Xanthine (BioDeep_00000001096)
Secondary id: BioDeep_00000229633, BioDeep_00000400028, BioDeep_00000868735
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C5H4N4O2 (152.0334)
中文名称: 黄嘌呤
谱图信息:
最多检出来源 Homo sapiens(plant) 13.6%
Last reviewed on 2024-06-29.
Cite this Page
Xanthine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/xanthine (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000001096). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=NC2=C(N1)C(=O)NC(=O)N2
InChI: InChI=1S/C5H4N4O2/c10-4-2-3(7-1-6-2)8-5(11)9-4/h1H,(H3,6,7,8,9,10,11)
描述信息
Xanthine, also known as 2,6-dioxopurine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Xanthine is also classified as an oxopurine. An oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. Xanthine exists in all living species, ranging from bacteria to plants to humans. In plants, several stimulants can be derived from xanthine, including caffeine, theophylline, and theobromine. Derivatives of xanthine (known collectively as xanthines) are a group of alkaloids commonly used for their effects as mild stimulants and as bronchodilators, notably in the treatment of asthma or influenza symptoms. Within humans, xanthine participates in a number of enzymatic reactions. In particular, xanthine can be biosynthesized from guanine; which is mediated by the enzyme guanine deaminase. In addition, xanthine and ribose 1-phosphate can be biosynthesized from xanthosine through the action of the enzyme purine nucleoside phosphorylase. In humans and other primates, xanthine can be converted to uric acid by the action of the xanthine oxidase enzyme. People with rare genetic disorders, specifically xanthinuria and Lesch–Nyhan syndrome, lack sufficient xanthine oxidase and cannot convert xanthine to uric acid. Individuals with xanthinuria have unusually high concentrations of xanthine in their blood and urine, which can lead to health problems such as renal failure and xanthine kidney stones. Individuals with Lesch-Nyhan syndrome have a deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The HGPRT deficiency causes a build-up of uric acid in all body fluids. This results in both high levels of uric acid in the blood and urine, associated with severe gout and kidney problems. Neurological signs include poor muscle control and moderate intellectual disability.
9H-xanthine is an oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated. It has a role as a Saccharomyces cerevisiae metabolite. It is a tautomer of a 7H-xanthine.
A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed)
Xanthine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Xanthine is a natural product found in Beta vulgaris, Camellia sinensis var. assamica, and other organisms with data available.
Xanthine is a purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed.).
Xanthine is a metabolite found in or produced by Saccharomyces cerevisiae.
A purine base found in most body tissues and fluids, certain plants, and some urinary calculi. It is an intermediate in the degradation of adenosine monophosphate to uric acid, being formed by oxidation of hypoxanthine. The methylated xanthine compounds caffeine, theobromine, and theophylline and their derivatives are used in medicine for their bronchodilator effects. (Dorland, 28th ed)
An oxopurine in which the purine ring is substituted by oxo groups at positions 2 and 6 and N-9 is protonated.
Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
Xanthine, a plant alkaloid found in tea, coffee, and cocoa, is a mild stimulant of the central nervous system. Xanthine also acts as an intermediate product on the pathway of purine degradation[1][2][3].
同义名列表
70 个代谢物同义名
InChI=1/C5H4N4O2/c10-4-2-3(7-1-6-2)8-5(11)9-4/h1H,(H3,6,7,8,9,10,11); Xanthine, >=99.5\\% (HPLC), purified by recrystallization; 2,3,6,9-tetrahydro-1H-purine-2,6-dione; 2,3,6,7-tetrahydro-1H-purine-2,6-dione; 92AB342E-6550-4B2B-AD76-E75AC1C2EB45; 2,6-Dioxo-1,2,3, 6-tetrahydropurine; 2,6-Dioxo-1,2,3,6-tetrahydropurine; 1H-Purine-2,6-dione, 3,9-dihydro-; 1H-Purine-2,6-dione, 3,7-dihydro-; 2,6-Dihydroxypurine; Isoxanthine; 3,9-dihydro-1H-purine-2,6-dione; 3,7-Dihydro-1H-purine-2,6-dione; 3,7-dihydro-purine-2,6-dione; 3,9-Dihydro-purine-2,6-dione; 3,9-dihydropurine-2,6-dione; 3,7-dihydropurine-2,6-dione; 9H-Purine-2,6-(1H,3H)-dione; 1H-purine-2,6(3H, 7H)-dione; LRFVTYWOQMYALW-UHFFFAOYSA-; 1H-Purine-2,6(3H,7H)-dione; 9H-Purine-2,6(1H,3H)-dione; 1H-purine-2,6(3H,9H)-dione; Xanthine, BioUltra, >=99\\%; Purine-2(3H),6(1H)-dione; 2,2,3,6-tetrahydropurine; Purine-2,6-(1H,3H)-dione; Purine-2,6(1H,3H)-dione; 9H-Purine-2,3H)-dione; Xanthine (VAN) (8CI); Xanthine, p.a., 99\\%; 2,6-Dihydroxypurine; 2,6(1,3)-Purinedion; 9H-Purine-2,6-diol; 1H-Purine-2,6-diol; Purine-2,3H)-dione; 2,6-Dihydroxypurin; 7H-purine-2,6-diol; 2-Oxohypoxanthine; XANTHINE [WHO-DD]; 1H,3H,7H-XANTHINE; 1H,3H,9H-XANTHINE; Xanthine, >=99\\%; Xanthine-13C15N2; XANTHINE [INCI]; Purine-2,6-diol; 2,6-dioxypurine; 2,6-dioxopurine; UNII-1AVZ07U9S7; Xanthine (VAN); Xanthine, 98\\%; Pseudoxanthine; XANTHINE [MI]; Oprea1_474175; Xanthic oxide; Xanthine,(S); Isoxanthine; 9H-xanthine; 7H-xanthine; Dioxopurine; Dioxypurin; 1AVZ07U9S7; USAF CB-17; AI3-52268; Xanthine; Xanthin; 2uz9; XAN; Xanthine; Xanthine; Xanthine
数据库引用编号
31 个数据库交叉引用编号
- ChEBI: CHEBI:48517
- ChEBI: CHEBI:17712
- KEGG: C00385
- KEGGdrug: D71218
- PubChem: 1188
- HMDB: HMDB0000292
- Metlin: METLIN82
- DrugBank: DB02134
- ChEMBL: CHEMBL1424
- Wikipedia: Xanthine
- MeSH: Xanthine
- ChemIDplus: 0000069896
- MetaCyc: XANTHINE
- KNApSAcK: C00019660
- foodb: FDB001977
- chemspider: 1151
- CAS: 69-89-6
- MoNA: RP012502
- MoNA: PR100624
- MoNA: RP012503
- MoNA: RP012501
- medchemexpress: HY-W017389
- PMhub: MS000000628
- MetaboLights: MTBLC17712
- PDB-CCD: XAN
- 3DMET: B00099
- NIKKAJI: J2.371J
- RefMet: Xanthine
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-46
- PubChem: 3675
- KNApSAcK: 17712
分类词条
相关代谢途径
Reactome(6)
BioCyc(20)
- theophylline degradation
- superpathway of purines degradation in plants
- caffeine degradation IV (bacteria, via demethylation and oxidation)
- caffeine degradation III (bacteria, via demethylation)
- salvage pathways of purine nucleosides
- salvage pathways of adenine, hypoxanthine, and their nucleosides
- salvage pathways of purine nucleosides I
- purine nucleotides degradation II (aerobic)
- inosine 5'-phosphate degradation
- theobromine biosynthesis II (via xanthine)
- caffeine degradation I (main, plants)
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- salvage pathways of guanine, xanthine, and their nucleosides
- guanosine nucleotides degradation
- purine nucleotides degradation
- purine ribonucleosides degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- guanosine nucleotides degradation III
PlantCyc(11)
- superpathway of purines degradation in plants
- Organic Nitrogen Assimilation
- inosine 5'-phosphate degradation
- adenosine nucleotides degradation I
- ureide biosynthesis
- purine nucleotides degradation I (plants)
- guanosine nucleotides degradation II
- nucleobase ascorbate transport I
- urate conversion to allantoin I
- superpathway of guanosine nucleotides degradation (plants)
- guanosine nucleotides degradation I
代谢反应
1203 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Purine catabolism:
H2O + Hyp + Oxygen ⟶ H2O2 + XAN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Nucleotide metabolism:
CAP + L-Asp ⟶ N-carb-L-Asp + Pi
