Trimethylglycine (BioDeep_00000000198)
Secondary id: BioDeep_00000266629, BioDeep_00001867472
natural product human metabolite PANOMIX_OTCML-2023 Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C5H11NO2 (117.0789746)
中文名称: 甜菜碱 (无水), 甜菜碱,无水, 甜菜碱, 甜菜碱, 甜菜碱 无水, 甜菜碱 无水, 甜菜碱 无水
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.15%
分子结构信息
SMILES: C[N+](C)(C)CC(=O)[O-]
InChI: InChI=1/C5H11NO2/c1-6(2,3)4-5(7)8/h4H2,1-3H3
描述信息
Glycine betaine is the amino acid betaine derived from glycine. It has a role as a fundamental metabolite. It is an amino-acid betaine and a glycine derivative. It is a conjugate base of a N,N,N-trimethylglycinium.
Betaine is a methyl group donor that functions in the normal metabolic cycle of methionine. It is a naturally occurring choline derivative commonly ingested through diet, with a role in regulating cellular hydration and maintaining cell function. Homocystinuria is an inherited disorder that leads to the accumulation of homocysteine in plasma and urine. Currently, no treatments are available to correct the genetic causes of homocystinuria. However, in order to normalize homocysteine levels, patients can be treated with vitamin B6 ([pyridoxine]), vitamin B12 ([cobalamin]), [folate] and specific diets. Betaine reduces plasma homocysteine levels in patients with homocystinuria. Although it is present in many food products, the levels found there are insufficient to treat this condition. The FDA and EMA have approved the product Cystadane (betaine anhydrous, oral solution) for the treatment of homocystinuria, and the EMA has approved the use of Amversio (betaine anhydrous, oral powder).
Betaine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Betaine is a Methylating Agent. The mechanism of action of betaine is as a Methylating Activity.
Betaine is a modified amino acid consisting of glycine with three methyl groups that serves as a methyl donor in several metabolic pathways and is used to treat the rare genetic causes of homocystinuria. Betaine has had only limited clinical use, but has not been linked to instances of serum enzyme elevations during therapy or to clinically apparent liver injury.
Betaine is a natural product found in Hypoestes phyllostachya, Barleria lupulina, and other organisms with data available.
Betaine is a metabolite found in or produced by Saccharomyces cerevisiae.
A naturally occurring compound that has been of interest for its role in osmoregulation. As a drug, betaine hydrochloride has been used as a source of hydrochloric acid in the treatment of hypochlorhydria. Betaine has also been used in the treatment of liver disorders, for hyperkalemia, for homocystinuria, and for gastrointestinal disturbances. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1341)
See also: Arnica montana Flower (part of); Betaine; panthenol (component of); Betaine; scutellaria baicalensis root (component of) ... View More ...
A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D008082 - Lipotropic Agents
Acquisition and generation of the data is financially supported in part by CREST/JST.
D009676 - Noxae > D000963 - Antimetabolites
CONFIDENCE standard compound; ML_ID 42
D005765 - Gastrointestinal Agents
KEIO_ID B047
同义名列表
108 个代谢物同义名
Methanaminium, 1-carboxy-N,N,N-trimethyl-, hydroxide, inner salt; 1-Carboxy-N,N,N-trimethylmethanaminium hydroxide, inner salt; Methanaminium, 1-carboxy-N,N,N-trimethyl-, inner salt (9CI); 2-(Trimethylammonio)ethanoic acid, hydroxide, inner salt; (Carboxymethyl)trimethylammonium hydroxide, inner salt; Methanaminium, 1-carboxy-N,N,N-trimethyl-, inner salt; (Carboxymethyl)trimethylammonium hydroxide inner salt; methanaminium, carboxy-N,N,N-trimethyl-, inner salt; Methanaminium,N,N-trimethyl-, hydroxide, inner salt; 1-Carboxy-N,N,N-trimethylmethanaminium inner salt; 4-04-00-02369 (Beilstein Handbook Reference); Methanaminium, 1-carboxy-N,N,N-trimethyl-; Abromine; Lycine; Trimethylglycine (TMG); Betaine Anhydrous For Oral Solution; Dr.Jucre Rebirth Activating Toner; 2-N,N,N-trimethylammonio acetate; (Carboxymethyl)trimethylammonium; 2-(trimethylamino)acetic acid; N,N,N-trimethylammonioacetate; 2-(trimethylazaniumyl)acetate; BETAINE ANHYDROUS [EMA EPAR]; (trimethylammoniumyl)acetate; trimethylglycocoll anhydride; Citrate de Bétaïne Beaufour; 2-(Trimethylammonio)Acetate; 2-trimethylammonioacetate; Glycine, trimethylbetaine; (Trimethylammonio)acetate; Trimethylaminoacetic acid; Glykokollbetain [German]; Citrate de Bétaïne UPSA; trimethylammonioacetate; WLN: QV1K1 & 1 & 1 & Q; Hydrochloride, Betaine; N,N,N-trimethylglycine; Trimethylaminoacetate; BETAINE [ORANGE BOOK]; Betaine Hydrochloride; BETAINE, ANHYDROUS; Trimethylglycocoll; ATONO2 Oxygen Baby; Glycocoll betaine; Betaine anhydrous; BETAINE [USP-RS]; .alpha.-Earleine; Betaine, Glycine; BETAINE [WHO-DD]; BETAINE (USP-RS); Trimethylglycine; Betaineanhydrous; BETAINE [VANDF]; betaina anhidra; Glykokollbetain; Loramine AMB 13; BETAINE (MART.); BETAINE [MART.]; UNII-3SCV180C9W; glycine betaine; BETAINE [HSDB]; Scorbo-bétaïne; BETAINE [INCI]; GLYCINEBETAINE; BETAINE [FHFI]; Scorbo bétaïne; Cystadane (TN); alpha-Earleine; Glycylbetaine; Betaine (8CI); Scorbobétaïne; acidin-pepsin; BETAINE [JAN]; Betaine (JAN); BETAINE [FCC]; Acidin Pepsin; BETAINE [MI]; Tox21_301159; AcidinPepsin; Tox21_113511; Novobetaine; Betaine,(S); Betafin BCR; oxyneurine; Betafin BP; 3SCV180C9W; Cystadane; Rubrine C; AI3-24187; .beta.ine; Aminocoat; AI3-52598; Greenstim; Hepastyl; FinnStim; Jortaine; Abromine; Betafin; Betaine; Stea 16; Stea-16; C.B.B.; Stea16; lycine; Acidol; 3mam; 3ppp; 3l6h; BET; Betaine
数据库引用编号
35 个数据库交叉引用编号
- ChEBI: CHEBI:17750
- KEGG: C00719
- KEGGdrug: D07523
- PubChem: 247
- HMDB: HMDB00043
- Metlin: METLIN287
- DrugBank: DB06756
- ChEMBL: CHEMBL1182
- Wikipedia: Trimethylglycine
- MeSH: Betaine
- ChemIDplus: 0000107437
- chemspider: 242
- CAS: 107-43-7
- MoNA: PS115201
- MoNA: KO002502
- MoNA: KO002504
- MoNA: PR100444
- MoNA: MT000002
- MoNA: ML004201
- MoNA: PS115203
- MoNA: PS115204
- MoNA: KO002505
- MoNA: PS115202
- MoNA: PS115205
- MoNA: PR100443
- MoNA: PS115206
- MoNA: KO002503
- MoNA: KO002506
- medchemexpress: HY-B0710
- PubChem: 3985
- KNApSAcK: C00007291
- PDB-CCD: BET
- 3DMET: B01318
- NIKKAJI: J5.058J
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-709
分类词条
相关代谢途径
Reactome(4)
BioCyc(12)
- glycine betaine degradation I
- glycine betaine degradation
- choline degradation IV
- glycine betaine biosynthesis III (plants)
- γ-butyrobetaine degradation
- choline-O-sulfate degradation
- choline degradation I
- D-carnitine degradation I
- L-carnitine degradation II
- superpathway of L-methionine salvage and degradation
- glycine betaine biosynthesis I (Gram-negative bacteria)
- D-carnitine degradation II
PlantCyc(0)
代谢反应
501 个相关的代谢反应过程信息。
Reactome(56)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
Cho + FAD ⟶ BETALD + FADH2
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
DMGLY + H2O ⟶ CH2O + SARC
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
Cho + hydrogen acceptor ⟶ BETALD + hydrogen donor
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BETALD + H2O + NAD ⟶ BET + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
Cho + FAD ⟶ BETALD + FADH2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Choline catabolism:
DMGLY + H2O ⟶ CH2O + SARC
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
DMGLY + H2O ⟶ CH2O + SARC
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Choline catabolism:
BET + HCYS ⟶ DMGLY + L-Met
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
BioCyc(60)
- superpathway of choline degradation to L-serine:
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation:
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation IV:
betaine aldehyde hydrate ⟶ H2O + betaine aldehyde
- choline-O-sulfate degradation:
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation II:
H2O + O2 + betaine aldehyde ⟶ H+ + glycine betaine + hydrogen peroxide
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis III (plants):
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + choline ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + betaine aldehyde hydrate
- glycine betaine biosynthesis II (Gram-positive bacteria):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis III (plants):
