23955883]
  • Tomas Laursen, Peter Naur, Birger Lindberg Møller. Amphipol trapping of a functional CYP system. Biotechnology and applied biochemistry. 2013 Jan; 60(1):119-27. doi: 10.1002/bab.1092. [PMID: 23586999]
  • Roslyn M Gleadow, Morten E Møldrup, Natalie H O'Donnell, Peter N Stuart. Drying and processing protocols affect the quantification of cyanogenic glucosides in forage sorghum. Journal of the science of food and agriculture. 2012 Aug; 92(11):2234-8. doi: 10.1002/jsfa.5752. [PMID: 22700371]
  • Hiroshi Mizuno, Hiroyuki Kawahigashi, Yoshihiro Kawahara, Hiroyuki Kanamori, Jun Ogata, Hiroshi Minami, Takeshi Itoh, Takashi Matsumoto. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction. BMC plant biology. 2012 Jul; 12(?):121. doi: 10.1186/1471-2229-12-121. [PMID: 22838966]
  • Yan-Wen Wang, Wen-Chao Wang, Shang-Hui Jin, Jun Wang, Bo Wang, Bing-Kai Hou. Over-expression of a putative poplar glycosyltransferase gene, PtGT1, in tobacco increases lignin content and causes early flowering. Journal of experimental botany. 2012 Apr; 63(7):2799-808. doi: 10.1093/jxb/ers001. [PMID: 22268132]
  • Cecilia K Blomstedt, Roslyn M Gleadow, Natalie O'Donnell, Peter Naur, Kenneth Jensen, Tomas Laursen, Carl Erik Olsen, Peter Stuart, John D Hamill, Birger Lindberg Møller, Alan D Neale. A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant biotechnology journal. 2012 Jan; 10(1):54-66. doi: 10.1111/j.1467-7652.2011.00646.x. [PMID: 21880107]
  • Kenneth Jensen, Sarah Anne Osmani, Thomas Hamann, Peter Naur, Birger Lindberg Møller. Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein-protein interactions. Phytochemistry. 2011 Dec; 72(17):2113-23. doi: 10.1016/j.phytochem.2011.05.001. [PMID: 21620426]
  • Gina Rosalinda De Nicola, Onofrio Leoni, Lorena Malaguti, Roberta Bernardi, Luca Lazzeri. A simple analytical method for dhurrin content evaluation in cyanogenic plants for their utilization in fodder and biofumigation. Journal of agricultural and food chemistry. 2011 Aug; 59(15):8065-9. doi: 10.1021/jf200754f. [PMID: 21707058]
  • Birger Lindberg Møller. Plant science. Dynamic metabolons. Science (New York, N.Y.). 2010 Dec; 330(6009):1328-9. doi: 10.1126/science.1194971. [PMID: 21127236]
  • Peifen Zhang, Kate Dreher, A Karthikeyan, Anjo Chi, Anuradha Pujar, Ron Caspi, Peter Karp, Vanessa Kirkup, Mario Latendresse, Cynthia Lee, Lukas A Mueller, Robert Muller, Seung Yon Rhee. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant physiology. 2010 Aug; 153(4):1479-91. doi: 10.1104/pp.110.157396. [PMID: 20522724]
  • Adam Takos, Daniela Lai, Lisbeth Mikkelsen, Maher Abou Hachem, Dale Shelton, Mohammed Saddik Motawia, Carl Erik Olsen, Trevor L Wang, Cathie Martin, Fred Rook. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. The Plant cell. 2010 May; 22(5):1605-19. doi: 10.1105/tpc.109.073502. [PMID: 20453117]
  • Berit Ebert, Daniela Zöller, Alexander Erban, Ines Fehrle, Jürgen Hartmann, Annette Niehl, Joachim Kopka, Joachim Fisahn. Metabolic profiling of Arabidopsis thaliana epidermal cells. Journal of experimental botany. 2010 Mar; 61(5):1321-35. doi: 10.1093/jxb/erq002. [PMID: 20150518]
  • Yegang Du, Hung Chu, Mingfu Wang, Ivan K Chu, Clive Lo. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. Journal of experimental botany. 2010 Feb; 61(4):983-94. doi: 10.1093/jxb/erp364. [PMID: 20007684]
  • Marc Morant, Claus Ekstrøm, Peter Ulvskov, Charlotte Kristensen, Mats Rudemo, Carl Erik Olsen, Jørgen Hansen, Kirsten Jørgensen, Bodil Jørgensen, Birger Lindberg Møller, Søren Bak. Metabolomic, transcriptional, hormonal, and signaling cross-talk in superroot2. Molecular plant. 2010 Jan; 3(1):192-211. doi: 10.1093/mp/ssp098. [PMID: 20008451]
  • Mika Zagrobelny, Karsten Scheibye-Alsing, Niels Bjerg Jensen, Birger Lindberg Møller, Jan Gorodkin, Søren Bak. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides. BMC genomics. 2009 Dec; 10(?):574. doi: 10.1186/1471-2164-10-574. [PMID: 19954531]
