Dihydrobiopterin (BioDeep_00000001500)

 

Secondary id: BioDeep_00000405189, BioDeep_00000603052

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite natural product


代谢物信息卡片


2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one

化学式: C9H13N5O3 (239.1018)
中文名称: 7,8-二氢生物蝶呤
谱图信息: 最多检出来源 Homo sapiens(blood) 10.8%

分子结构信息

SMILES: CC(C(C1=NC2=C(NC1)N=C(NC2=O)N)O)O
InChI: InChI=1S/C9H13N5O3/c1-3(15)6(16)4-2-11-7-5(12-4)8(17)14-9(10)13-7/h3,6,15-16H,2H2,1H3,(H4,10,11,13,14,17)

描述信息

Dihydrobiopterin, also known as BH2, 7,8-dihydrobiopterin, L-erythro-7,8-dihydrobiopterin, quinonoid dihydrobiopterin or q-BH2, belongs to the class of organic compounds known as biopterins and derivatives. These are coenzymes containing a 2-amino-pteridine-4-one derivative. Dihydrobiopterin is also classified as a pteridine. Pteridines are aromatic compounds composed of fused pyrimidine and pyrazine rings. Dihydrobiopterin is produced during the synthesis of neurotransmitters L-DOPA, dopamine, norepinephrine and epinephrine. It is restored to the required cofactor tetrahydrobiopterin via the NADPH-dependant reduction of dihydrobiopterin reductase. Dihydrobiopterin can also be converted to tetrahydrobiopterin by nitric oxide synthase (NOS) which is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain of NOS, whereas the high affinity tetrahydrobiopterin site involved in NOS activation is located on the oxygenase (N-terminal) domain (PMID: 8626754). Sepiapterin reductase (SPR) is another enzyme that plays a role in the production of dihydrobiopterin. SPR catalyzes the reduction of sepiapterin to dihydrobiopterin (BH2), the precursor for tetrahydrobiopterin (BH4). BH4 is a cofactor critical for nitric oxide biosynthesis and alkylglycerol and aromatic amino acid metabolism (PMID: 25550200). Dihydrobiopterin is known to be synthesized in several parts of the body, including the pineal gland. Dihydrobiopterin exists in all eukaryotes, ranging from yeast to humans. In humans, dihydrobiopterin is involved in several metabolic disorders including dihydropteridine reductase (DHPR) deficiency. DHPR deficiency is a severe form of hyperphenylalaninemia (HPA) due to impaired regeneration of tetrahydrobiopterin (BH4) leading to decreased levels of neurotransmitters (dopamine, serotonin) and folate in cerebrospinal fluid, and causing neurological symptoms such as psychomotor delay, hypotonia, seizures, abnormal movements, hypersalivation, and swallowing difficulties. Dihydrobiopterin is also associated with another metabolic disorder known as sepiapterin reductase deficiency (SRD). Sepiapterin reductase catalyzes the (NADP-dependent) reduction of carbonyl derivatives, including pteridines, and plays an important role in tetrahydrobiopterin biosynthesis. Low dihydrofolate reductase activity in the brain leads to the accumulation of dihydrobiopterin, which in turn, inhibits tyrosine and tryptophan hydroxylases. This uncouples neuronal nitric oxide synthase, leading to neurotransmitter deficiencies and neuronal cell death. SRD is characterized by low cerebrospinal fluid neurotransmitter levels and the presence of elevated cerebrospinal fluid dihydrobiopterin. SRD is characterized by motor delay, axial hypotonia, language delay, diurnal fluctuation of symptoms, dystonia, weakness, oculogyric crises, dysarthria, parkinsonian signs and hyperreflexia.
Dihydrobiopterin (BH2) is an oxidation product of tetrahydrobiopterin. Tetrahydrobiopterin is a natural occurring cofactor of the aromatic amino acid hydroxylase and is involved in the synthesis of tyrosine and the neurotransmitters dopamine and serotonin. Tetrahydrobiopterin is also essential for nitric oxide synthase catalyzed oxidation of L-arginine to L-citrulline and nitric oxide. [HMDB]
7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

同义名列表

12 个代谢物同义名

2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-1,4,7,8-tetrahydropteridin-4-one; L-Erythro-7,8-dihydrobiopterin; L-Erythro-Q-dihydrobiopterin; Quinonoid dihydrobiopterin; L-Erythro-dihydrobiopterin; 7,8-Dihydro-L-biopterin; 7,8-DIHYDROBIOPTERIN; dihydrobiopterin; Q-BH2; BH2; Dihydrobiopterin; 7,8-Dihydrobiopterin