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + choline ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + betaine aldehyde hydrate
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation I:
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- choline-O-sulfate degradation:
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis I (Gram-negative bacteria):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- glycine betaine biosynthesis III (plants):
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + choline ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + betaine aldehyde hydrate
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- choline-O-sulfate degradation:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- glycine betaine biosynthesis I (Gram-negative bacteria):
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- choline degradation I:
A + choline ⟶ A(H2) + betaine aldehyde
- glycine betaine biosynthesis II (Gram-positive bacteria):
NAD+ + choline ⟶ H+ + NADH + betaine aldehyde
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- L-methionine salvage from L-homocysteine:
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- superpathway of L-methionine salvage and degradation:
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- glycine betaine degradation II (mammalian):
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- methionine salvage:
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- superpathway of methionine degradation:
2-oxobutanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + propanoyl-CoA
- glycine betaine biosynthesis IV (from glycine):
N,N-dimethylglycine + SAM ⟶ H+ + SAH + glycine betaine
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- D-carnitine degradation I:
D-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- D-carnitine degradation II:
D-carnitine ⟶ L-carnitine
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- glycine betaine degradation II (mammalian):
L-homocysteine + glycine betaine ⟶ N,N-dimethylglycine + met
- glycine betaine biosynthesis V (from glycine):
N,N-dimethylglycine + SAM ⟶ H+ + SAH + glycine betaine
- glycine betaine degradation:
ser ⟶ H+ + ammonia + pyruvate
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- superpathway of methionine degradation:
S-adenosyl-L-homocysteine + H2O ⟶ L-homocysteine + adenosine
- glycine betaine degradation:
ser ⟶ H+ + ammonia + pyruvate
- methionine salvage II (mammalia):
L-homocysteine + glycine betaine ⟶ dimethylglycine + met
- glycine betaine degradation I:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
WikiPathways(3)
- MTHFR deficiency:
Choline ⟶ Phosphocholine
- Diet-dependent trimethylamine/trimethylamine N-oxide metabolism:
Choline ⟶ BETALD
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
Plant Reactome(296)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Glycine betaine biosynthesis:
Cho + H+ + dioxygen ⟶ H2O + betaine aldehyde hydrate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Glycine betaine biosynthesis:
BETALD + H2O + NAD+ ⟶ BET + NADH
INOH(2)
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
- Methionine and Cysteine metabolism ( Methionine and Cysteine metabolism ):
H2O + L-Cystathionine ⟶ 2-Oxo-butanoic acid + L-Cysteine + NH3
PlantCyc(23)
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- glycine betaine biosynthesis III (plants):
H2O + NAD+ + betaine aldehyde ⟶ H+ + NADH + glycine betaine
- S-adenosyl-L-methionine cycle II:
H2O + SAH ⟶ L-homocysteine + adenosine
- L-methionine degradation I (to L-homocysteine):
H2O + SAH ⟶ L-homocysteine + adenosine
COVID-19 Disease Map(0)
PathBank(61)
- Betaine Metabolism:
S-Adenosylhomocysteine + Water ⟶ Adenosine + Homocysteine
- Sarcosine Oncometabolite Pathway:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Glycine Betaine Biosynthesis I:
Hydrogen Ion + L-Serine ⟶ Carbon dioxide + Ethanolamine
- Glycine Betaine Biosynthesis II:
Hydrogen Ion + L-Serine ⟶ Carbon dioxide + Ethanolamine
- Betaine Metabolism:
S-Adenosylhomocysteine + Water ⟶ Adenosine + Homocysteine
- Betaine Metabolism:
S-Adenosylhomocysteine + Water ⟶ Adenosine + Homocysteine
- Betaine Metabolism:
S-Adenosylhomocysteine + Water ⟶ Adenosine + Homocysteine
- Sarcosine Oncometabolite Pathway:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Sarcosine Oncometabolite Pathway:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methylenetetrahydrofolate Reductase Deficiency (MTHFRD):
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Quorum Sensing:
S-Adenosylhomocysteine + Water ⟶ Adenine + S-ribosyl-L-homocysteine
- S-Adenosyl-L-Methionine Cycle:
S-Adenosylhomocysteine + Water ⟶ Adenine + S-ribosyl-L-homocysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Methionine Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Cystathionine beta-Synthase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine N-Methyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Hypermethioninemia:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Methionine Adenosyltransferase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- S-Adenosylhomocysteine (SAH) Hydrolase Deficiency:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Homocystinuria-Megaloblastic Anemia Due to Defect in Cobalamin Metabolism, cblG Complementation Type:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + L-Cysteine
PharmGKB(0)
187 个相关的物种来源信息
- 13327 - Acanthus montanus: 10.1016/0031-9422(88)87029-8
- 282720 - Achillea aspleniifolia:
- 282730 - Achillea collina: 10.1016/S0031-9422(96)00669-3
- 282732 - Achillea crithmifolia: 10.1016/S0031-9422(96)00669-3
- 282741 - Achillea impatiens: 10.1016/S0031-9422(96)00669-3
- 13329 - Achillea millefolium:
- 282753 - Achillea nobilis: 10.1016/S0031-9422(96)00669-3
- 282756 - Achillea pannonica: 10.1016/S0031-9422(96)00669-3
- 282759 - Achillea pratensis: 10.1016/S0031-9422(96)00669-3
- 282767 - Achillea setacea: 10.1016/S0031-9422(96)00669-3
- 2029211 - Achillea sibirica: 10.1016/S0031-9422(96)00669-3
- 282770 - Achillea virescens:
- 240005 - Achyranthes aspera: 10.1016/S0305-1978(98)00072-6
- 384659 - Achyranthes bidentata: 10.1016/S0305-1978(98)00072-6
- 73033 - Acrosiphonia arcta: 10.1016/0305-1978(92)90050-N
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 240008 - Aerva: 10.1016/S0305-1978(98)00072-6
- 9646 - Ailuropoda melanoleuca: 10.1371/JOURNAL.PONE.0143417
- 2889 - Alaria esculenta: 10.1016/0305-1978(92)90050-N
- 224139 - Allenrolfea occidentalis: 10.2307/4117899
- 1167244 - Alternanthera paronychioides: 10.1016/S0305-1978(98)00072-6
- 381410 - Alternanthera philoxeroides: 10.1016/S0305-1978(98)00072-6
- 221762 - Alternanthera sessilis: 10.1016/S0305-1978(98)00072-6
- 41956 - Amanita muscaria: 10.1016/S0305-1978(02)00034-0
- 2613834 - Amaranthus aureus: 10.1016/S0305-1978(98)00072-6
- 124761 - Amaranthus blitoides: 10.1016/S0305-1978(98)00072-6
- 3567 - Amaranthus caudatus: 10.1016/S0305-1978(98)00072-6
- 117272 - Amaranthus cruentus: 10.1016/S0305-1978(98)00072-6
- 1454542 - Amaranthus graecizans: 10.1016/S0305-1978(98)00072-6
- 3565 - Amaranthus hybridus: 10.1016/S0305-1978(98)00072-6
- 28502 - Amaranthus hypochondriacus: 10.1016/S0305-1978(98)00072-6
- 158579 - Amaranthus powellii: 10.1016/S0305-1978(98)00072-6
- 124763 - Amaranthus retroflexus: 10.1016/S0305-1978(98)00072-6
- 124765 - Amaranthus spinosus: 10.1016/S0305-1978(98)00072-6
- 29722 - Amaranthus tricolor: 10.1016/S0305-1978(98)00072-6
- 56196 - Amaranthus viridis: 10.1016/S0305-1978(98)00072-6
- 996498 - Anabasis articulata: 10.2307/4117899
- 240028 - Atriplex halimus: 10.1016/0031-9422(92)80349-J
- 3553 - Atriplex nummularia:
- 376799 - Atriplex portulacoides:
- 417609 - Atriplex semibaccata: 10.1016/0031-9422(92)80349-J
- 101743 - Barleria lupulina: 10.1016/0031-9422(88)87029-8
- 4189 - Barleria prionitis: 10.1016/0031-9422(88)87029-8
- 1749380 - Barleria strigosa: 10.1016/0031-9422(88)87029-8
- 224142 - Bienertia cycloptera: 10.2307/4117899
- 74462 - Bifurcaria bifurcata: 10.1016/0305-1978(92)90050-N
- 1569721 - Blepharis linariifolia: 10.4268/CJCMM20120313
- 1569727 - Blepharis scindica: 10.4268/CJCMM20120313
- 206051 - Blidingia marginata: 10.1016/0305-1978(92)90050-N