  • Suvi Sutela, Karoliina Niemi, Jaanika Edesi, Tapio Laakso, Pekka Saranpää, Jaana Vuosku, Riina Mäkelä, Heidi Tiimonen, Vincent L Chiang, Janne Koskimäki, Marja Suorsa, Riitta Julkunen-Tiitto, Hely Häggman. Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch. BMC plant biology. 2009 Sep; 9(?):124. doi: 10.1186/1471-2229-9-124. [PMID: 19788757]
  • Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. International journal of molecular sciences. 2009 Jul; 10(8):3371-3399. doi: 10.3390/ijms10083371. [PMID: 20111684]
  • Roland Jenrich, Inga Trompetter, Søren Bak, Carl Erik Olsen, Birger Lindberg Møller, Markus Piotrowski. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proceedings of the National Academy of Sciences of the United States of America. 2007 Nov; 104(47):18848-53. doi: 10.1073/pnas.0709315104. [PMID: 18003897]
  • Henrik Johansen, Lars Holm Rasmussen, Carl Erik Olsen, Hans Christian Bruun Hansen. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil. Chemosphere. 2007 Feb; 67(2):259-66. doi: 10.1016/j.chemosphere.2006.10.013. [PMID: 17126881]
  • Rodjana Opassiri, Busarakum Pomthong, Tassanee Onkoksoong, Takashi Akiyama, Asim Esen, James R Ketudat Cairns. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 beta-glucosidase. BMC plant biology. 2006 Dec; 6(?):33. doi: 10.1186/1471-2229-6-33. [PMID: 17196101]
  • T K Franks, K S Powell, S Choimes, E Marsh, P Iocco, B J Sinclair, C M Ford, R van Heeswijck. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic research. 2006 Apr; 15(2):181-95. doi: 10.1007/s11248-005-3737-7. [PMID: 16604459]
  • Kirsten A Nielsen, Maria Hrmova, Janni Nyvang Nielsen, Karin Forslund, Stefan Ebert, Carl E Olsen, Geoffrey B Fincher, Birger Lindberg Møller. Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta. 2006 Apr; 223(5):1010-23. doi: 10.1007/s00425-005-0158-z. [PMID: 16307283]
  • Karina Sinding Thorsøe, Søren Bak, Carl Erik Olsen, Anne Imberty, Christelle Breton, Birger Lindberg Møller. Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant physiology. 2005 Oct; 139(2):664-73. doi: 10.1104/pp.105.063842. [PMID: 16169969]
  • Toni M Kutchan. Predictive metabolic engineering in plants: still full of surprises. Trends in biotechnology. 2005 Aug; 23(8):381-3; discussion 383. doi: 10.1016/j.tibtech.2005.05.005. [PMID: 15922468]
  • David S Seigler. Cyanogenic glycosides and menisdaurin from Guazuma ulmifolia, Ostrya virgininana, Tiquilia plicata and Tiquilia canescens. Phytochemistry. 2005 Jul; 66(13):1567-80. doi: 10.1016/j.phytochem.2005.02.021. [PMID: 16002108]
  • Johan Memelink. Tailoring the plant metabolome without a loose stitch. Trends in plant science. 2005 Jul; 10(7):305-7. doi: 10.1016/j.tplants.2005.05.006. [PMID: 15950519]
  • Lionel Verdoucq, Jeanne Morinière, David R Bevan, Asim Esen, Andrea Vasella, Bernard Henrissat, Mirjam Czjze. Structural determinants of substrate specificity in family 1 beta-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate. The Journal of biological chemistry. 2004 Jul; 279(30):31796-803. doi: 10.1074/jbc.m402918200. [PMID: 15148317]
  • Lisbeth Garbrecht Thygesen, Kirsten Jørgensen, Birger Lindberg Møller, Søren Balling Engelsen. Raman spectroscopic analysis of cyanogenic glucosides in plants: development of a flow injection surface-enhanced Raman scatter (FI-SERS) method for determination of cyanide. Applied spectroscopy. 2004 Feb; 58(2):212-7. doi: 10.1366/000370204322842959. [PMID: 15000716]
  • Brenda S J Winkel. Metabolic channeling in plants. Annual review of plant biology. 2004; 55(?):85-107. doi: 10.1146/annurev.arplant.55.031903.141714. [PMID: 15725058]