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(0)

代谢反应

7 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(6)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

10 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 12 ARG1, CAT, CTNNB1, DHFR, GUCY1A1, NOS1, NOS2, NOS3, QDPR, SPR, TYR, XDH
Peripheral membrane protein 2 HSD17B6, NOS1
Endoplasmic reticulum membrane 2 CYBB, HSP90B1
Nucleus 6 ARG1, CTNNB1, HSP90B1, NOS1, NOS2, NOS3
cytosol 13 ARG1, CAT, CTNNB1, DHFR, GUCY1A1, HSP90B1, NOS1, NOS2, NOS3, PAH, QDPR, SPR, XDH
dendrite 1 CYBB
phagocytic vesicle 1 CYBB
centrosome 1 CTNNB1
nucleoplasm 5 CTNNB1, NOS1, NOS2, NOS3, SPR
Cell membrane 2 CTNNB1, CYBB
lamellipodium 1 CTNNB1
Cytoplasmic granule 1 ARG1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 2 CYBB, SLC22A8
Synapse 2 CTNNB1, NOS1
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
glutamatergic synapse 2 CTNNB1, GUCY1A1
Golgi apparatus 1 NOS3
Golgi membrane 2 INS, NOS3
neuronal cell body 1 CYBB
presynaptic membrane 1 CTNNB1
sarcolemma 1 NOS1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 1 NOS2
Lysosome 1 TYR
plasma membrane 7 CTNNB1, CYBB, IFNLR1, NOS1, NOS2, NOS3, SLC22A8
Membrane 5 CAT, CTNNB1, CYBB, HSP90B1, IFNLR1
apical plasma membrane 1 SLC22A8
basolateral plasma membrane 2 CTNNB1, SLC22A8
caveola 1 NOS3
extracellular exosome 7 CAT, CTNNB1, HSP90B1, QDPR, SLC22A8, SOD2, SPR
Lumenal side 1 HSD17B6
endoplasmic reticulum 2 HSD17B6, HSP90B1
extracellular space 3 ARG1, INS, XDH
perinuclear region of cytoplasm 6 CTNNB1, HSP90B1, NOS1, NOS2, NOS3, TYR
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 6 CAT, DHFR, NOS1, QDPR, SOD2, SPR
protein-containing complex 4 CAT, CTNNB1, HSP90B1, NOS1
intracellular membrane-bounded organelle 3 CAT, HSD17B6, TYR
Microsome membrane 1 HSD17B6
postsynaptic density 1 NOS1
Single-pass type I membrane protein 2 IFNLR1, TYR
Secreted 1 INS
extracellular region 4 ARG1, CAT, HSP90B1, INS
Mitochondrion matrix 1 SOD2
mitochondrial matrix 2 CAT, SOD2
transcription regulator complex 1 CTNNB1
photoreceptor inner segment 1 NOS1
dendritic spine 1 NOS1
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
Wnt signalosome 1 CTNNB1
Melanosome membrane 1 TYR
midbody 1 HSP90B1
Cytoplasm, P-body 2 NOS2, NOS3
P-body 2 NOS2, NOS3
apical part of cell 1 CTNNB1
cell-cell junction 1 CTNNB1
Golgi-associated vesicle 1 TYR
postsynaptic membrane 1 CTNNB1
Cell membrane, sarcolemma 1 NOS1
Cytoplasm, perinuclear region 2 NOS1, NOS2
Membrane raft 1 NOS1
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 3 CAT, CTNNB1, HSP90B1
GABA-ergic synapse 1 GUCY1A1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
mitochondrial nucleoid 1 SOD2
Peroxisome 3 CAT, NOS2, XDH
sarcoplasmic reticulum 2 NOS1, XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
Cell projection, dendritic spine 1 NOS1
collagen-containing extracellular matrix 1 HSP90B1
fascia adherens 1 CTNNB1
lateral plasma membrane 2 CTNNB1, SLC22A8
phagocytic vesicle membrane 1 CYBB
cell periphery 2 CTNNB1, NOS1
cytoskeleton 2 NOS1, NOS3
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
postsynaptic density, intracellular component 1 CTNNB1
Basolateral cell membrane 1 SLC22A8
microvillus membrane 1 CTNNB1
nuclear envelope 1 CYBB
Endomembrane system 1 CTNNB1
endosome lumen 1 INS
monoatomic ion channel complex 1 CYBB
specific granule membrane 1 CYBB
tertiary granule membrane 1 CYBB
Melanosome 2 HSP90B1, TYR
Cytoplasm, Stress granule 1 NOS3
cytoplasmic stress granule 1 NOS3
euchromatin 1 CTNNB1
sperm plasma membrane 1 HSP90B1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 2 HSP90B1, INS
specific granule lumen 1 ARG1
endocytic vesicle membrane 1 NOS3
transport vesicle 1 INS
beta-catenin-TCF complex 1 CTNNB1
azurophil granule lumen 1 ARG1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
perinuclear endoplasmic reticulum 1 CYBB
presynaptic active zone cytoplasmic component 1 CTNNB1
Sarcoplasmic reticulum lumen 1 HSP90B1
protein-DNA complex 1 CTNNB1
catenin complex 1 CTNNB1
guanylate cyclase complex, soluble 1 GUCY1A1
endocytic vesicle lumen 1 HSP90B1
cortical cytoskeleton 1 NOS2
catalase complex 1 CAT
NADPH oxidase complex 1 CYBB
endoplasmic reticulum chaperone complex 1 HSP90B1
beta-catenin-TCF7L2 complex 1 CTNNB1
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
interleukin-28 receptor complex 1 IFNLR1