- Purine metabolism:
ATP + CAIR + L-Asp ⟶ ADP + Pi + SAICAR
- Urate synthesis:
Ino + Pi ⟶ Hyp + R1P
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Purine catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
G, dG + Pi ⟶ Gua + R1P, dRibP
- Purine catabolism:
G, dG + Pi ⟶ Gua + R1P, dRibP
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H2O + dGMP ⟶ 2DORP + Gua
- Purine catabolism:
H2O + dGMP ⟶ 2DORP + Gua
BioCyc(189)
- salvage pathways of purine nucleosides:
H2O + adenine ⟶ ammonia + hypoxanthine
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation I:
AMP + H2O ⟶ ammonia + inosine-5'-phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanine ⟶ ammonia + xanthine
- purine nucleotides degradation I (plants):
H2O + guanine ⟶ ammonia + xanthine
- guanosine nucleotides degradation I:
H2O + guanosine ⟶ ammonia + xanthosine
- adenosine nucleotides degradation I:
AMP + H2O ⟶ IMP + ammonia
- theophylline degradation:
theophylline ⟶ 1,3-dimethylurate
- theobromine biosynthesis II (via xanthine):
3-methylxanthine + SAM ⟶ H+ + SAH + theobromine
- caffeine degradation I (main, plants):
a demethylated methyl donor + theophylline ⟶ 3-methylxanthine + a methylated methyl donor
- caffeine degradation IV (bacteria, via demethylation and oxidation):
H+ + NAD(P)H + O2 + caffeine ⟶ H2O + NAD(P)+ + formaldehyde + paraxanthine
- caffeine degradation III (bacteria, via demethylation):
H+ + NAD(P)H + O2 + caffeine ⟶ H2O + NAD(P)+ + formaldehyde + paraxanthine
- guanosine nucleotides degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation:
AMP + H2O ⟶ adenosine + phosphate
- purine nucleotides degradation II (aerobic):
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- ureide biosynthesis:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation II (aerobic):
AMP + H2O ⟶ adenosine + phosphate
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- salvage pathways of guanine, xanthine, and their nucleosides:
H2O + guanine ⟶ ammonia + xanthine
- urate biosynthesis:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + xanthine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + xanthine
- urate biosynthesis/inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation II (aerobic):
H2O + adenosine ⟶ ammonia + inosine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ 5-phospho-α-D-ribose 1-diphosphate + xanthine
- purine nucleotides degradation II (aerobic):
H2O + adenosine ⟶ ammonia + inosine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- salvage pathways of purine nucleosides I:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine nucleotides degradation I (plants):
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleobases degradation I (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- purine nucleobases degradation II (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- salvage pathways of guanine, xanthine and their nucleosides:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purine nucleosides salvage:
AMP + diphosphate ⟶ PRPP + adenine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanine ⟶ ammonia + xanthine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- purine nucleobases degradation I (anaerobic):
ATP + acetate ⟶ ADP + acetyl phosphate
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation II (aerobic):
AMP + H2O ⟶ adenosine + phosphate
- purine nucleotides degradation III (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- purine nucleotides degradation IV (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- purine nucleotides degradation IV (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine nucleotides degradation IV (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- purine nucleotides degradation III (anaerobic):
acetylphosphate + ammonia + an oxidized thioredoxin ⟶ a reduced thioredoxin + gly + phosphate
- guanosine nucleotides degradation III:
H2O + guanine ⟶ ammonia + xanthine
- purine nucleobases degradation II (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine nucleobases degradation I (anaerobic):
4-ureido-5-imidazole carboxylate + H2O + H+ ⟶ 4-amino-5-imidazole carboxylate + CO2 + ammonia
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation II (aerobic):
H+ + H2O + adenosine ⟶ ammonium + inosine
- purine nucleobases degradation I (anaerobic):
ATP + acetate ⟶ ADP + acetyl phosphate
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- urate biosynthesis/inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine ribonucleosides degradation:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- inosine 5'-phosphate degradation:
H2O + XMP ⟶ phosphate + xanthosine
- ureide biosynthesis:
(S)-5-hydroxyisourate + H2O ⟶ (S)-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline + H+
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation to ribose-1-phosphate:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation:
H+ + H2O + adenosine ⟶ ammonium + inosine
- inosine 5'-phosphate degradation:
H2O + XMP ⟶ phosphate + xanthosine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- urate biosynthesis/inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
H+ + H2O + adenosine ⟶ ammonium + inosine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation I:
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- ureide biosynthesis:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- urate biosynthesis/inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + xanthosine ⟶ D-ribofuranose + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- ureide biosynthesis:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- urate biosynthesis/inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- urate biosynthesis/inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- purine ribonucleosides degradation:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- urate biosynthesis/inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- adenosine nucleotides degradation:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
inosine + phosphate ⟶ α-D-ribose-1-phosphate + hypoxanthine
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- salvage pathways of adenine, hypoxanthine, and their nucleosides:
adenosine + phosphate ⟶ α-D-ribose-1-phosphate + adenine
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
- adenosine nucleotides degradation II:
H2O + adenosine ⟶ ammonia + inosine
- adenosine nucleotides degradation II:
H2O + adenosine ⟶ ammonia + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
- adenosine nucleotides degradation II:
H+ + H2O + adenosine ⟶ ammonium + inosine
WikiPathways(5)
- Purine metabolism:
P1,P4-Bis(5'-xanthosyl) tetraphosphate ⟶ XTP
- Purine metabolism and related disorders:
Adenine ⟶ AMP
- Molybdenum cofactor (Moco) biosynthesis:
Xanthine ⟶ urate
- Purine metabolism:
Adenine ⟶ AMP
- Caffeine and theobromine metabolism:
1,7-dimethyluric acid ⟶ 7-methyluric acid
Plant Reactome(210)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + IMP + NAD ⟶ NADH + XMP
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H imidazole-5-carboxylate ⟶ allantoin + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + dioxygen + urate ⟶ 5-hydroxyisourate + H2O2
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Nucleotide metabolism:
ATP + R5P ⟶ AMP + PRPP
- ureide biogenesis:
H2O + allantoin ⟶ H+ + allantoate
INOH(3)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- XMP + Pyrophosphate = Xanthine + D-5-Phospho-ribosyl 1-diphosphate ( Purine nucleotides and Nucleosides metabolism ):