- 3708 - Brassica napus: 10.1016/0031-9422(94)00758-L
- 34258 - Brillantaisia lamium: 10.1016/0031-9422(88)87029-8
- 397059 - Brongniartella byssoides: 10.1016/0305-1978(92)90050-N
- 31414 - Calliblepharis jubata: 10.1016/0305-1978(92)90050-N
- 151243 - Caroxylon cyclophyllum: 10.2307/4117899
- 1194693 - Caroxylon imbricatum: 10.2307/4117899
- 264975 - Caroxylon tetrandrum: 10.1016/S0031-9422(00)97401-6
- 76317 - Caulerpa racemosa: 10.1016/0305-1978(92)90050-N
- 76315 - Caulerpa sertularioides: 10.1016/0305-1978(92)90050-N
- 46112 - Celosia argentea: 10.1016/S0305-1978(98)00072-6
- 1304946 - Chaetomorpha ligustica: 10.1016/0305-1978(92)90050-N
- 2899628 - Chamaeranthemum beyrichii var. rotundifolium: 10.1016/0031-9422(88)87029-8
- 240037 - Chamissoa altissima: 10.1016/S0305-1978(98)00072-6
- 3559 - Chenopodium album: 10.1002/PCA.639
- 64905 - Chorda filum: 10.1016/0305-1978(92)90050-N
- 161396 - Cistanche salsa: 10.1007/S10600-014-1132-4
- 162068 - Cladophora glomerata: 10.1016/0305-1978(92)90050-N
- 34133 - Cladophora rupestris: 10.1016/0305-1978(92)90050-N
- 2661694 - Cladostephus spongiosus: 10.1016/0305-1978(92)90050-N
- 578542 - Combretum micranthum: 10.1007/BF00579081
- 71717 - Coprinellus micaceus: 10.1016/S0305-1978(02)00034-0
- 1465650 - Cornulaca leucacantha: 10.2307/4117899
- 34260 - Crossandra nilotica: 10.1016/0031-9422(88)87029-8
- 221766 - Cyathula prostrata: 10.1016/S0305-1978(98)00072-6
- 6669 - Daphnia pulex: 10.1038/SREP25125
- 131097 - Delesseria sanguinea: 10.1016/0305-1978(92)90050-N
- 33107 - Derbesia marina: 10.1016/0305-1978(92)90050-N
- 62298 - Desmarestia aculeata: 10.1016/0305-1978(92)90050-N
- 62313 - Desmarestia viridis: 10.1007/BF00713360
- 141299 - Dicliptera suberecta: 10.1016/0031-9422(88)87029-8
- 499618 - Dictyota fasciola: 10.1016/0305-1978(92)90050-N
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 240045 - Dysphania botrys: 10.1007/BF00568665
- 34262 - Eranthemum pulchellum:
- 189428 - Flabellia petiolata: 10.1016/0305-1978(92)90050-N
- 169208 - Froelichia gracilis: 10.1016/S0305-1978(98)00072-6
- 87146 - Fucus ceranoides: 10.1016/0305-1978(92)90050-N
- 1086085 - Fucus guiryi: 10.1016/0305-1978(92)90050-N
- 87149 - Fucus spiralis: 10.1016/0305-1978(92)90050-N
- 87150 - Fucus virsoides: 10.1016/0305-1978(92)90050-N
- 81587 - Gastroclonium ovatum: 10.1016/0305-1978(92)90050-N
- 221778 - Gomphrena serrata: 10.1016/S0305-1978(98)00072-6
- 4068 - Gymnema sylvestre: 10.2307/4117899
- 74466 - Halidrys siliquosa: 10.1016/0305-1978(92)90050-N
- 239185 - Halocnemum strobilaceum: 10.2307/4117899
- 121067 - Halopithys incurva: 10.1016/0305-1978(92)90050-N
- 454511 - Haloxylon salicornicum: 10.2307/4117899
- 74478 - Himanthalia elongata: 10.1016/0305-1978(92)90050-N
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 4513 - Hordeum vulgare: 10.1093/OXFORDJOURNALS.PCP.A029026
- 1279181 - Hygrophila difformis: 10.1016/0031-9422(88)87029-8
- 693374 - Hygrophila polysperma: 10.1016/0031-9422(88)87029-8
- 141314 - Hypoestes aristata: 10.1016/0031-9422(88)87029-8
- 101678 - Hypoestes phyllostachya: 10.1016/0031-9422(88)87029-8
- 217685 - Iresine diffusa: 10.1016/S0305-1978(98)00072-6
- 169210 - Iresine herbstii: 10.1016/S0305-1978(98)00072-6
- 141992 - Justicia spicigera: 10.1016/0031-9422(88)87029-8
- 2116407 - Kali collina: 10.1007/BF00630448
- 2116407 - Kali collinum: 10.1007/BF00630448
- 80365 - Laminaria digitata: 10.1016/0305-1978(92)90050-N
- 8187 - Lates calcarifer: 10.3389/FPHYS.2020.00205
- 700169 - Laurencia dendroidea: 10.1016/0305-1978(92)90050-N
- 137763 - Laurencia obtusa: 10.1016/0305-1978(92)90050-N
- 4006 - Linum usitatissimum: 10.1016/0031-9422(94)00758-L
- 112883 - Lycium chinense:
- 141321 - Mackaya bella: 10.1016/0031-9422(88)87029-8
- 3498 - Morus alba: 10.1248/CPB.34.2243
- 66392 - Morus australis: 10.1248/CPB.34.2243
- 66393 - Morus bombycis: 10.1248/CPB.34.2243
- 248361 - Morus indica: 10.1248/CPB.34.2243
- 139077 - Mucidula mucida: 10.1016/S0305-1978(02)00034-0
- 167137 - Neptunea antiqua: 10.1016/0041-0101(89)90038-X
- 4097 - Nicotiana tabacum: 10.1016/0031-9422(94)00758-L
- 76374 - Pachystachys lutea: 10.1016/0031-9422(88)87029-8
- 470590 - Palisada perforata: 10.1016/0305-1978(92)90050-N
- 440909 - Phaulopsis imbricata: 10.1016/0031-9422(88)87029-8
- 3888 - Pisum sativum: 10.1016/0031-9422(94)00758-L
- 31452 - Plocamium cartilagineum: 10.1016/0305-1978(92)90050-N
- 189642 - Plumaria plumosa: 10.1016/0305-1978(92)90050-N
- 2733504 - Pseuderanthemum carruthersii: 10.1016/0031-9422(88)87029-8
- 183589 - Pseudo-nitzschia multistriata: 10.3390/MD18060313
- 70838 - Pterocladiella capillacea: 10.1021/NP50056A023
- 110475 - Ptilota serrata: 10.1016/0305-1978(92)90050-N
- 2885 - Pylaiella littoralis: 10.1016/0305-1978(92)90050-N
- 157169 - Ramalina fraxinea: 10.5586/ASBP.1979.002
- 440929 - Ruellia bourgaei: 10.1016/0031-9422(88)87029-8
- 13660 - Ruellia brevifolia: 10.1016/0031-9422(88)87029-8
- 204339 - Ruellia portellae: 10.1016/0031-9422(88)87029-8
- 1176413 - Ruellia simplex: 10.1016/0031-9422(88)87029-8
- 693382 - Ruellia tweediana: 10.1016/0031-9422(88)87029-8
- 309358 - Saccharina latissima: 10.1016/0305-1978(92)90050-N
- 45365 - Saccorhiza polyschides: 10.1016/0305-1978(92)90050-N
- 46105 - Salicornia bigelovii: 10.1093/JXB/36.4.550
- 224149 - Salicornia fruticosa: 10.2307/4117899
- 447784 - Salicornia rubra: 10.1016/0031-9422(94)00758-L
- 2494489 - Salsola baryosma: 10.2307/4117899
- 525237 - Salsola collina: 10.1007/BF00630448
- 454547 - Salsola rosmarinus: 10.2307/4117899
- 71612 - Sanchezia nobilis: 10.1016/0031-9422(88)87029-8
- 2807330 - Sanchezia oblonga: 10.1016/0031-9422(88)87029-8
- 34266 - Sanchezia speciosa: 10.1016/0031-9422(88)87029-8
- 74468 - Sargassum muticum: 10.1016/0305-1978(92)90050-N
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 27967 - Scytosiphon lomentaria: 10.1016/0305-1978(92)90050-N
- 867400 - Selenicereus ocamponis: 10.1016/J.PHYTOCHEM.2006.10.002
- 1789637 - Selenicereus purpusii: 10.1016/J.PHYTOCHEM.2006.10.002
- 176265 - Selenicereus undatus: 10.1016/J.PHYTOCHEM.2006.10.002
- 382 - Sinorhizobium meliloti: 10.1021/ACSSYNBIO.8B00158
- 3562 - Spinacia oleracea: 10.1002/PCA.639
- 196632 - Spyridia filamentosa: 10.1016/0305-1978(92)90050-N
- 1157084 - Staurogyne lasiobotrys: 10.1016/0031-9422(88)87029-8
- 262984 - Strobilanthes anisophylla: 10.1016/0031-9422(88)87029-8
- 259415 - Strobilanthes isophylla: 10.1016/0031-9422(88)87029-8
- 1749385 - Strobilanthes persicifolia: 10.1016/0031-9422(88)87029-8
- 224153 - Suaeda aegyptiaca: 10.2307/4117899
- 224168 - Suaeda fruticosa: 10.2307/4117899
- 397272 - Suaeda glauca: 10.1002/PCA.639
- 126913 - Suaeda maritima:
- 224180 - Suaeda nigra: 10.2307/4117899
- 1494406 - Suaeda pruinosa: 10.2307/4117899
- 169241 - Suaeda vera: 10.2307/4117899
- 224191 - Suaeda vermiculata: 10.2307/4117899
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 279020 - Tecticornia doleiformis: 10.1002/PCA.639
- 35128 - Thalassiosira pseudonana: 10.1016/J.PROTIS.2019.05.004
- 32198 - Thunbergia alata: 10.1016/0031-9422(88)87029-8
- 139222 - Thunbergia mysorensis: 10.1016/0031-9422(88)87029-8
- 49576 - Torilis japonica: 10.1248/CPB.46.1583
- 5325 - Trametes versicolor: 10.1016/S0305-1978(02)00034-0
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 2508993 - Vertebrata byssoides: 10.1016/0305-1978(92)90050-N
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 664413 - Westringia rigida: 10.1002/PCA.639
- 326968 - Ziziphus jujuba: 10.1002/PCA.639
- 33090 - 地骨皮: -
- 33090 - 甜菜: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qiyan Lin, Xiyu Ge, Leilei Gao, Yanjun Chen, Ting Su, Menghua Ma, Huijun Wang, Cunwu Chen, Bangxing Han, Dong Liu. Betaine alleviates spermatogenic cells apoptosis of oligoasthenozoospermia rat model by up-regulating methyltransferases and affecting DNA methylation.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jul; 129(?):155713. doi:
10.1016/j.phymed.2024.155713
. [PMID: 38735196] - Jianhua Zhao, Yuhui Xu, Haoxia Li, Wei An, Yue Yin, Bin Wang, Liping Wang, Bi Wang, Linyuan Duan, Xiaoyue Ren, Xiaojie Liang, Yajun Wang, Ru Wan, Ting Huang, Bo Zhang, Yanlong Li, Jie Luo, Youlong Cao. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium).