文献列表

  • Muriel Bouly, Marie-Pierre Bourguignon, Susanne Roesch, Pascal Rigouin, Willy Gosgnach, Elodie Bossard, Emilie Royere, Nicolas Diguet, Patricia Sansilvestri-Morel, Ariane Bonnin, Laura Xuereb, Pascal Berson, Michel Komajda, Peter Bernhardt, Benoit Tyl. Aging increases circulating BH2 without modifying BH4 levels and impairs peripheral vascular function in healthy adults. Translational research : the journal of laboratory and clinical medicine. 2021 12; 238(?):36-48. doi: 10.1016/j.trsl.2021.07.004. [PMID: 34332154]
  • Tae Woong Cha, Minjoo Kim, Minkyung Kim, Jey Sook Chae, Jong Ho Lee. Blood pressure-lowering effect of Korean red ginseng associated with decreased circulating Lp-PLA2 activity and lysophosphatidylcholines and increased dihydrobiopterin level in prehypertensive subjects. Hypertension research : official journal of the Japanese Society of Hypertension. 2016 Jun; 39(6):449-56. doi: 10.1038/hr.2016.7. [PMID: 26843120]
  • M J Reimann, J Häggström, A Mortensen, J Lykkesfeldt, J E Møller, T Falk, L H Olsen. Biopterin status in dogs with myxomatous mitral valve disease is associated with disease severity and cardiovascular risk factors. Journal of veterinary internal medicine. 2014 Sep; 28(5):1520-6. doi: 10.1111/jvim.12425. [PMID: 25274442]
  • Ana María Gámez-Méndez, Hilda Vargas-Robles, Mónica Arellano-Mendoza, Erika Cruz-Laguna, Amelia Rios, Bruno Escalante. Early stage of obesity potentiates nitric oxide reduction during the development of renal failure. Journal of nephrology. 2014 Jun; 27(3):281-7. doi: 10.1007/s40620-013-0029-9. [PMID: 24446346]
  • Hemi Luan, Nan Meng, Ping Liu, Qiang Feng, Shuhai Lin, Jin Fu, Robert Davidson, Xiaomin Chen, Weiqiao Rao, Fang Chen, Hui Jiang, Xun Xu, Zongwei Cai, Jun Wang. Pregnancy-induced metabolic phenotype variations in maternal plasma. Journal of proteome research. 2014 Mar; 13(3):1527-36. doi: 10.1021/pr401068k. [PMID: 24450375]
  • Alan Mortensen, Stine Hasselholt, Pernille Tveden-Nyborg, Jens Lykkesfeldt. Guinea pig ascorbate status predicts tetrahydrobiopterin plasma concentration and oxidation ratio in vivo. Nutrition research (New York, N.Y.). 2013 Oct; 33(10):859-67. doi: 10.1016/j.nutres.2013.07.006. [PMID: 24074744]
  • Luz Graciela Cervantes-Pérez, María de la Luz Ibarra-Lara, Bruno Escalante, Leonardo Del Valle-Mondragón, Hilda Vargas-Robles, Francisca Pérez-Severiano, Gustavo Pastelín, María Alicia Sánchez-Mendoza. Endothelial nitric oxide synthase impairment is restored by clofibrate treatment in an animal model of hypertension. European journal of pharmacology. 2012 Jun; 685(1-3):108-15. doi: 10.1016/j.ejphar.2012.04.006. [PMID: 22542661]
  • Yi-Chen Liao, Ying-Ho Lee, Lea-Yea Chuang, Jinn-Yuh Guh, Ming-Der Shi, Jau-Shyang Huang. Advanced glycation end products-mediated hypertrophy is negatively regulated by tetrahydrobiopterin in renal tubular cells. Molecular and cellular endocrinology. 2012 May; 355(1):71-7. doi: 10.1016/j.mce.2012.01.018. [PMID: 22326994]