D-5-Phospho-ribosyl 1-diphosphate + Xanthine ⟶ Pyrophosphate + XMP
- Xanthosine + Orthophosphate = Xanthine + D-Ribose 1-phosphate ( Purine nucleotides and Nucleosides metabolism ):
Orthophosphate + Xanthosine ⟶ D-Ribose 1-phosphate + Xanthine
PlantCyc(673)
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- nucleobase ascorbate transport I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- ureide biosynthesis:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- inosine 5'-phosphate degradation:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- ureide biosynthesis:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- Organic Nitrogen Assimilation:
H2O + O2 + urate ⟶ CO2 + allantoin + hydrogen peroxide
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of purines degradation in plants:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- guanosine nucleotides degradation II:
H2O + guanosine ⟶ D-ribofuranose + guanine
- purine nucleotides degradation I (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- superpathway of guanosine nucleotides degradation (plants):
H2O + guanosine ⟶ D-ribofuranose + guanine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- guanosine nucleotides degradation I:
H+ + H2O + guanosine ⟶ ammonium + xanthosine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + IMP ⟶ inosine + phosphate
- adenosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- adenosine nucleotides degradation I:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- ureide biosynthesis:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- guanosine nucleotides degradation II:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- Organic Nitrogen Assimilation:
NAD+ + glu ⟶ 2-oxoglutarate + H+ + NADH + gln
- caffeine degradation I (main, plants):
3-methylxanthine + H+ + NAD(P)H + O2 ⟶ H2O + NAD(P)+ + formaldehyde + xanthine
- guanosine nucleotides degradation I:
GMP + H2O ⟶ guanosine + phosphate
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- adenosine nucleotides degradation I:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- caffeine degradation I (main, plants):
a demethylated methyl donor + caffeine ⟶ a methylated methyl donor + theophylline
- guanosine nucleotides degradation II:
H+ + H2O + guanine ⟶ ammonium + xanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- Organic Nitrogen Assimilation:
H+ + H2O + adenine ⟶ ammonium + hypoxanthine
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- guanosine nucleotides degradation III:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- purine nucleotides degradation I (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- superpathway of guanosine nucleotides degradation (plants):
H+ + H2O + guanine ⟶ ammonium + xanthine
- inosine 5'-phosphate degradation:
H2O + NAD+ + xanthine ⟶ H+ + NADH + urate
- xanthine and xanthosine salvage:
phosphate + xanthosine ⟶ α-D-ribose-1-phosphate + xanthine
- xanthine and xanthosine salvage:
XMP + diphosphate ⟶ PRPP + xanthine
- adenosine nucleotides degradation II:
AMP + H2O ⟶ adenosine + phosphate
COVID-19 Disease Map(2)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(49)
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Ribonucleosides Degradation:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenosine Nucleotides Degradation:
Adenosine monophosphate + Water ⟶ Adenosine + Phosphate
- AMP Degradation (Hypoxanthine Route):
Adenosine monophosphate + Hydrogen Ion + Water ⟶ Ammonium + Inosinic acid
PharmGKB(0)
13 个相关的物种来源信息
- 161934 - Beta vulgaris: 10.1515/BCHM2.1904.41.6.535
- 261999 - Camellia sinensis var. assamica: 10.1016/S0031-9422(02)00086-9
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 265763 - Eleutherococcus giraldii: 10.1016/J.BSE.2012.02.004
- 6536 - Helix pomatia: 10.1515/BCHM2.1963.332.1.319
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 33090 - Plants: -
- 28901 - Salmonella enterica: 10.1039/C3MB25598K
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 264060 - Velella velella: 10.1515/BCHM2.1926.161.4-6.300
- 714518 - Ziziphus jujuba var. spinosa: 10.1016/J.CHROMA.2013.05.074
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yanfen Zheng, Xuwen Cao, Yanan Zhou, Siqi Ma, Youqiang Wang, Zhe Li, Donglin Zhao, Yanzhe Yang, Han Zhang, Chen Meng, Zhihong Xie, Xiaona Sui, Kangwen Xu, Yiqiang Li, Cheng-Sheng Zhang. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress.
Nature communications.
2024 Apr; 15(1):3520. doi:
10.1038/s41467-024-47773-9
. [PMID: 38664402] - Ningxia Xu, Meng Xiao, Zipei Yu, Baohui Jin, Mengsu Yang, Changqing Yi. On-site quantitation of xanthine in fish and serum using a smartphone-based spectrophotometer integrated with a dual-readout nanosensing assay.
Food chemistry.
2024 Jan; 431(?):137107. doi:
10.1016/j.foodchem.2023.137107
. [PMID: 37562333] - Monika Kubacka, Szczepan Mogilski, Marek Bednarski, Krzysztof Pociecha, Artur Świerczek, Noemi Nicosia, Jakub Schabikowski, Michał Załuski, Grażyna Chłoń-Rzepa, Jörg Hockemeyer, Christa E Müller, Katarzyna Kieć-Kononowicz, Magdalena Kotańska. Antiplatelet Effects of Selected Xanthine-Based Adenosine A2A and A2B Receptor Antagonists Determined in Rat Blood.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713378
. [PMID: 37686188] - Xiaoyan Feng, Hongkun Ma, Lina Zou, Yingyao Wang, Yannan Zhang, Yan Wang, Jiaxin Chen, Hongzhi Pan, Shengzhong Rong. Determination of purines in prepackaged food using optimum acid hydrolysis followed by high performance liquid chromatography.
Food chemistry.
2023 Aug; 417(?):135813. doi:
10.1016/j.foodchem.2023.135813
. [PMID: 36913870] - Ahlam Majid Azeez, Mahmoud Hussain Hadwan. Simple assay for quantifying xanthine oxidase activity.
Analytical biochemistry.
2023 May; 673(?):115192. doi:
10.1016/j.ab.2023.115192
. [PMID: 37225068] - Mihaya Kotajima, Jae-Hoon Choi, Tomohiro Suzuki, Jing Wu, Hirofumi Hirai, David C Nelson, Hitoshi Ouchi, Makoto Inai, Hideo Dohra, Hirokazu Kawagishi. The role of xanthine dioxygenase in the biosynthetic pathway of 2-aza-8-oxohypoxanthine of Lepista sordida.
Bioscience, biotechnology, and biochemistry.
2023 Jan; ?(?):. doi:
10.1093/bbb/zbad005
. [PMID: 36756780] - Peiyu Wang, Yuyao Yuan, Mantang Qiu. Identification of Plasma Metabolites Associated with Lung Cancer Survival.
Methods in molecular biology (Clifton, N.J.).
2023; 2695(?):181-193. doi:
10.1007/978-1-0716-3346-5_12
. [PMID: 37450119] - Shuyun Zhang, Lei Wang, Hang Liu, Na Yang, Shujing Yu, Baolei Wang. Synthesis, Crystal Structures, and Biological Activity Evaluation of Novel Xanthine Derivatives Containing a Pyrethroid Moiety.
Journal of agricultural and food chemistry.
2022 Oct; 70(39):12330-12340. doi:
10.1021/acs.jafc.2c03876
. [PMID: 36148494] - Stefano Fornasaro, Alessandro Esposito, Fiorella Florian, Alberto Pallavicini, Luigina De Leo, Tarcisio Not, Cristina Lagatolla, Marica Mezzarobba, Alessia Di Silvestre, Valter Sergo, Alois Bonifacio. Spectroscopic investigation of faeces with surface-enhanced Raman scattering: a case study with coeliac patients on gluten-free diet.
Analytical and bioanalytical chemistry.
2022 May; 414(11):3517-3527. doi:
10.1007/s00216-022-03975-y
. [PMID: 35258650] - Zhi Luo, Hetao Wang, Simin Lin, Lili Liao, Lishan Cai, Xiaoxu Zhang, Yangying Tan, Mei Shen. Study on the levels of N-nitrosamine compounds and untargeted metabolomics in patients with colorectal cancer.