Plant biotechnology journal.
2024 Jun; 22(6):1435-1452. doi:
10.1111/pbi.14278
. [PMID: 38194521] - Sakthi Uma Devi Eswaran, Lalitha Sundaram, Kahkashan Perveen, Najat A Bukhari, R Z Sayyed. Osmolyte-producing microbial biostimulants regulate the growth of Arachis hypogaea L. under drought stress.
BMC microbiology.
2024 May; 24(1):165. doi:
10.1186/s12866-024-03320-6
. [PMID: 38745279] - Hongxia Zhang, Yanlin Li, Jian Ling, Jianlong Zhao, Yan Li, Zhenchuan Mao, Xinyue Cheng, Bingyan Xie. NRPS-like ATRR in Plant-Parasitic Nematodes Involved in Glycine Betaine Metabolism to Promote Parasitism.
International journal of molecular sciences.
2024 Apr; 25(8):. doi:
10.3390/ijms25084275
. [PMID: 38673861] - Gaoxiao Xu, Hongyuan Pan, Liping Fan, Lifang Zhang, Jian Li, Shimei Cheng, Libing Meng, Nana Shen, Yong Liu, Yixing Li, Tengda Huang, Lei Zhou. Dietary Betaine Improves Glucose Metabolism in Obese Mice.
The Journal of nutrition.
2024 Apr; 154(4):1309-1320. doi:
10.1016/j.tjnut.2024.02.025
. [PMID: 38417550] - Viktor Filatov, Anna Sokolova, Natalya Savitskaya, Mariya Olkhovskaya, Andrey Varava, Egor Ilin, Elizaveta Patronova. Synergetic Effects of Aloe Vera Extract with Trimethylglycine for Targeted Aquaporin 3 Regulation and Long-Term Skin Hydration.
Molecules (Basel, Switzerland).
2024 Mar; 29(7):. doi:
10.3390/molecules29071540
. [PMID: 38611819] - Caleigh M Sawicki, Lorena S Pacheco, Sona Rivas-Tumanyan, Zheyi Cao, Danielle E Haslam, Liming Liang, Katherine L Tucker, Kaumudi Joshipura, Shilpa N Bhupathiraju. Association of Gut Microbiota-Related Metabolites and Type 2 Diabetes in Two Puerto Rican Cohorts.
Nutrients.
2024 Mar; 16(7):. doi:
10.3390/nu16070959
. [PMID: 38612993] - Xinping Dong, Xiaomei Ma, Zhilong Zhao, Miao Ma. Exogenous betaine enhances salt tolerance of Glycyrrhiza uralensis through multiple pathways.
BMC plant biology.
2024 Mar; 24(1):165. doi:
10.1186/s12870-024-04851-w
. [PMID: 38431542] - Daniel Leclerc, Karen E Christensen, Alaina M Reagan, Vafa Keser, Yan Luan, Olga V Malysheva, Brandi Wasek, Teodoro Bottiglieri, Marie A Caudill, Gareth R Howell, Rima Rozen. Folate Deficiency and/or the Genetic Variant Mthfr677C >T Can Drive Hepatic Fibrosis or Steatosis in Mice, in a Sex-Specific Manner.
Molecular nutrition & food research.
2024 Mar; 68(5):e2300355. doi:
10.1002/mnfr.202300355
. [PMID: 38327171] - Chengwei Wang, Hao Liu, Hu Lin, Rui Zhong, Hao Li, Jiaxin Liu, Xianglin Luo, Meng Tian. Effect of zwitterionic sulfobetaine incorporation on blood behaviours, phagocytosis, and in vivo biodistribution of pH-responsive micelles with positive charges.
Journal of materials chemistry. B.
2024 Feb; 12(6):1652-1666. doi:
10.1039/d3tb02477f
. [PMID: 38275277] - Wangwang Huang, Yizhuo Hua, Fan Wang, Jia Xu, Lv Yuan, Zhao Jing, Weimin Wang, Yuhua Zhao. Dietary betaine and/or TMAO affect hepatic lipid accumulation and glycometabolism of Megalobrama amblycephala exposed to a high-carbohydrate diet.
Fish physiology and biochemistry.
2024 Feb; 50(1):59-75. doi:
10.1007/s10695-022-01160-7
. [PMID: 36580207] - Youlan Che, Tian Xia, Hui Liu, Cong Li, Siyun Liu, Ping Ma, Qingbin Xu, Ru Zhou. Preparation of betaine injection and its therapeutic effect in pulmonary arterial hypertension.
Basic & clinical pharmacology & toxicology.
2024 Feb; 134(2):219-230. doi:
10.1111/bcpt.13966
. [PMID: 38009574] - Agata Pucek-Kaczmarek, Dominika Celary, Urszula Bazylińska. Natural-Origin Betaine Surfactants as Promising Components for the Stabilization of Lipid Carriers.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020955
. [PMID: 38256029] - Lingli Tian, Xiaolu Zhao, Ziying Hu, Jun Liu, Jiao Ma, Yanli Fan, Dunhua Liu. iTRAQ-based proteomics identifies proteins associated with betaine accumulation in Lycium barbarum L.
Journal of proteomics.
2024 Jan; 290(?):105033. doi:
10.1016/j.jprot.2023.105033
. [PMID: 37879564] - Jyoti Sharma, Sandeep Kumar, Vikram Kumar, Pooja Singh, Pradeep Khyalia, Sakshi Saini, Priyanka Sharma, Ajay Kumar, Asha Sharma. Stress-mitigating behavior of glycine betaine to enhance growth performance by suppressing the oxidative stress in Pb-stressed barley genotypes.
Environmental science and pollution research international.
2024 Jan; 31(5):7498-7513. doi:
10.1007/s11356-023-31731-x
. [PMID: 38158536] - Yongxiang Liao, Mengyuan Li, Hezhou Wu, Yingxiu Liao, Jialu Xin, Xinmiao Yuan, Yong Li, Aiji Wei, Xuemei Zou, Daiming Guo, Zhenzhen Xue, Guoxu Zhu, Zhaoning Wang, Peizhou Xu, Hongyu Zhang, Xiaoqiong Chen, Kangxi Du, Hao Zhou, Duo Xia, Asif Ali, Xianjun Wu. Generation of aroma in three-line hybrid rice through CRISPR/Cas9 editing of BETAINE ALDEHYDE DEHYDROGENASE2 (OsBADH2).
Physiologia plantarum.
2024 Jan; 176(1):e14206. doi:
10.1111/ppl.14206
. [PMID: 38356346] - Liang Lai, Mengyun Zhang, Chusheng Liu, Jiahuan Qu, Dongsheng Xu, Zhengjin Jiang. A comprehensive evaluation of a polymeric zwitterionic hydrophilic monolith for nucleotide separation.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2024 Jan; 40(1):85-91. doi:
10.1007/s44211-023-00430-5
. [PMID: 37843729] - Lauren E Louck, Kelly C Cara, Kevin Klatt, Taylor C Wallace, Mei Chung. The Relationship of Circulating Choline and Choline-Related Metabolite Levels with Health Outcomes: A Scoping Review of Genome-Wide Association Studies and Mendelian Randomization Studies.
Advances in nutrition (Bethesda, Md.).