  • Hiromi Jo, Hajime Otani, Fusakazu Jo, Takayuki Shimazu, Toru Okazaki, Kei Yoshioka, Masanori Fujita, Atsushi Kosaki, Toshiji Iwasaka. Inhibition of nitric oxide synthase uncoupling by sepiapterin improves left ventricular function in streptozotocin-induced diabetic mice. Clinical and experimental pharmacology & physiology. 2011 Aug; 38(8):485-93. doi: 10.1111/j.1440-1681.2011.05535.x. [PMID: 21554376]
  • Akiko Ohashi, Yuko Sugawara, Kaori Mamada, Yoshinori Harada, Tomomi Sumi, Naohiko Anzai, Shin Aizawa, Hiroyuki Hasegawa. Membrane transport of sepiapterin and dihydrobiopterin by equilibrative nucleoside transporters: a plausible gateway for the salvage pathway of tetrahydrobiopterin biosynthesis. Molecular genetics and metabolism. 2011 Jan; 102(1):18-28. doi: 10.1016/j.ymgme.2010.09.005. [PMID: 20956085]
  • Keitaro Yokoyama, Tatsuo Hosoya. The hypothesis that abnormal BH₄ metabolism impairs kidney function. Kidney international. 2010 Nov; 78(10):1050; author reply 1050. doi: 10.1038/ki.2010.304. [PMID: 21030979]
  • Hye-Lim Kim, Do Hyung Kim, Yeol Kun Lee, Sun Ok Park, Yong-Woo Lee, O-Seob Kwon, Young Shik Park. An enzymatic method to distinguish tetrahydrobiopterin from oxidized biopterins using UDP-glucose:tetrahydrobiopterin glucosyltransferase. Analytical biochemistry. 2010 Feb; 397(1):79-83. doi: 10.1016/j.ab.2009.10.007. [PMID: 19819217]
  • Florentina Cañada-Cañada, Anunciación Espinosa-Mansilla, Arsenio Muñoz de la Peña, Alicia Mancha de Llanos. Determination of marker pteridins and biopterin reduced forms, tetrahydrobiopterin and dihydrobiopterin, in human urine, using a post-column photoinduced fluorescence liquid chromatographic derivatization method. Analytica chimica acta. 2009 Aug; 648(1):113-22. doi: 10.1016/j.aca.2009.06.045. [PMID: 19616696]
  • Masafumi Takeda, Tomoya Yamashita, Masakazu Shinohara, Naoto Sasaki, Tomofumi Takaya, Kenji Nakajima, Nobutaka Inoue, Tomoya Masano, Hideto Tawa, Seimi Satomi-Kobayashi, Ryuji Toh, Daisuke Sugiyama, Kunihiro Nishimura, Mitsuhiro Yokoyama, Ken-ichi Hirata, Seinosuke Kawashima. Plasma tetrahydrobiopterin/dihydrobiopterin ratio: a possible marker of endothelial dysfunction. Circulation journal : official journal of the Japanese Circulation Society. 2009 May; 73(5):955-62. doi: 10.1253/circj.cj-08-0850. [PMID: 19293532]
  • Norman E Taylor, Kristopher G Maier, Richard J Roman, Allen W Cowley. NO synthase uncoupling in the kidney of Dahl S rats: role of dihydrobiopterin. Hypertension (Dallas, Tex. : 1979). 2006 Dec; 48(6):1066-71. doi: 10.1161/01.hyp.0000248751.11383.7c. [PMID: 17060509]
  • Seiichi Mochizuki, Jun-Ichi Ono, Toyotaka Yada, Yasuo Ogasawara, Takehiro Miyasaka, Masumi Kimoto, Naoki Kashihara, Fumihiko Kajiya. Systemic nitric oxide production rate during hemodialysis and its relationship with nitric oxide-related factors. Blood purification. 2005; 23(4):317-24. doi: 10.1159/000087769. [PMID: 16118486]