Analytical and bioanalytical chemistry.
2022 May; 414(11):3483-3496. doi:
10.1007/s00216-022-03969-w
. [PMID: 35174409] - Xuanxuan An, Qin Tan, Shuang Pan, Shujun Zhen, Yongmei Hu, Xiaoli Hu. Determination of xanthine using a ratiometric fluorescence probe based on boron-doped carbon quantum dots and gold nanoclusters.
Mikrochimica acta.
2022 03; 189(4):148. doi:
10.1007/s00604-021-05139-8
. [PMID: 35299262] - Masahiro Ohira, Shou Tanaka, Yasuhiro Watanabe, Shoko Nakamura, Rena Oka, Takashi Yamaguchi, Noriko Ban, Atsuhito Saiki, Noriko Ishihara, Takeyoshi Murano, Takayo Murase, Takashi Nakamura, Ichiro Tatsuno. Association of Plasma Xanthine Oxidoreductase with Arterial Stiffness in Type 2 Diabetes with Liver Dysfunction.
The American journal of the medical sciences.
2022 03; 363(3):242-250. doi:
10.1016/j.amjms.2021.09.011
. [PMID: 34619144] - Sarani Sen, Priyabrata Sarkar. An interference-free new xanthine biosensor based on immobilized enzyme-nanogold conjugate on carbon nanotube doped poly(3,4-Ethylenedioxythiophene) composite film.
International journal of biological macromolecules.
2022 Feb; 199(?):275-286. doi:
10.1016/j.ijbiomac.2021.12.094
. [PMID: 34998885] - Nicole L Vike, Sumra Bari, Khrystyna Stetsiv, Thomas M Talavage, Eric A Nauman, Linda Papa, Semyon Slobounov, Hans C Breiter, Marilyn C Cornelis. Metabolomic response to collegiate football participation: Pre- and Post-season analysis.
Scientific reports.
2022 02; 12(1):3091. doi:
10.1038/s41598-022-07079-6
. [PMID: 35197541] - Yogaraje Gowda C Varadaiah, Senthilkumar Sivanesan, Shivananda B Nayak, Kashinath R Thirumalarao. Purine metabolites can indicate diabetes progression.
Archives of physiology and biochemistry.
2022 Feb; 128(1):87-91. doi:
10.1080/13813455.2019.1663219
. [PMID: 31517540] - Dmitri Svistounov, Marit D Solbu, Trond G Jenssen, Ulla Dorte Mathisen, Terkel Hansen, Katja Benedikte Prestø Elgstøen, Svetlana N Zykova. Development of quantitative assay for simultaneous measurement of purine metabolites and creatinine in biobanked urine by liquid chromatography-tandem mass spectrometry.
Scandinavian journal of clinical and laboratory investigation.
2022 02; 82(1):37-49. doi:
10.1080/00365513.2021.2015799
. [PMID: 35048747] - Katharina J Heinemann, Sun-Young Yang, Henryk Straube, Nieves Medina-Escobar, Marina Varbanova-Herde, Marco Herde, Sangkee Rhee, Claus-Peter Witte. Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase.
Nature communications.
2021 11; 12(1):6846. doi:
10.1038/s41467-021-27152-4
. [PMID: 34824243] - Delphine Sedda, Claire Mackowiak, Julie Pailloux, Elodie Culerier, Ana Dudas, Pauline Rontani, Nicolas Erard, Antoine Lefevre, Sylvie Mavel, Patrick Emond, Frederic Foucher, Marc Le Bert, Valerie F J Quesniaux, Michael J Mihatsch, Bernhard Ryffel, Madeleine Erard-Garcia. Deletion of Mocos Induces Xanthinuria with Obstructive Nephropathy and Major Metabolic Disorders in Mice.
Kidney360.
2021 11; 2(11):1793-1806. doi:
10.34067/kid.0001732021
. [PMID: 35372998] - Lingyu Ruan, Lei Jiang, Wenlong Zhao, Huihui Meng, Qi Zheng, Junsong Wang. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by 1H-NMR metabolomics profiling.
Toxicology and applied pharmacology.
2021 11; 431(?):115734. doi:
10.1016/j.taap.2021.115734
. [PMID: 34606778] - Huilong Xiang, Huan Lei, Ziyuan Liu, Yongjie Liu, Yang Li, Yinsheng Qiu, Lingyun Xu. Network pharmacology and molecular docking analysis on molecular targets: Mechanisms of baicalin and baicalein against hyperuricemic nephropathy.
Toxicology and applied pharmacology.
2021 08; 424(?):115594. doi:
10.1016/j.taap.2021.115594
. [PMID: 34044073] - Liang Yue, Nan Jiang, Anguo Wu, Wenqiao Qiu, Xin Shen, Dalian Qin, Hong Li, Jing Lin, Sicheng Liang, Jianming Wu. Plumbagin can potently enhance the activity of xanthine oxidase: in vitro, in vivo and in silico studies.
BMC pharmacology & toxicology.
2021 07; 22(1):45. doi:
10.1186/s40360-021-00511-z
. [PMID: 34274011] - So Young Yi, Myungjin Lee, Jana Jeevan Rameneni, Lu Lu, Chetan Kaur, Yong Pyo Lim. Xanthine-derived metabolites enhance chlorophyll degradation in cotyledons and seedling growth during nitrogen deficient condition in Brassica rapa.
Plant signaling & behavior.
2021 06; 16(6):1913309. doi:
10.1080/15592324.2021.1913309
. [PMID: 33955825] - Smitha Sivapragasam, Arpita Ghosh, Sanjay Kumar, Danté T Johnson, Anne Grove. Similar solutions to a common challenge: regulation of genes encoding Ralstonia solanacearum xanthine dehydrogenase.
FEMS microbiology letters.
2021 03; 368(4):. doi:
10.1093/femsle/fnab022
. [PMID: 33620442] - Lu Kang, Ju Liu, Hongyang Zhang, Min Jiang, Yidian Jin, Min Zhang, Ping Hu. Improved ultra-high performance liquid chromatographic method for simultaneous determination of five gout-related metabolites in human serum.
Journal of separation science.
2021 Mar; 44(5):954-962. doi:
10.1002/jssc.202000974
. [PMID: 33348445] - Tomoko Okuyama, Jun Shirakawa, Takashi Nakamura, Takayo Murase, Daisuke Miyashita, Ryota Inoue, Mayu Kyohara, Yu Togashi, Yasuo Terauchi. Association of the plasma xanthine oxidoreductase activity with the metabolic parameters and vascular complications in patients with type 2 diabetes.
Scientific reports.
2021 02; 11(1):3768. doi:
10.1038/s41598-021-83234-9
. [PMID: 33580173] - Bin Wei, Sijia Wang, Yakun Wang, Songze Ke, Weihua Jin, Jianwei Chen, Huawei Zhang, Jiadong Sun, Susanne M Henning, Jian Wang, Hong Wang. Gut microbiota-mediated xanthine metabolism is associated with resistance to high-fat diet-induced obesity.
The Journal of nutritional biochemistry.
2021 02; 88(?):108533. doi:
10.1016/j.jnutbio.2020.108533
. [PMID: 33250443] - Dan Li, Fangfang Chen, Na Li, Xiwen Ye, Ying Sun, Pinyi Ma, Daqian Song, Xinghua Wang. Sensitive ratiometric fluorescence assay for detecting xanthine in serum based on the inner filter effect of enzyme-catalyzed oxidation products to silicon nanoparticles.
Analytical and bioanalytical chemistry.