  • Karina Sinding Hansen, Charlotte Kristensen, David Bruce Tattersall, Patrik Raymond Jones, Carl Erik Olsen, Søren Bak, Birger Lindberg Møller. The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry. 2003 Sep; 64(1):143-51. doi: 10.1016/s0031-9422(03)00261-9. [PMID: 12946413]
  • Marc Morant, Alain Hehn, Danièle Werck-Reichhart. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants. BMC plant biology. 2002 Aug; 2(?):7. doi: 10.1186/1471-2229-2-7. [PMID: 12153706]
  • D B Tattersall, S Bak, P R Jones, C E Olsen, J K Nielsen, M L Hansen, P B Høj, B L Møller. Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science (New York, N.Y.). 2001 Sep; 293(5536):1826-8. doi: 10.1126/science.1062249. [PMID: 11474068]
  • J L Celenza. Metabolism of tyrosine and tryptophan--new genes for old pathways. Current opinion in plant biology. 2001 Jun; 4(3):234-40. doi: 10.1016/s1369-5266(00)00166-7. [PMID: 11312134]
  • S Bak, C E Olsen, B A Halkier, B L Møller. Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in Dhurrin biosynthesis. Plant physiology. 2000 Aug; 123(4):1437-48. doi: 10.1104/pp.123.4.1437. [PMID: 10938360]
  • M Cicek, D Blanchard, D R Bevan, A Esen. The aglycone specificity-determining sites are different in 2, 4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA)-glucosidase (Maize beta -glucosidase) and dhurrinase (Sorghum beta -glucosidase). The Journal of biological chemistry. 2000 Jun; 275(26):20002-11. doi: 10.1074/jbc.m001609200. [PMID: 10748038]
  • P R Jones, B L Moller, P B Hoj. The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. The Journal of biological chemistry. 1999 Dec; 274(50):35483-91. doi: 10.1074/jbc.274.50.35483. [PMID: 10585420]
  • R A Kahn, T Fahrendorf, B A Halkier, B L Møller. Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Archives of biochemistry and biophysics. 1999 Mar; 363(1):9-18. doi: 10.1006/abbi.1998.1068. [PMID: 10049494]
  • S Bak, R A Kahn, H L Nielsen, B L Moller, B A Halkier. Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant molecular biology. 1998 Feb; 36(3):393-405. doi: 10.1023/a:1005915507497. [PMID: 9484480]
  • R A Kahn, S Bak, I Svendsen, B A Halkier, B L Møller. Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant physiology. 1997 Dec; 115(4):1661-70. doi: 10.1104/pp.115.4.1661. [PMID: 9414567]
  • D Selmar, Z Irandoost, V Wray. Dhurrin-6'-glucoside, a cyanogenic diglucoside from Sorghum bicolor. Phytochemistry. 1996 Oct; 43(3):569-72. doi: 10.1016/0031-9422(96)00297-x. [PMID: 8987580]
  • B M Koch, O Sibbesen, B A Halkier, I Svendsen, B L Møller. The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Archives of biochemistry and biophysics. 1995 Oct; 323(1):177-86. doi: 10.1006/abbi.1995.0024. [PMID: 7487064]
  • O Sibbesen, B Koch, B A Halkier, B L Møller. Cytochrome P-450TYR is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. The Journal of biological chemistry. 1995 Feb; 270(8):3506-11. doi: 10.1074/jbc.270.8.3506. [PMID: 7876084]
  • B A Halkier, O Sibbesen, B Koch, B L Møller. Characterization of cytochrome P450TYR, a multifunctional haem-thiolate N-hydroxylase involved in the biosynthesis of the cyanogenic glucoside dhurrin. Drug metabolism and drug interactions. 1995; 12(3-4):285-97. doi: 10.1515/dmdi.1995.12.3-4.285. [PMID: 8820857]
  • O Sibbesen, B Koch, B A Halkier, B L Møller. Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proceedings of the National Academy of Sciences of the United States of America. 1994 Oct; 91(21):9740-4. doi: 10.1073/pnas.91.21.9740. [PMID: 7937883]
  • B A Halkier, H V Scheller, B L Møller. Cyanogenic glucosides: the biosynthetic pathway and the enzyme system involved. Ciba Foundation symposium. 1988; 140(?):49-66. doi: 10.1002/9780470513712.ch5. [PMID: 3073062]
  • . . . . doi: . [PMID: 17706731]
  • . . . . doi: . [PMID: 15665094]
  • . . . . doi: . [PMID: 12114576]
  • . . . . doi: . [PMID: 2684955]
  • . . . . doi: . [PMID: 21045121]
  • . . . . doi: . [PMID: 2250015]