2023 Dec; 15(2):100164. doi:
10.1016/j.advnut.2023.100164
. [PMID: 38128611] - Yuedong Shen, Wenli Zhao, Yangguang Bao, Jiayun Zhu, Lefei Jiao, Xuemei Duan, Tingting Pan, Óscar Monroig, Qicun Zhou, Min Jin. Molecular cloning and characterization of endoplasmic reticulum stress related genes grp78 and atf6α from black seabream (Acanthopagrus schlegelii) and their expressions in response to nutritional regulation.
Fish physiology and biochemistry.
2023 Dec; 49(6):1115-1128. doi:
10.1007/s10695-023-01242-0
. [PMID: 37855969] - Firoozeh Hosseini-Esfahani, Glareh Koochakpoor, Mahdieh Golzarand, Parvin Mirmiran, Fereidoun Azizi. Dietary Intakes of Choline and Betaine and Incidence of Type 2 Diabetes: Tehran Lipid and Glucose Study.
Metabolic syndrome and related disorders.
2023 Dec; 21(10):573-580. doi:
10.1089/met.2023.0096
. [PMID: 37816243] - Stéphanie Bolik, Alexander Schlaich, Tetiana Mukhina, Alberto Amato, Olivier Bastien, Emanuel Schneck, Bruno Demé, Juliette Jouhet. Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants.
BMC biology.
2023 11; 21(1):275. doi:
10.1186/s12915-023-01775-z
. [PMID: 38017456] - Muziri Mugwanya, Fahad Kimera, Anwar Abdelnaser, Hani Sewilam. Coping with Water Stress: Ameliorative Effects of Combined Treatments of Salicylic Acid and Glycine Betaine on the Biometric Traits and Water-Use Efficiency of Onion (Allium cepa) Cultivated under Deficit Drip Irrigation.
Biomolecules.
2023 11; 13(11):. doi:
10.3390/biom13111634
. [PMID: 38002316] - Dhaneshvaree Patel, Poonam Yadav, Sumeet K Singh, Sampat S Tanwar, Abhishek Sehrawat, Amit Khurana, Jasvinder S Bhatti, Umashanker Navik. Betaine alleviates doxorubicin-induced nephrotoxicity by preventing oxidative insults, inflammation, and fibrosis through the modulation of Nrf2/HO-1/NLRP3 and TGF-β expression.
Journal of biochemical and molecular toxicology.
2023 Oct; ?(?):e23559. doi:
10.1002/jbt.23559
. [PMID: 37840533] - Xueying Peng, Qiuli Wang, Duoyong Lang, Yi Li, Wenjin Zhang, Xinhui Zhang. Bacillus cereus G2 Facilitates N Cycle in Soil, Further Improves N Uptake and Assimilation, and Accelerates Proline and Glycine Betaine Metabolisms of Glycyrrhiza uralensis Subjected to Salt Stress.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.3c04936
. [PMID: 37828905] - Ehab A Ibrahim, Noura E S Ebrahim, Gehan Z Mohamed. Effect of water stress and foliar application of chitosan and glycine betaine on lettuce.
Scientific reports.
2023 Oct; 13(1):17274. doi:
10.1038/s41598-023-43992-0
. [PMID: 37828035] - Shan Huang, Si Ying Lim, Sock Hwee Tan, Mark Y Chan, Wuzhong Ni, Sam Fong Yau Li. Targeted Plasma Metabolomics Reveals Association of Acute Myocardial Infarction Risk with the Dynamic Balance between Trimethylamine-N-oxide, Betaine, and Choline.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.2c08241
. [PMID: 37781984] - Fatemeh Gholamian, Naser Karimi, Forouzan Gholamian, Parviz Bayat. Phycoremediation potential and agar yield of red macroalgae (Gracilaria corticata) against HEDP (hydroxyethylidene diphosphonic acid) and CAPB (cocoamidopropyl betaine) detergents and the heavy metal pollutants.
Environmental science and pollution research international.
2023 Aug; ?(?):. doi:
10.1007/s11356-023-29427-3
. [PMID: 37648916] - Hao-Long He, Guo-Shan Zhang, Shan-Feng Xiao, Hong-Hua Liu, Huan Zhong, Xiao-Rong Chang, Qiong Liu, Mi Liu. [Effects of moxibustion at "Tianshu"(ST25) and "Shangjuxu" (ST37) on colonic metabolites and inflammatory factors in rats with Crohn's disease].
Zhen ci yan jiu = Acupuncture research.
2023 Aug; 48(8):736-45. doi:
10.13702/j.1000?0607.20221276
. [PMID: 37614131] - Nikita E Frolov, Anastasia V Shishkina, Mikhail V Vener. Specific Proton-Donor Properties of Glycine Betaine. Metric Parameters and Enthalpy of Noncovalent Interactions in its Dimer, Water Complexes and Crystalline Hydrate.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612971
. [PMID: 37629150] - Alessandre C Crispim, Shirley M A Crispim, Jéssica R Rocha, Jeferson S Ursulino, Roberto R Sobrinho, Viviane A Porto, Edson S Bento, Antônio E G Santana, Luiz C Caetano. Light effects on Lasiodiplodia theobromae metabolome cultured in vitro.
Metabolomics : Official journal of the Metabolomic Society.
2023 08; 19(8):75. doi:
10.1007/s11306-023-02041-7
. [PMID: 37580624] - Ensiye Soleimani, Abnoos Mokhtari Ardekani, Ehsan Fayyazishishavan, Mahdieh Abbasalizad Farhangi. The interactive relationship of dietary choline and betaine with physical activity on circulating creatine kinase (CK), metabolic and glycemic markers, and anthropometric characteristics in physically active young individuals.
BMC endocrine disorders.
2023 Jul; 23(1):158. doi:
10.1186/s12902-023-01413-3
. [PMID: 37491240] - Jelena Vladić, Strahinja Kovačević, Krunoslav Aladić, Stela Jokić, Sanja Radman, Sanja Podunavac-Kuzmanović, Ana Rita C Duarte, Igor Jerković. Innovative Strategy for Aroma Stabilization Using Green Solvents: Supercritical CO2 Extracts of Satureja montana Dispersed in Deep Eutectic Solvents.
Biomolecules.
2023 07; 13(7):. doi:
10.3390/biom13071126
. [PMID: 37509162] - Qing Li, Xiao Wang, Zhuangzhuang Sun, Yixin Wu, Maguje Masa Malkodslo, Jiakun Ge, Zihan Jing, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. DNA methylation levels of TaP5CS and TaBADH are associated with enhanced tolerance to PEG-induced drought stress triggered by drought priming in wheat.
Plant physiology and biochemistry : PPB.
2023 Jul; 200(?):107769. doi:
10.1016/j.plaphy.2023.107769
. [PMID: 37263071] - Tatyana V Sikorskaya. Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids.
Marine drugs.
2023 May; 21(6):. doi:
10.3390/md21060335
. [PMID: 37367660] - Esra Tuğçe Gül, Osman Olgun, Gözde Kılınç, Alpönder Yıldız, Ainhoa Sarmiento-García. Does the addition of choline and/or betaine to diets reduce the methionine requirements of laying quails? Assessment of performance and egg antioxidant capacity.
Poultry science.
2023 May; 102(8):102816. doi:
10.1016/j.psj.2023.102816
. [PMID: 37302323] - Tianhang Niu, Jing Zhang, Jing Li, Xiaoping Gao, Hongyan Ma, Yanqiang Gao, Youlin Chang, Jianming Xie. Effects of exogenous glycine betaine and cycloleucine on photosynthetic capacity, amino acid composition, and hormone metabolism in Solanum melongena L.
Scientific reports.
2023 May; 13(1):7626. doi:
10.1038/s41598-023-34509-w
. [PMID: 37165051] - S B Potts, K M Brady, C M Scholte, K M Moyes, N E Sunny, R A Erdman. Rumen-protected choline and methionine during the periparturient period affect choline metabolites, amino acids, and hepatic expression of genes associated with one-carbon and lipid metabolism.
Journal of dairy science.
2023 May; ?(?):. doi:
10.3168/jds.2022-22334
. [PMID: 37173256] - Yue Jing, Jian Zhou, Fenghua Guo, Lin Yu, Xiaomeng Ren, Xiushan Yin. Betaine regulates adipogenic and osteogenic differentiation of hAD-MSCs.
Molecular biology reports.
2023 Apr; ?(?):. doi:
10.1007/s11033-023-08404-6
. [PMID: 37101008] - Yujie Qu, Zhan Bian, Jaime A Teixeira da Silva, Quandong Nong, Wenran Qu, Guohua Ma. A Cloned Gene HuBADH from Hylocereus undatus Enhanced Salt Stress Tolerance in Transgenic Arabidopsis thaliana Plants.
Frontiers in bioscience (Landmark edition).
2023 04; 28(4):78. doi:
10.31083/j.fbl2804078
. [PMID: 37114532] - Marko Kebert, Saša Kostić, Srđan Stojnić, Eleonora Čapelja, Anđelina Gavranović Markić, Martina Zorić, Lazar Kesić, Victor Flors. A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087510
. [PMID: 37108671] - Aisha Zaki, Shouqun Jiang, Saad Zaghloul, Talaat K El-Rayes, Ahmed A Saleh, Mahmoud Mostafa Azzam, Marco Ragni, Mahmoud Alagawany. Betaine as an alternative feed additive to choline and its effect on performance, blood parameters, and egg quality in laying hens rations.