2021 Feb; 413(5):1405-1415. doi:
10.1007/s00216-020-03104-7
. [PMID: 33388845] - Tingting Sun, Tingting Pei, Lulu Yang, Zhijun Zhang, Mingjun Li, Yuerong Liu, Fengwang Ma, Changhai Liu. Exogenous application of xanthine and uric acid and nucleobase-ascorbate transporter MdNAT7 expression regulate salinity tolerance in apple.
BMC plant biology.
2021 Jan; 21(1):52. doi:
10.1186/s12870-021-02831-y
. [PMID: 33468049] - Martin Rübbelke, Dennis Fiegen, Margit Bauer, Florian Binder, James Hamilton, Jim King, Sven Thamm, Herbert Nar, Markus Zeeb. Locking mixed-lineage kinase domain-like protein in its auto-inhibited state prevents necroptosis.
Proceedings of the National Academy of Sciences of the United States of America.
2020 12; 117(52):33272-33281. doi:
10.1073/pnas.2017406117
. [PMID: 33318170] - Bharathi Sinduja, N S K Gowthaman, S Abraham John. Fabrication of low-cost sustainable electrocatalyst: a diagnostic tool for multifunctional disorders in human fluids.
Journal of materials chemistry. B.
2020 10; 8(41):9502-9511. doi:
10.1039/d0tb01681k
. [PMID: 32996975] - Hung-Cheng Hsu, Pei-Wen Liao, Hsiang-Tzu Lee, Wei-Chen Liu, Mei-Lin Ho. Silver Nanoplates for Colorimetric Determination of Xanthine in Human Plasma and in Fish Meat via Etching/Aggregation/Fusion Steps.
Sensors (Basel, Switzerland).
2020 Oct; 20(20):. doi:
10.3390/s20205739
. [PMID: 33050252] - Ying Cui, Junhua Li, Mengqin Liu, Haixia Tong, Zeng Liu, Jiawen Hu, Dong Qian. Convenient synthesis of three-dimensional hierarchical CuS@Pd core-shell cauliflowers decorated on nitrogen-doped reduced graphene oxide for non-enzymatic electrochemical sensing of xanthine.
Mikrochimica acta.
2020 10; 187(11):589. doi:
10.1007/s00604-020-04570-7
. [PMID: 33033940] - Yiran Wang, Hongbin Zhao, Huixian Song, Junping Dong, Jiaqiang Xu. Monodispersed gold nanoparticles entrapped in ordered mesoporous carbon/silica nanocomposites as xanthine oxidase mimic for electrochemical sensing of xanthine.
Mikrochimica acta.
2020 09; 187(10):543. doi:
10.1007/s00604-020-04494-2
. [PMID: 32880716] - Masato Furuhashi, Masayuki Koyama, Yukimura Higashiura, Takayo Murase, Takashi Nakamura, Megumi Matsumoto, Akiko Sakai, Hirofumi Ohnishi, Marenao Tanaka, Shigeyuki Saitoh, Norihito Moniwa, Kazuaki Shimamoto, Tetsuji Miura. Differential regulation of hypoxanthine and xanthine by obesity in a general population.
Journal of diabetes investigation.
2020 Jul; 11(4):878-887. doi:
10.1111/jdi.13207
. [PMID: 31916414] - Konstantinos Feidantsis, Ioannis Georgoulis, Andreas Zachariou, Berrin Campaz, Marilena Christoforou, Hans O Pörtner, Basile Michaelidis. Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata.
Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology.
2020 07; 190(4):403-418. doi:
10.1007/s00360-020-01278-1
. [PMID: 32335741] - Maria Botou, Vassilis Yalelis, Panayiota Lazou, Iliana Zantza, Konstantinos Papakostas, Vassiliki Charalambous, Emmanuel Mikros, Emmanouil Flemetakis, Stathis Frillingos. Specificity profile of NAT/NCS2 purine transporters in Sinorhizobium (Ensifer) meliloti.
Molecular microbiology.
2020 07; 114(1):151-171. doi:
10.1111/mmi.14503
. [PMID: 32198949] - Sarani Sen, Priyabrata Sarkar. A simple electrochemical approach to fabricate functionalized MWCNT-nanogold decorated PEDOT nanohybrid for simultaneous quantification of uric acid, xanthine and hypoxanthine.
Analytica chimica acta.
2020 Jun; 1114(?):15-28. doi:
10.1016/j.aca.2020.03.060
. [PMID: 32359511] - Mingfeng Xiang, Feng Du, Jing Dai, Ling Chen, Ruijin Geng, Huiming Huang, Baogang Xie. Exploring serum metabolic markers for the discrimination of ccRCC from renal angiomyolipoma by metabolomics.
Biomarkers in medicine.
2020 06; 14(8):675-682. doi:
10.2217/bmm-2019-0215
. [PMID: 32613842] - Jiahao Li, Lingjia Yu, Shigong Guo, Yu Zhao. Identification of the molecular mechanism and diagnostic biomarkers in the thoracic ossification of the ligamentum flavum using metabolomics and transcriptomics.
BMC molecular and cell biology.
2020 May; 21(1):37. doi:
10.1186/s12860-020-00280-3
. [PMID: 32404047] - Masafumi Kurajoh, Shinya Fukumoto, Masanori Emoto, Takayo Murase, Takashi Nakamura, Takuma Ishihara, Hirofumi Go, Kouji Yamamoto, Shinya Nakatani, Akihiro Tsuda, Shinsuke Yamada, Tomoaki Morioka, Katsuhito Mori, Yasuo Imanishi, Masaaki Inaba. Independent association of plasma xanthine oxidoreductase activity with serum uric acid level based on stable isotope-labeled xanthine and liquid chromatography/triple quadrupole mass spectrometry: MedCity21 health examination registry.
Clinical chemistry and laboratory medicine.
2020 04; 58(5):780-786. doi:
10.1515/cclm-2019-0199
. [PMID: 31085741] - Yingcong Zhang, Jinghui Jiang, Ze Zhang, Hongwei Yu, Shengzhong Rong, Hongmin Gao, Hongzhi Pan, Dong Chang. Electrochemical strategy with zeolitic imidazolate framework-8 and ordered mesoporous carbon for detection of xanthine.
IET nanobiotechnology.
2020 Apr; 14(2):120-125. doi:
10.1049/iet-nbt.2018.5342
. [PMID: 32433028] - Binxing Zhou, Cunqiang Ma, Tao Xia, Xiaohong Li, Chengqin Zheng, Tingting Wu, Xiaohui Liu. Isolation, characterization and application of theophylline-degrading Aspergillus fungi.
Microbial cell factories.
2020 Mar; 19(1):72. doi:
10.1186/s12934-020-01333-0
. [PMID: 32192512] - Daniela Schneider, Angela Oskamp, Marcus Holschbach, Bernd Neumaier, Dirk Bier, Andreas Bauer. Influence of binding affinity and blood plasma level on cerebral pharmacokinetics and PET imaging characteristics of two novel xanthine PET radioligands for the A1 adenosine receptor.
Nuclear medicine and biology.
2020 Mar; 82-83(?):1-8. doi:
10.1016/j.nucmedbio.2019.12.001
. [PMID: 31838339] - Nils Große Hokamp, Simon Lennartz, Johannes Salem, Daniel Pinto Dos Santos, Axel Heidenreich, David Maintz, Stefan Haneder. Dose independent characterization of renal stones by means of dual energy computed tomography and machine learning: an ex-vivo study.
European radiology.