  • Malarvannan Pannirselvam, Valerie Simon, Subodh Verma, Todd Anderson, Chris R Triggle. Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. British journal of pharmacology. 2003 Oct; 140(4):701-6. doi: 10.1038/sj.bjp.0705476. [PMID: 14534153]
  • K Shinozaki, A Hirayama, Y Nishio, Y Yoshida, T Ohtani, T Okamura, M Masada, R Kikkawa, K Kodama, A Kashiwagi. Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. Journal of the American College of Cardiology. 2001 Dec; 38(7):1821-8. doi: 10.1016/s0735-1097(01)01659-x. [PMID: 11738280]
  • C F Witteveen, J Giovanelli, S Kaufman. Reduction of quinonoid dihydrobiopterin to tetrahydrobiopterin by nitric oxide synthase. The Journal of biological chemistry. 1996 Feb; 271(8):4143-7. doi: 10.1074/jbc.271.8.4143. [PMID: 8626754]
  • N Blau, L Kierat, H C Curtius, M Blaskovics, T Giudici. Hyperphenylalaninaemia presumably due to carbinolamine dehydratase deficiency: loading tests with pterin derivatives. Journal of inherited metabolic disease. 1992; 15(3):409-12. doi: 10.1007/bf02435990. [PMID: 1405481]
  • B E Cohen, A Szeinberg, J Quint, M Normand, J Blonder, I Peled. Malignant phenylketonuria due to defective synthesis of dihydrobiopterin. Israel journal of medical sciences. 1985 Jun; 21(6):520-5. doi: . [PMID: 3874852]
  • J L Dhondt, B Leroux, J P Farriaux, C Largilliere, R J Leeming. Dihydrobiopterin biosynthesis deficiency. European journal of pediatrics. 1983 Dec; 141(2):92-5. doi: 10.1007/bf00496797. [PMID: 6662148]
  • B Beck, N J Brandt, E Christensen, A Niederwieser, P S Pedersen. Diagnostic and therapeutic aspects of dihydrobiopterin deficiency. Acta paediatrica Scandinavica. 1983 May; 72(3):449-54. doi: 10.1111/j.1651-2227.1983.tb09745.x. [PMID: 6410682]
  • J P Harpey. [Biopterin synthesis defects: complete deficiencies (reductase and synthetase)]. Archives francaises de pediatrie. 1983; 40 Suppl 1(?):231-5. doi: NULL. [PMID: 6349573]
  • R J Leeming, J A Blair, J Walters. Serum dihydrobiopterin levels in patients on tricyclic antidepressants. Psychological medicine. 1982 Feb; 12(1):191-2. doi: 10.1017/s0033291700043440. [PMID: 7079428]
  • M Häusermann, S Ghisla, A Niederwieser, H C Curtius. New aspects in biopterin biosynthesis in man. FEBS letters. 1981 Aug; 131(2):275-8. doi: 10.1016/0014-5793(81)80383-3. [PMID: 7297676]
  • A Niederwieser, A Matasović, H C Curtius, W Endres, J Schaub. 3'-hydroxysepiapterin in patients with dihydrobiopterin deficiency. FEBS letters. 1980 Sep; 118(2):299-302. doi: 10.1016/0014-5793(80)80243-2. [PMID: 6893440]
  • A Niederwieser, H C Curtius, O Bettoni, J Bieri, B Schircks, M Viscontini, J Schaub. Atypical phenylketonuria caused by 7, 8-dihydrobiopterin synthetase deficiency. Lancet (London, England). 1979 Jan; 1(8108):131-3. doi: 10.1016/s0140-6736(79)90521-x. [PMID: 84153]
  • J Schaub, S Däumling, H C Curtius, A Niederwieser, K Bartholomé, M Viscontini, B Schircks, J H Bieri. Tetrahydrobiopterin therapy of atypical phenylketonuria due to defective dihydrobiopterin biosynthesis. Archives of disease in childhood. 1978 Aug; 53(8):674-6. doi: 10.1136/adc.53.8.674. [PMID: 708106]