Poultry science.
2023 Apr; 102(7):102710. doi:
10.1016/j.psj.2023.102710
. [PMID: 37148572] - Saad Hanif, Muhammad Zia. Glycine betaine capped ZnO NPs eliminate oxidative stress to coriander plants grown under NaCl presence.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107651. doi:
10.1016/j.plaphy.2023.107651
. [PMID: 36989991] - Jin Quan, Xinyuan Li, Zewei Li, Meifang Wu, Biao Zhu, Seung-Beom Hong, Jiang Shi, Zhujun Zhu, Liai Xu, Yunxiang Zang. Transcriptomic Analysis of Heat Stress Response in Brassica rapa L. ssp. pekinensis with Improved Thermotolerance through Exogenous Glycine Betaine.
International journal of molecular sciences.
2023 Mar; 24(7):. doi:
10.3390/ijms24076429
. [PMID: 37047402] - Qura Tul Ain, Kiran Siddique, Sami Bawazeer, Iftikhar Ali, Maham Mazhar, Rabia Rasool, Bismillah Mubeen, Farman Ullah, Ahsanullah Unar, Tassadaq Hussain Jafar. Adaptive mechanisms in quinoa for coping in stressful environments: an update.
PeerJ.
2023; 11(?):e14832. doi:
10.7717/peerj.14832
. [PMID: 36883058] - Huaizheng Ren, Sai Li, Bo Wang, Yanyan Zhang, Tian Wang, Qiang Lv, Xiangyu Zhang, Lei Wang, Xiao Han, Fan Jin, Changyuan Bao, Pengfei Yan, Nan Zhang, Dianlong Wang, Tao Cheng, Huakun Liu, Shixue Dou. Molecular-Crowding Effect Mimicking Cold-Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range.
Advanced materials (Deerfield Beach, Fla.).
2023 Jan; 35(1):e2208237. doi:
10.1002/adma.202208237
. [PMID: 36239267] - L C Souza, G G T N Monteiro, R K M Marinho, E F L Souza, S C F Oliveira, A C S Ferreira, C F Oliveira Neto, R S Okumura, L C Souza. Nitrogen metabolism in maize plants submitted to drought, brassinosteroids and azospirillum.
Brazilian journal of biology = Revista brasleira de biologia.
2023; 83(?):e276264. doi:
10.1590/1519-6984.276264
. [PMID: 37937632] - Saqib Bilal, Raheem Shahzad, Sajjad Asaf, Muhammad Imran, Ahmed Al-Harrasi, In-Jung Lee. Efficacy of endophytic SB10 and glycine betaine duo in alleviating phytotoxic impact of combined heat and salinity in Glycine max L. via regulation of redox homeostasis and physiological and molecular responses.
Environmental pollution (Barking, Essex : 1987).
2023 Jan; 316(Pt 2):120658. doi:
10.1016/j.envpol.2022.120658
. [PMID: 36379292] - Alexandra Rankovic, Hannah Godfrey, Caitlin E Grant, Anna K Shoveller, Marica Bakovic, Gordon Kirby, Adronie Verbrugghe. Serum metabolomic analysis of the dose-response effect of dietary choline in overweight male cats fed at maintenance energy requirements.
PloS one.
2023; 18(1):e0280734. doi:
10.1371/journal.pone.0280734
. [PMID: 36689425] - Hao Zhang, Ke Zhang, Tongtong Liu, Ying Zhang, Ziyan Tang, Jingao Dong, Fengru Wang. The characterization and expression analysis under stress conditions of PCST1 in Arabidopsis.
Plant signaling & behavior.
2022 Dec; 17(1):2134675. doi:
10.1080/15592324.2022.2134675
. [PMID: 36281762] - Laura Díez-Ricote, Rodrigo San-Cristobal, M José Concejo, Miguel Á Martínez-González, Dolores Corella, Jordi Salas-Salvadó, Albert Goday, J Alfredo Martínez, Ángel M Alonso-Gómez, Julia Wärnberg, Jesús Vioque, Dora Romaguera, José López-Miranda, Ramon Estruch, Francisco J Tinahones, José Lapetra, Lluís Serra-Majem, Aurora Bueno-Cavanillas, Josep A Tur, Vicente Martín Sánchez, Xavier Pintó, José J Gaforio, Pilar Matía-Martín, Josep Vidal, Sebastián Mas Fontao, Emilio Ros, Zenaida Vázquez-Ruiz, Carolina Ortega-Azorín, Jesús F García-Gavilán, Mireia Malcampo, Diego Martínez-Urbistondo, Lucas Tojal-Sierra, Antonio García Rodríguez, Nuria Gómez-Bellvert, Alice Chaplin, Antonio García-Ríos, Rosa M Bernal-López, José M Santos-Lozano, Javier Basterra-Gortari, José V Sorlí, Michelle Murphy, Griselda Gasulla, Víctor Micó, Itziar Salaverria-Lete, Estibaliz Goñi Ochandorena, Nancy Babio, Xavier Herraiz, José M Ordovás, Lidia Daimiel. One-year longitudinal association between changes in dietary choline or betaine intake and cardiometabolic variables in the PREvención con DIeta MEDiterránea-Plus (PREDIMED-Plus) trial.
The American journal of clinical nutrition.
2022 12; 116(6):1565-1579. doi:
10.1093/ajcn/nqac255
. [PMID: 36124652] - Qiuli Wang, Xueying Peng, Duoyong Lang, Xin Ma, Xinhui Zhang. Physio-biochemical and transcriptomic analysis reveals that the mechanism of Bacillus cereus G2 alleviated oxidative stress of salt-stressed Glycyrrhiza uralensis Fisch. seedlings.
Ecotoxicology and environmental safety.
2022 Dec; 247(?):114264. doi:
10.1016/j.ecoenv.2022.114264
. [PMID: 36334340] - Iraj Yaghoubian, Seyed Ali Mohammad Modarres-Sanavy, Donald L Smith. Plant growth promoting microorganisms (PGPM) as an eco-friendly option to mitigate water deficit in soybean (Glycine max L.): Growth, physio-biochemical properties and oil content.
Plant physiology and biochemistry : PPB.
2022 Nov; 191(?):55-66. doi:
10.1016/j.plaphy.2022.09.013
. [PMID: 36183672] - Larissa Balabanova, Iuliia Pentekhina, Olga Nedashkovskaya, Anton Degtyarenko, Valeria Grigorchuk, Yulia Yugay, Elena Vasyutkina, Olesya Kudinova, Aleksandra Seitkalieva, Lubov Slepchenko, Oksana Son, Liudmila Tekutyeva, Yury Shkryl. Shift of Choline/Betaine Pathway in Recombinant Pseudomonas for Cobalamin Biosynthesis and Abiotic Stress Protection.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232213934
. [PMID: 36430408] - Witold Stachowiak, Mikołaj Smolibowski, Damian Krystian Kaczmarek, Tomasz Rzemieniecki, Michał Niemczak. Toward revealing the role of the cation in the phytotoxicity of the betaine-based esterquats comprising dicamba herbicide.
The Science of the total environment.
2022 Nov; 845(?):157181. doi:
10.1016/j.scitotenv.2022.157181
. [PMID: 35817095] - Tanya L France, William A Myers, Awais Javaid, Ian R Frost, Joseph W McFadden. Changes in plasma and milk choline metabolite concentrations in response to the provision of various rumen-protected choline prototypes in lactating dairy cows.
Journal of dairy science.
2022 Nov; 105(12):9509-9522. doi:
10.3168/jds.2021-21615
. [PMID: 36241441] - Nara R B Cônsolo, Juliana Silva, Vicente M Buarque, Luis C Barbosa, Angel H Padilla, Luiz A Colnago, Arlindo Saran Netto, David E Gerrard, Saulo L Silva. Metabolomic signature of genetic potential for muscularity in beef cattle.
Animal biotechnology.
2022 Nov; 33(6):1308-1317. doi:
10.1080/10495398.2021.1894164
. [PMID: 34057399] - Wenjing Wang, Anran Liu, Xiancao Chen, Xiaoyan Zheng, Wenting Fu, Gang Wang, Jing Ji, Chao Jin, Chunfeng Guan. The potential role of betaine in enhancement of microbial-assisted phytoremediation of benzophenone-3 contaminated soil.
Chemosphere.
2022 Nov; 307(Pt 1):135783. doi:
10.1016/j.chemosphere.2022.135783
. [PMID: 35868529] - Ayşe Çakır Gündoğdu, Fatih Kar, Cansu Özbayer. Investigation of the Gastroprotective Effect of Betaine-Homocysteine Homeostasis on Oxidative Stress, Inflammation and Apoptosis in Ethanol-Induced Ulcer Model.
Journal of investigative surgery : the official journal of the Academy of Surgical Research.