2020 Mar; 30(3):1397-1404. doi:
10.1007/s00330-019-06455-7
. [PMID: 31773296] - Dobromir Tanev, Parvoleta Peteva, Lynette Fairbanks, Anthony Marinaki, Milena Ivanova, Tzvetan Alaikov, Velizar Shivarov. Beware of the Uric Acid: Severe Azathioprine Myelosuppression in a Patient With Juvenile Idiopathic Arthritis and Hereditary Xanthinuria.
Journal of clinical rheumatology : practical reports on rheumatic & musculoskeletal diseases.
2020 Mar; 26(2):e49-e52. doi:
10.1097/rhu.0000000000000838
. [PMID: 32073534] - Michał Włodarczyk, Krzysztof Kusy, Ewa Słomińska, Zbigniew Krasiński, Jacek Zieliński. Change in Lactate, Ammonia, and Hypoxanthine Concentrations in a 1-Year Training Cycle in Highly Trained Athletes: Applying Biomarkers as Tools to Assess Training Status.
Journal of strength and conditioning research.
2020 Feb; 34(2):355-364. doi:
10.1519/jsc.0000000000003375
. [PMID: 31469767] - Ashley Barratclough, Amanda J Ardente, Brandon Boren, Donna Ialeggio, Michael M Garner. XANTHINE NEPHROLITHIASIS IN JUVENILE CAPTIVE GIANT OTTERS (PTERONURA BRASILIENSIS).
Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians.
2020 Jan; 50(4):956-965. doi:
10.1638/2019-0036
. [PMID: 31926528] - Hiroshi Arakawa, Natsumi Amezawa, Yu Kawakatsu, Ikumi Tamai. Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9.
Biological & pharmaceutical bulletin.
2020; 43(11):1792-1798. doi:
10.1248/bpb.b20-00597
. [PMID: 33132325] - Huai Huang, Li-Ying Shi, Li-Liang Wei, Yu-Shuai Han, Wen-Jing Yi, Zhi-Wen Pan, Ting-Ting Jiang, Jing Chen, Hui-Hui Tu, Zhi-Bin Li, Yu-Ting Hu, Ji-Cheng Li. Plasma metabolites Xanthine, 4-Pyridoxate, and d-glutamic acid as novel potential biomarkers for pulmonary tuberculosis.
Clinica chimica acta; international journal of clinical chemistry.
2019 Nov; 498(?):135-142. doi:
10.1016/j.cca.2019.08.017
. [PMID: 31442449] - Zhihong Li, Xinyi Liu, Xiao-Hua Liang, Jianhai Zhong, Liangqia Guo, Fengfu Fu. Colorimetric determination of xanthine in urine based on peroxidase-like activity of WO3 nanosheets.
Talanta.
2019 Nov; 204(?):278-284. doi:
10.1016/j.talanta.2019.06.003
. [PMID: 31357294] - Yao Chen, Xiao-Fang Zhang, Ai-Jun Wang, Qian-Li Zhang, Hong Huang, Jiu-Ju Feng. Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine.
Mikrochimica acta.
2019 08; 186(9):660. doi:
10.1007/s00604-019-3769-y
. [PMID: 31471825] - Jacek Zieliński, Ewa M Slominska, Magdalena Król-Zielińska, Zbigniew Krasiński, Krzysztof Kusy. Purine metabolism in sprint- vs endurance-trained athletes aged 20‒90 years.
Scientific reports.
2019 08; 9(1):12075. doi:
10.1038/s41598-019-48633-z
. [PMID: 31427706] - Yu Wang, Miao Deng, Binge Deng, Liming Ye, Xiaofan Fei, Zhigang Huang. Study on the diagnosis of gout with xanthine and hypoxanthine.
Journal of clinical laboratory analysis.
2019 Jun; 33(5):e22868. doi:
10.1002/jcla.22868
. [PMID: 30803031] - Daniele Bobrowski Rodrigues, Adriana Zerlotti Mercadante, Lilian Regina Barros Mariutti. Marigold carotenoids: Much more than lutein esters.
Food research international (Ottawa, Ont.).
2019 05; 119(?):653-664. doi:
10.1016/j.foodres.2018.10.043
. [PMID: 30884700] - Michał Włodarczyk, Krzysztof Kusy, Ewa Słomińska, Zbigniew Krasiński, Jacek Zieliński. Changes in Blood Concentration of Adenosine Triphosphate Metabolism Biomarkers During Incremental Exercise in Highly Trained Athletes of Different Sport Specializations.
Journal of strength and conditioning research.
2019 May; 33(5):1192-1200. doi:
10.1519/jsc.0000000000003133
. [PMID: 30908377] - Natasha Ng, Amrit Kaur, Mohan Shenoy. Recurrent kidney stones in a child with Lesch-Nyhan syndrome: Answers.
Pediatric nephrology (Berlin, Germany).
2019 03; 34(3):425-427. doi:
10.1007/s00467-018-4037-9
. [PMID: 30112657] - Mamta Raj, Jong-Min Moon, Rajendra N Goyal, Deog-Su Park, Yoon-Bo Shim. Simultaneous detection of ATP metabolites in human plasma and urine based on palladium nanoparticle and poly(bromocresol green) composite sensor.
Biosensors & bioelectronics.
2019 Feb; 126(?):758-766. doi:
10.1016/j.bios.2018.11.056
. [PMID: 30554097] - Samadhan B Patil, Dharmendra S Dheeman, Mohammed A Al-Rawhani, Srinivas Velugotla, Bence Nagy, Boon Chong Cheah, James P Grant, Claudio Accarino, Michael P Barrett, David R S Cumming. An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites.
Biosensors & bioelectronics.
2018 Dec; 122(?):88-94. doi:
10.1016/j.bios.2018.09.013
. [PMID: 30245326] - Jiale Ma, Xuwang Cai, Yinli Bao, Huochun Yao, Ganwu Li. Uropathogenic Escherichia coli preferentially utilize metabolites in urine for nucleotide biosynthesis through salvage pathways.
International journal of medical microbiology : IJMM.
2018 Dec; 308(8):990-999. doi:
10.1016/j.ijmm.2018.08.006
. [PMID: 30145133] - M Shahbakhsh, S Narouie, M Noroozifar. Modified glassy carbon electrode with Polydopamine-multiwalled carbon nanotubes for simultaneous electrochemical determination of biocompounds in biological fluids.
Journal of pharmaceutical and biomedical analysis.
2018 Nov; 161(?):66-72. doi:
10.1016/j.jpba.2018.08.034
. [PMID: 30145451] - Amanda J Stoffer-Bittner, Candace R Alexander, Douglas W Dingman, George S Mourad, Neil P Schultes. Functional characterization of the uracil transporter from honeybee pathogen Paenibacillus larvae.
Microbial pathogenesis.
2018 Nov; 124(?):305-310. doi:
10.1016/j.micpath.2018.08.059
. [PMID: 30157454] - Onur Kaygısız, Fethi Ahmet Türegün, Nihat Satar, Ender Özen, Serdar Toksöz, Hasan Serkan Doğan, Mehmet Mesut Pişkin, Volkan İzol, Şaban Sarıkaya, Hakan Kılıçarslan, Tufan Çiçek, Ahmet Öztürk, Serdar Tekgül, Bülent Önal. Renal stone composition does not affect the outcome of percutaneous nephrolithotomy in children.
World journal of urology.
2018 Nov; 36(11):1863-1869. doi:
10.1007/s00345-018-2325-4
. [PMID: 29761226] - Liangqing Zhang, Zhihua Ruan, Jiuqing Liang, Yanmei Du, Zhiqi Lu, Du Feng, Shuyun Cai, Xuedi Zhang, Weihua Cai, Zhe Hu. Protective effect of propofol on ischemia-reperfusion injury detected by HPLC-MS/MS targeted metabolic profiling.
European journal of pharmacology.
2018 Aug; 833(?):69-78. doi:
10.1016/j.ejphar.2018.05.039
. [PMID: 29807030] - Blanka Stiburkova, Katerina Pavelcova, Lenka Petru, Jakub Krijt. Thiopurine-induced toxicity is associated with dysfunction variant of the human molybdenum cofactor sulfurase gene (xanthinuria type II).
Toxicology and applied pharmacology.
2018 08; 353(?):102-108. doi:
10.1016/j.taap.2018.06.015
. [PMID: 29935280] - Lisa B E Shields, Dennis S Peppas, Eran Rosenberg. Xanthine calculi in a patient with Lesch-Nyhan syndrome and factor V Leiden treated with allopurinol: case report.
BMC pediatrics.
2018 07; 18(1):231. doi:
10.1186/s12887-018-1197-5
. [PMID: 30001695] - Jose L Areta, Ingvild Austarheim, Helle Wangensteen, Carlo Capelli. Metabolic and Performance Effects of Yerba Mate on Well-trained Cyclists.
Medicine and science in sports and exercise.
2018 04; 50(4):817-826. doi:
10.1249/mss.0000000000001482
. [PMID: 29117073] - Candace R Alexander, Douglas W Dingman, Neil P Schultes, George S Mourad. The solute transport profile of two Aza-guanine transporters from the Honey bee pathogen Paenibacillus larvae.
FEMS microbiology letters.
2018 04; 365(7):. doi:
10.1093/femsle/fny018
. [PMID: 29385571] - Felix Grases, Antonia Costa-Bauza, Joan Roig, Adrian Rodriguez. Xanthine urolithiasis: Inhibitors of xanthine crystallization.
PloS one.
2018; 13(8):e0198881. doi:
10.1371/journal.pone.0198881
. [PMID: 30157195] - Nivedita Singh, Swagata Patra, Sanjukta Patra. Identification of Xanthine Derivatives as Inhibitors of Phosphodiesterase 9A Through In silico and Biological Studies.
Combinatorial chemistry & high throughput screening.
2018; 21(7):476-486. doi:
10.2174/1386207321666180821100713
. [PMID: 30129405] - I Sebesta, B Stiburkova, J Krijt. Hereditary xanthinuria is not so rare disorder of purine metabolism.
Nucleosides, nucleotides & nucleic acids.
2018; 37(6):324-328. doi:
10.1080/15257770.2018.1460478
. [PMID: 29723117] - Chenzhi Hou, Ruowen Zhang, Kexia Zhang, Xiaohui Chen. Total glycosides of Paeony shows Neuroprotective effects against Semen Strychni-induced neurotoxicity by recovering secretion of hormones and improving brain energy metabolism.
Metabolic brain disease.
2017 Dec; 32(6):2033-2044. doi:
10.1007/s11011-017-0082-5
. [PMID: 28852923] - Lívia Gelain Castilhos, Juliana Sorraila de Oliveira, Stephen Adeniyi Adefegha, Luana Pereira Magni, Pedro Henrique Doleski, Fatima Husein Abdalla, Cínthia Melazzo de Andrade, Daniela Bitencourt Rosa Leal. Increased oxidative stress alters nucleosides metabolite levels in sickle cell anemia.
Redox report : communications in free radical research.
2017 Nov; 22(6):451-459. doi:
10.1080/13510002.2017.1288973
. [PMID: 28209096] - Yin Long, Beatriz Sanchez-Espiridion, Moubin Lin, Lindsey White, Lopa Mishra, Gottumakkala S Raju, Scott Kopetz, Cathy Eng, Michelle A T Hildebrandt, David W Chang, Yuanqing Ye, Dong Liang, Xifeng Wu. Global and targeted serum metabolic profiling of colorectal cancer progression.
Cancer.
2017 Oct; 123(20):4066-4074. doi:
10.1002/cncr.30829
. [PMID: 28640361] - Franziska Ertmer, Harriëtte Oldenhof, Saskia Schütze, Karl Rohn, Willem F Wolkers, Harald Sieme. Induced sub-lethal oxidative damage affects osmotic tolerance and cryosurvival of spermatozoa.
Reproduction, fertility, and development.
2017 Sep; 29(9):1739-1750. doi:
10.1071/rd16183
. [PMID: 27755962] - Nishikant Wase, Boqiang Tu, James W Allen, Paul N Black, Concetta C DiRusso. Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae.
Plant physiology.
2017 Aug; 174(4):2146-2165. doi:
10.1104/pp.17.00433
. [PMID: 28652262] - Sofia Balaska, Vassilios Myrianthopoulos, Martha Tselika, Dimitris G Hatzinikolaou, Emmanuel Mikros, George Diallinas. NmeA, a novel efflux transporter specific for nucleobases and nucleosides, contributes to metal resistance in Aspergillus nidulans.
Molecular microbiology.
2017 Aug; 105(3):426-439. doi:
10.1111/mmi.13708
. [PMID: 28509393] - Sujay Basu, Dinesh A Barawkar, Vidya Ramdas, Meena Patel, Yogesh Waman, Anil Panmand, Santosh Kumar, Sachin Thorat, Minakshi Naykodi, Arnab Goswami, B Srinivasa Reddy, Vandna Prasad, Sandhya Chaturvedi, Azfar Quraishi, Suraj Menon, Shalini Paliwal, Abhay Kulkarni, Vikas Karande, Indraneel Ghosh, Syed Mustafa, Siddhartha De, Vaibhav Jain, Ena Ray Banerjee, Sreekanth R Rouduri, Venkata P Palle, Anita Chugh, Kasim A Mookhtiar. Design and synthesis of novel xanthine derivatives as potent and selective A2B adenosine receptor antagonists for the treatment of chronic inflammatory airway diseases.
European journal of medicinal chemistry.
2017 Jul; 134(?):218-229. doi:
10.1016/j.ejmech.2017.04.014
. [PMID: 28415011] - Yasuaki Mino, Takafumi Naito, Kumiko Shimoyama, Noriyoshi Ogawa, Junichi Kawakami. Mycophenolic acid exposure and complement fraction C3 influence inosine 5'-monophosphate dehydrogenase activity in systemic lupus erythematosus.
Annals of clinical biochemistry.
2017 Jul; 54(4):490-494. doi:
10.1177/0004563216667753
. [PMID: 27538768] - Ning Hou, Bin Cai, Cai-Wen Ou, Zhen-Hui Zhang, Xia-Wen Liu, Mu Yuan, Gan-Jian Zhao, Shi-Ming Liu, Long-Gen Xiong, Jian-Dong Luo, Cheng-Feng Luo, Min-Sheng Chen. Puerarin-7-O-glucuronide, a water-soluble puerarin metabolite, prevents angiotensin II-induced cardiomyocyte hypertrophy by reducing oxidative stress.
Naunyn-Schmiedeberg's archives of pharmacology.
2017 May; 390(5):535-545. doi:
10.1007/s00210-017-1353-8
. [PMID: 28210753] - Stephanie A Houston, Azizah Ugusman, Sukanya Gnanadesikan, Simon Kennedy. An investigation of the antiplatelet effects of succinobucol (AGI-1067).
Platelets.