2022 Nov; 35(11-12):1806-1817. doi:
10.1080/08941939.2022.2126566
. [PMID: 36154440] - Ji-Ying Pei, Wen-Feng Yu, Jing-Jing Zhang, Ting-Hao Kuo, Hsin-Hsiang Chung, Jun-Jie Hu, Cheng-Chih Hsu, Ke-Fu Yu. Mass spectrometry-based metabolomic signatures of coral bleaching under thermal stress.
Analytical and bioanalytical chemistry.
2022 Nov; 414(26):7635-7646. doi:
10.1007/s00216-022-04294-y
. [PMID: 36059041] - Memoona Khalid, Hafiz Mamoon Rehman, Nisar Ahmed, Sehar Nawaz, Fozia Saleem, Shakeel Ahmad, Muhammad Uzair, Iqrar Ahmad Rana, Rana Muhammad Atif, Qamar U Zaman, Hon-Ming Lam. Using Exogenous Melatonin, Glutathione, Proline, and Glycine Betaine Treatments to Combat Abiotic Stresses in Crops.
International journal of molecular sciences.
2022 Oct; 23(21):. doi:
10.3390/ijms232112913
. [PMID: 36361700] - Bo Yang, Hongqing Yin, Jianwei Wang, Jiali Gan, Jingfang Li, Rui Han, Ming Pei, Lili Song, Hongtao Yang. A metabolic biomarker panel of restless legs syndrome in peritoneal dialysis patients.
Metabolomics : Official journal of the Metabolomic Society.
2022 10; 18(11):79. doi:
10.1007/s11306-022-01938-z
. [PMID: 36260187] - Laura Díez-Ricote, Paloma Ruiz-Valderrey, Víctor Micó, Ruth Blanco, Joao Tomé-Carneiro, Alberto Dávalos, José M Ordovás, Lidia Daimiel. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012107
. [PMID: 36292963] - Donya Poursalehi, Keyhan Lotfi, Saeideh Mirzaei, Ali Asadi, Masoumeh Akhlaghi, Parvane Saneei. Association between methyl donor nutrients and metabolic health status in overweight and obese adolescents.
Scientific reports.
2022 10; 12(1):17045. doi:
10.1038/s41598-022-21602-9
. [PMID: 36220981] - Jing Chen, Yuzhi Wang, Senlin Leng, Lu Xu, Zinan Xie. Excellent performance separation of trypsin by novel ternary magnetic composite adsorbent based on betaine-urea- glycerol natural deep eutectic solvent modified MnFe2O4-MWCNTs.
Talanta.
2022 Oct; 248(?):123566. doi:
10.1016/j.talanta.2022.123566
. [PMID: 35653959] - Rungaroon Waditee-Sirisattha, Hakuto Kageyama. Global transcriptome analyses and regulatory mechanisms in Halothece sp. PCC 7418 exposed to abiotic stresses.
Applied microbiology and biotechnology.
2022 Oct; 106(19-20):6641-6655. doi:
10.1007/s00253-022-12163-y
. [PMID: 36104544] - Josephine Yu, D Ross Laybutt, Neil A Youngson, Margaret J Morris. Concurrent betaine administration enhances exercise-induced improvements to glucose handling in obese mice.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2022 10; 32(10):2439-2449. doi:
10.1016/j.numecd.2022.08.012
. [PMID: 36096978] - Manish Jangra, Sarita Devi, Satpal, Neeraj Kumar, Vinod Goyal, Shweta Mehrotra. Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L.
Applied biochemistry and biotechnology.
2022 Oct; 194(10):4400-4423. doi:
10.1007/s12010-022-03853-4
. [PMID: 35320507] - Zhehui Chen, Hui Dong, Yupeng Liu, Ruxuan He, Jinqing Song, Ying Jin, Mengqiu Li, Yi Liu, Xueqin Liu, Hui Yan, Jianguang Qi, Fang Wang, Huijie Xiao, Hong Zheng, Lulu Kang, Dongxiao Li, Yao Zhang, Yanling Yang. Late-onset cblC deficiency around puberty: a retrospective study of the clinical characteristics, diagnosis, and treatment.
Orphanet journal of rare diseases.
2022 09; 17(1):330. doi:
10.1186/s13023-022-02471-x
. [PMID: 36056359] - Bojan Jorgačević, Sanja Stanković, Jelena Filipović, Janko Samardžić, Danijela Vučević, Tatjana Radosavljević. Betaine Modulating MIF-Mediated Oxidative Stress, Inflammation and Fibrogenesis in Thioacetamide-Induced Nephrotoxicity.
Current medicinal chemistry.
2022 08; 29(31):5254-5267. doi:
10.2174/0929867329666220408102856
. [PMID: 35400322] - Monika A Mlodzik-Czyzewska, Anna M Malinowska, Artur Szwengiel, Agata Chmurzynska. Associations of plasma betaine, plasma choline, choline intake, and MTHFR polymorphism (rs1801133) with anthropometric parameters of healthy adults are sex-dependent.
Journal of human nutrition and dietetics : the official journal of the British Dietetic Association.
2022 08; 35(4):701-712. doi:
10.1111/jhn.13046
. [PMID: 35668704] - Natsuki Mori, Toyonobu Usuki. Extraction of essential oils from tea tree (Melaleuca alternifolia) and lemon grass (Cymbopogon citratus) using betaine-based deep eutectic solvent (DES).
Phytochemical analysis : PCA.
2022 Aug; 33(6):831-837. doi:
10.1002/pca.3132
. [PMID: 35557478] - Jingjing Li, Fangfang Li, Na Yu, Zewen Liu. The betaine-dependent remethylation pathway is a homocysteine metabolism pathway associated with the carnivorous feeding habits of spiders.
Insect science.
2022 Aug; 29(4):1047-1058. doi:
10.1111/1744-7917.12976
. [PMID: 34647692] - Xiaowei Xiong, Jian Zhou, Qiang Fu, Xiaowei Xu, Shaobin Wei, Shenghua Yang, Buxing Chen. The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy.
Lipids in health and disease.
2022 Jul; 21(1):60. doi:
10.1186/s12944-022-01673-3
. [PMID: 35864500] - Jonas P de Souza Júnior, Renato de M Prado, Cid N S Campos, Gilmar S Sousa Junior, Kevein R Oliveira, Jairo O Cazetta, Priscila L Gratão. Addition of silicon to boron foliar spray in cotton plants modulates the antioxidative system attenuating boron deficiency and toxicity.
BMC plant biology.
2022 Jul; 22(1):338. doi:
10.1186/s12870-022-03721-7
. [PMID: 35831782] - Xingping Chen, Junyi Luo, Lekai Yang, Yue Guo, Yaotian Fan, Jie Liu, Jiajie Sun, Yongliang Zhang, Qingyan Jiang, Ting Chen, Qianyun Xi. miR-143-Mediated Responses to Betaine Supplement Repress Lipogenesis and Hepatic Gluconeogenesis by Targeting MAT1a and MAPK11.
Journal of agricultural and food chemistry.
2022 Jul; 70(26):7981-7992. doi:
10.1021/acs.jafc.2c02940
. [PMID: 35734958] - Laila Z Awad, Heba S El-Mahallawy, Noha S Abdelnaeim, Manal M A Mahmoud, Amina A Dessouki, Noha I ElBanna. Role of dietary Spirulina platensis and betaine supplementation on growth, hematological, serum biochemical parameters, antioxidant status, immune responses, and disease resistance in Nile tilapia.
Fish & shellfish immunology.
2022 Jul; 126(?):122-130. doi:
10.1016/j.fsi.2022.05.040
. [PMID: 35613669] - Mehrdad Shahbazi, Masoud Tohidfar, Sasan Aliniaeifard, Farzaneh Yazdanpanah, Massimo Bosacchi. Transgenic tobacco co-expressing flavodoxin and betaine aldehyde dehydrogenase confers cadmium tolerance through boosting antioxidant capacity.
Protoplasma.
2022 Jul; 259(4):965-979. doi:
10.1007/s00709-021-01714-1
. [PMID: 34686944] - Ulrike Mütze, Florian Gleich, Sven F Garbade, Céline Plisson, Luis Aldámiz-Echevarría, Francisco Arrieta, Diana Ballhausen, Matthias Zielonka, Danijela Petković Ramadža, Matthias R Baumgartner, Aline Cano, María Concepción García Jiménez, Carlo Dionisi-Vici, Pavel Ješina, Henk J Blom, Maria Luz Couce, Silvia Meavilla Olivas, Karine Mention, Fanny Mochel, Andrew A M Morris, Helen Mundy, Isabelle Redonnet-Vernhet, Saikat Santra, Manuel Schiff, Aude Servais, Isidro Vitoria, Martina Huemer, Viktor Kožich, Stefan Kölker. Postauthorization safety study of betaine anhydrous.
Journal of inherited metabolic disease.
2022 07; 45(4):719-733. doi:
10.1002/jimd.12499
. [PMID: 35358327] - Keisuke Mitsui, Maria E K Lie, Naoki Saito, Koichi Fujiwara, Mizuki Watanabe, Petrine Wellendorph, Satoshi Shuto. Synthesis of γ-Aminobutyric Acid (GABA) Analogues Conformationally Restricted by Bicyclo[3.1.0]hexane/hexene or [4.1.0]Heptane/heptene Backbones as Potent Betaine/GABA Transporter Inhibitors.