2017 May; 28(3):295-300. doi:
10.1080/09537104.2016.1218456
. [PMID: 27681689] - Lieke E J M Scheepers, Annelies Boonen, Wieke Pijnenburg, Jörgen Bierau, Jan A Staessen, Coen D A Stehouwer, Carel Thijs, Ilja C W Arts. Associations of plasma uric acid and purine metabolites with blood pressure in children: the KOALA Birth Cohort Study.
Journal of hypertension.
2017 05; 35(5):982-993. doi:
10.1097/hjh.0000000000001270
. [PMID: 28355168] - Kahori Watanabe Washio, Yoshiki Kusunoki, Takayo Murase, Takashi Nakamura, Keiko Osugi, Mana Ohigashi, Tadahiko Sukenaga, Fumihiro Ochi, Toshihiro Matsuo, Tomoyuki Katsuno, Yuji Moriwaki, Tetsuya Yamamoto, Mitsuyoshi Namba, Hidenori Koyama. Xanthine oxidoreductase activity is correlated with insulin resistance and subclinical inflammation in young humans.
Metabolism: clinical and experimental.
2017 05; 70(?):51-56. doi:
10.1016/j.metabol.2017.01.031
. [PMID: 28403945] - Yan Du, Yin-Jie Li, Xun-Xiu Hu, Xu Deng, Zeng-Ting Qian, Zheng Li, Meng-Zhe Guo, Dao-Quan Tang. Development and evaluation of a hydrophilic interaction liquid chromatography-MS/MS method to quantify 19 nucleobases and nucleosides in rat plasma.
Biomedical chromatography : BMC.
2017 Apr; 31(4):. doi:
10.1002/bmc.3860
. [PMID: 27696453] - Cristina Zennaro, Federica Tonon, Paola Zarattini, Milan Clai, Alessandro Corbelli, Michele Carraro, Marialaura Marchetti, Luca Ronda, Gianluca Paredi, Maria Pia Rastaldi, Riccardo Percudani. The renal phenotype of allopurinol-treated HPRT-deficient mouse.
PloS one.
2017; 12(3):e0173512. doi:
10.1371/journal.pone.0173512
. [PMID: 28282408] - Takayo Murase, Mai Nampei, Mitsuru Oka, Atsushi Miyachi, Takashi Nakamura. A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2016 Dec; 1039(?):51-58. doi:
10.1016/j.jchromb.2016.10.033
. [PMID: 27816314] - N Lavanya, C Sekar, R Murugan, G Ravi. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO2 nanoparticles.
Materials science & engineering. C, Materials for biological applications.
2016 Aug; 65(?):278-86. doi:
10.1016/j.msec.2016.04.033
. [PMID: 27157753] - Toni Ali-Sisto, Tommi Tolmunen, Elena Toffol, Heimo Viinamäki, Pekka Mäntyselkä, Minna Valkonen-Korhonen, Kirsi Honkalampi, Anu Ruusunen, Vidya Velagapudi, Soili M Lehto. Purine metabolism is dysregulated in patients with major depressive disorder.
Psychoneuroendocrinology.
2016 08; 70(?):25-32. doi:
10.1016/j.psyneuen.2016.04.017
. [PMID: 27153521] - Tamaki Watanabe, Naoko Hara Tomioka, Shigekazu Watanabe, Yoshihiko Suzuki, Masao Tsuchiya, Makoto Hosoyamada. The Mechanism of False in Vitro Elevation of Uric Acid Level in Mouse Blood.
Biological & pharmaceutical bulletin.
2016 Jul; 39(7):1081-4. doi:
10.1248/bpb.b15-01046
. [PMID: 27170514] - Joanna Jakubiczka-Smorag, Jose Angel Santamaria-Araujo, Imke Metz, Avadh Kumar, Samy Hakroush, Wolfgang Brueck, Guenter Schwarz, Peter Burfeind, Jochen Reiss, Lukasz Smorag. Mouse model for molybdenum cofactor deficiency type B recapitulates the phenotype observed in molybdenum cofactor deficient patients.
Human genetics.
2016 07; 135(7):813-26. doi:
10.1007/s00439-016-1676-4
. [PMID: 27138983] - Yating Xu, Ju Liu, Hongyang Zhang, Min Jiang, Lingling Cao, Min Zhang, Wei Sun, Shengli Ruan, Ping Hu. Hypercrosslinked strong cation-exchange polymers for selective extraction of serum purine metabolites associated with gout.
Talanta.
2016 May; 151(?):172-178. doi:
10.1016/j.talanta.2016.01.014
. [PMID: 26946024] - Roland Wolfgang Därr, Steffen Lenzner, Thomas Eggermann, Wolfgang Hermann Därr. [Xanthinuria type 1 in a woman with arthralgias: a combined clinical and molecular genetic investigation].
Deutsche medizinische Wochenschrift (1946).
2016 Apr; 141(8):571-4. doi:
10.1055/s-0041-106053
. [PMID: 27078247] - Bhawana Sharma, Rajesh Dabur. Protective Effects of Tinospora cordifolia on Hepatic and Gastrointestinal Toxicity Induced by Chronic and Moderate Alcoholism.
Alcohol and alcoholism (Oxford, Oxfordshire).
2016 Jan; 51(1):1-10. doi:
10.1093/alcalc/agv130
. [PMID: 26589585] - Huiqing Zou, Mingfeng Xiang, Xinming Ye, Yuanzhen Xiong, Baogang Xie, Jianghua Shao. Reduction of urinary uric acid excretion in patients with proteinuria.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2015 Dec; 1006(?):59-64. doi:
10.1016/j.jchromb.2015.10.027
. [PMID: 26523664] - Narisa Rukdee, Piyanuch Rojsanga, Chutima Matayatsuk Phechkrajang. Development and Validation of LC-MS/MS Method for Quantitative Determination of Adenosine, Guanosine, Xanthine and Uric acid in Widely Consumed Vegetables in Thailand.
Natural product communications.
2015 Aug; 10(8):1435-7. doi:
. [PMID: 26434136]
- Kaori Uchiumi Davis, Carol B Grindem. What is your diagnosis? Urine crystals from a dog.
Veterinary clinical pathology.
2015 Jun; 44(2):331-2. doi:
10.1111/vcp.12233
. [PMID: 25615013] - Yuling Yin, Riko Katahira, Hiroshi Ashihara. Metabolism of purine alkaloids and xanthine in leaves of maté (Ilex paraguariensis).
Natural product communications.
2015 May; 10(5):707-12. doi:
. [PMID: 26058140]
- Eva Kostalova, Karel Pavelka, Hana Vlaskova, Dita Musalkova, Blanka Stiburkova. Hyperuricemia and gout due to deficiency of hypoxanthine-guanine phosphoribosyltransferase in female carriers: New insight to differential diagnosis.
Clinica chimica acta; international journal of clinical chemistry.
2015 Feb; 440(?):214-7. doi:
10.1016/j.cca.2014.11.026
. [PMID: 25476133] - Yunan Zhou, Xueguang Zhang, Rui Ding, Zuoxiang Li, Quan Hong, Yan Wang, Wei Zheng, Xiaodong Geng, Meng Fan, Guangyan Cai, Xiangmei Chen, Di Wu. Using Next-Generation Sequencing to Identify a Mutation in Human MCSU that is Responsible for Type II Xanthinuria.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2015; 35(6):2412-21. doi:
10.1159/000374042
. [PMID: 25967871] - Benjamin R Lundgren, Morgan P Connolly, Pratibha Choudhary, Tiffany S Brookins-Little, Snigdha Chatterjee, Ramesh Raina, Christopher T Nomura. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000.
PloS one.
2015; 10(12):e0144852. doi:
10.1371/journal.pone.0144852
. [PMID: 26659655]