Organic letters.
2022 06; 24(23):4151-4154. doi:
10.1021/acs.orglett.2c01346
. [PMID: 35674784] - Matthieu Wargny, Mikaël Croyal, Stéphanie Ragot, Elise Gand, David Jacobi, Jean-Noël Trochu, Xavier Prieur, Cédric Le May, Thomas Goronflot, Bertrand Cariou, Pierre-Jean Saulnier, Samy Hadjadj. Nutritional biomarkers and heart failure requiring hospitalization in patients with type 2 diabetes: the SURDIAGENE cohort.
Cardiovascular diabetology.
2022 06; 21(1):101. doi:
10.1186/s12933-022-01505-9
. [PMID: 35681209] - Yanlin Li, Wenduo Jiang, Yue Feng, Lei Wu, Yimin Jia, Ruqian Zhao. Betaine Alleviates High-Fat Diet-Induced Disruptionof Hepatic Lipid and Iron Homeostasis in Mice.
International journal of molecular sciences.
2022 Jun; 23(11):. doi:
10.3390/ijms23116263
. [PMID: 35682942] - Natsuho Mori, Moeka Ishihara, Hidetaka Tasaki, Tadashi Sankai, Junko Otsuki. The effect of betaine for mouse sperm cryopreservation.
Cryobiology.
2022 06; 106(?):157-159. doi:
10.1016/j.cryobiol.2022.03.006
. [PMID: 35398153] - Halima Abobaker, Nagmeldin A Omer, Yun Hu, Abdulrahman A Idriss, Ruqian Zhao. In ovo injection of betaine promotes adrenal steroidogenesis in pre-hatched chicken fetuses.
Poultry science.
2022 Jun; 101(6):101871. doi:
10.1016/j.psj.2022.101871
. [PMID: 35487119] - Deepti Singh, Chandan Kumar Singh, Dharmendra Singh, Susheel Kumar Sarkar, Saroj Kumar Prasad, Nathi Lal Sharma, Ishwar Singh. Glycine betaine modulates chromium (VI)-induced morpho-physiological and biochemical responses to mitigate chromium toxicity in chickpea (Cicer arietinum L.) cultivars.
Scientific reports.
2022 05; 12(1):8005. doi:
10.1038/s41598-022-11869-3
. [PMID: 35568714] - Amanda M Fretts, Stanley L Hazen, Paul Jensen, Matthew Budoff, Colleen M Sitlani, Meng Wang, Marcia C de Oliveira Otto, Joseph A DiDonato, Yujin Lee, Bruce M Psaty, David S Siscovick, Nona Sotoodehnia, W H Wilson Tang, Heidi Lai, Rozenn N Lemaitre, Dariush Mozaffarian. Association of Trimethylamine N-Oxide and Metabolites With Mortality in Older Adults.
JAMA network open.
2022 05; 5(5):e2213242. doi:
10.1001/jamanetworkopen.2022.13242
. [PMID: 35594043] - Agata Muzsik-Kazimierska, Artur Szwengiel, Grzegorz Nikrandt, Agata Chmurzynska. Lower plasma glutathione, choline, and betaine concentrations are associated with fatty liver in postmenopausal women.
Nutrition research (New York, N.Y.).
2022 05; 101(?):23-30. doi:
10.1016/j.nutres.2022.02.004
. [PMID: 35364359] - Zaira Pardo, Isabel Seiquer, Manuel Lachica, Rosa Nieto, Luis Lara, Ignacio Fernández-Fígares. Exposure of growing Iberian pigs to heat stress and effects of dietary betaine and zinc on heat tolerance.
Journal of thermal biology.
2022 May; 106(?):103230. doi:
10.1016/j.jtherbio.2022.103230
. [PMID: 35636882] - Angela K Boysen, Bryndan P Durham, William Kumler, Rebecca S Key, Katherine R Heal, Laura T Carlson, Ryan D Groussman, E Virginia Armbrust, Anitra E Ingalls. Glycine betaine uptake and metabolism in marine microbial communities.
Environmental microbiology.
2022 05; 24(5):2380-2403. doi:
10.1111/1462-2920.16020
. [PMID: 35466501] - Jean A Hall, Kiran S Panickar, Jeffrey A Brockman, Dennis E Jewell. Cats with Genetic Variants of AGXT2 Respond Differently to a Dietary Intervention Known to Reduce the Risk of Calcium Oxalate Stone Formation.
Genes.
2022 04; 13(5):. doi:
10.3390/genes13050791
. [PMID: 35627178] - Miguel A Matilla, Félix Velando, Ana Tajuelo, David Martín-Mora, Wenhao Xu, Victor Sourjik, José A Gavira, Tino Krell. Chemotaxis of the Human Pathogen Pseudomonas aeruginosa to the Neurotransmitter Acetylcholine.
mBio.
2022 04; 13(2):e0345821. doi:
10.1128/mbio.03458-21
. [PMID: 35254130] - Koji Nagao, Nao Inoue, Keisuke Tsuge, Akira Oikawa, Tomoko Kayashima, Teruyoshi Yanagita. Dried and Fermented Powders of Edible Algae (Neopyropia yezoensis) Attenuate Hepatic Steatosis in Obese Mice.
Molecules (Basel, Switzerland).
2022 Apr; 27(9):. doi:
10.3390/molecules27092640
. [PMID: 35565990] - Dandan Wei, Tianpeng Zhang, Bingquan Wang, Huiling Zhang, Mingyang Ma, Shufen Li, Tony H H Chen, Marian Brestic, Yang Liu, Xinghong Yang. Glycinebetaine mitigates tomato chilling stress by maintaining high-cyclic electron flow rate of photosystem I and stability of photosystem II.
Plant cell reports.
2022 Apr; 41(4):1087-1101. doi:
10.1007/s00299-022-02839-0
. [PMID: 35150305] - Yu Ji, Yanfang Ren, Chuan Han, Wenjia Zhu, Jinyu Gu, Junyu He. Application of exogenous glycinebetaine alleviates lead toxicity in pakchoi (Brassica chinensis L.) by promoting antioxidant enzymes and suppressing Pb accumulation.
Environmental science and pollution research international.
2022 Apr; 29(17):25568-25580. doi:
10.1007/s11356-021-17760-4
. [PMID: 34846666] - Aisha Rehman, Kosha J Mehta. Betaine in ameliorating alcohol-induced hepatic steatosis.
European journal of nutrition.
2022 Apr; 61(3):1167-1176. doi:
10.1007/s00394-021-02738-2
. [PMID: 34817678] - Muhammad Zubair Israr, Wadah Ibrahim, Andrea Salzano, Sarir Sarmad, Michael J Wilde, Rebecca L Cordell, Neil J Greening, Christopher E Brightling, Salman Siddiqui, Toru Suzuki. Association of gut-related metabolites with respiratory symptoms in COVID-19: A proof-of-concept study.
Nutrition (Burbank, Los Angeles County, Calif.).
2022 04; 96(?):111585. doi:
10.1016/j.nut.2021.111585
. [PMID: 35131599] - Mingxing Bai, Wenjing Zeng, Fenqi Chen, Xiangzhuo Ji, Zelong Zhuang, Bingbing Jin, Jiliang Wang, Luhui Jia, Yunling Peng. Transcriptome expression profiles reveal response mechanisms to drought and drought-stress mitigation mechanisms by exogenous glycine betaine in maize.
Biotechnology letters.
2022 Mar; 44(3):367-386. doi:
10.1007/s10529-022-03221-6
. [PMID: 35294695] - Carolyn F McCabe, Jennifer L LaBarre, Steven E Domino, Marjorie C Treadwell, Ana Baylin, Charles F Burant, Dana C Dolinoy, Vasantha Padmanabhan, Jaclyn M Goodrich. Maternal and neonatal one-carbon metabolites and the epigenome-wide infant response.
The Journal of nutritional biochemistry.
2022 03; 101(?):108938. doi:
10.1016/j.jnutbio.2022.108938
. [PMID: 35017001] - Ngai Ying Denise Li, David J Moore, Michael A Thompson, Eloise Welfare, Michael Rappolt. Influence of humectants on the thermotropic behaviour and nanostructure of fully hydrated lecithin bilayers.
Chemistry and physics of lipids.
2022 03; 243(?):105165. doi:
10.1016/j.chemphyslip.2021.105165
. [PMID: 34971600] - Anthea Van Parys, Maria Sandvik Brække, Therese Karlsson, Kathrine J Vinknes, Grethe S Tell, Teresa R Haugsgjerd, Per Magne Ueland, Jannike Øyen, Jutta Dierkes, Ottar Nygård, Vegard Lysne. Assessment of Dietary Choline Intake, Contributing Food Items, and Associations with One-Carbon and Lipid Metabolites in Middle-Aged and Elderly Adults: The Hordaland Health Study.
The Journal of nutrition.
2022 02; 152(2):513-524. doi:
10.1093/jn/nxab367
. [PMID: 34643705]