L-Formylkynurenine (BioDeep_00000004316)
Secondary id: BioDeep_00000014405, BioDeep_00000279321, BioDeep_00001869293, BioDeep_00001872609
human metabolite PANOMIX_OTCML-2023 Volatile Flavor Compounds
代谢物信息卡片
化学式: C11H12N2O4 (236.07970319999998)
中文名称: N-甲酰-L-犬尿氨酸, N-甲酰基犬尿氨酸, N-甲酰犬尿氨酸
谱图信息:
最多检出来源 Viridiplantae(plant) 0.19%
分子结构信息
SMILES: C1=CC=C(C(=C1)C(=O)CC(C(=O)O)N)NC=O
InChI: InChI=1S/C11H12N2O4/c12-8(11(16)17)5-10(15)7-3-1-2-4-9(7)13-6-14/h1-4,6,8H,5,12H2,(H,13,14)(H,16,17)/t8-/m0/s1
描述信息
This compound belongs to the family of Butyrophenones. These are compounds containing 1-phenylbutan-1-one moiety.
同义名列表
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:58629
- ChEBI: CHEBI:30249
- KEGG: C02700
- PubChem: 25202092
- PubChem: 439788
- HMDB: HMDB0060485
- Metlin: METLIN3373
- ChEMBL: CHEMBL3577708
- Wikipedia: N-Formylkynurenine
- MetaCyc: N-FORMYLKYNURENINE
- KNApSAcK: C00007605
- chemspider: 388843
- CAS: 3978-11-8
- CAS: 1022-31-7
- PubChem: 5664
- PDB-CCD: NFK
- 3DMET: B01595
- NIKKAJI: J426.764H
- KNApSAcK: 30249
分类词条
相关代谢途径
Reactome(0)
BioCyc(8)
- superpathway of tryptophan utilization
- tryptophan degradation via kynurenine
- NAD biosynthesis (from tryptophan)
- L-tryptophan degradation I (via anthranilate)
- NAD biosynthesis II (from tryptophan)
- tryptophan degradation I (via anthranilate)
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
PlantCyc(0)
代谢反应
39 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(34)
- NAD de novo biosynthesis:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tryptophan degradation:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-kynurenine degradation:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of tryptophan utilization:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation I (via anthranilate):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- L-tryptophan degradation IX:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation III (eukaryotic):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation XII (Geobacillus):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation XI (mammalian, via kynurenine):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- 3-hydroxy-4-methyl-anthranilate biosynthesis I:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- 3-hydroxy-4-methyl-anthranilate biosynthesis II:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD de novo biosynthesis II (from tryptophan):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- superpathway of NAD biosynthesis in eukaryotes:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- NAD de novo biosynthesis:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-formylkynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation I (via anthranilate):
O2 + trp ⟶ N-formylkynurenine
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation I (via anthranilate):
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation XI (mammalian, via kynurenine):
O2 + trp ⟶ N-formylkynurenine
- L-tryptophan degradation III (eukaryotic):
O2 + trp ⟶ N-formylkynurenine
- NAD biosynthesis II (from tryptophan):
H+ + O2 + trp ⟶ N-formylkynurenine
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
H+ + O2 + trp ⟶ N-formylkynurenine
- tryptophan degradation I (via anthranilate):
H+ + O2 + trp ⟶ N-formylkynurenine
- tryptophan degradation I (via anthranilate):
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- NAD biosynthesis II (from tryptophan):
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- tryptophan degradation via kynurenine:
N-formylkynurenine + H2O ⟶ formate + kynurenine
- NAD biosynthesis (from tryptophan):
N-formylkynurenine + H2O ⟶ formate + kynurenine
WikiPathways(0)
Plant Reactome(0)
INOH(1)
- Tryptophan degradation ( Tryptophan degradation ):
L-Tryptophan + O2 ⟶ N-Formyl-L-kynurenine
PlantCyc(4)
- NAD de novo biosynthesis II (from tryptophan):
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde:
O2 + trp ⟶ N-Formyl-L-kynurenine
- NAD de novo biosynthesis II (from tryptophan):
O2 + trp ⟶ N-Formyl-L-kynurenine
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
4 个相关的物种来源信息
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Dan Liu, Xiangyu Cao, Yuchi Kong, Teng Mu, Jianli Liu. Inhibitory mechanism of sinensetin on α-glucosidase and non-enzymatic glycation: Insights from spectroscopy and molecular docking analyses.
International journal of biological macromolecules.
2021 Jan; 166(?):259-267. doi:
10.1016/j.ijbiomac.2020.10.174
. [PMID: 33115652] - Mona El Refaey, Meghan E McGee-Lawrence, Sadanand Fulzele, Eileen J Kennedy, Wendy B Bollag, Mohammed Elsalanty, Qing Zhong, Ke-Hong Ding, Nathaniel G Bendzunas, Xing-Ming Shi, Jianrui Xu, William D Hill, Maribeth H Johnson, Monte Hunter, Jessica L Pierce, Kanglun Yu, Mark W Hamrick, Carlos M Isales. Kynurenine, a Tryptophan Metabolite That Accumulates With Age, Induces Bone Loss.
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.
2017 Nov; 32(11):2182-2193. doi:
10.1002/jbmr.3224
. [PMID: 28727234] - Urszula Razny, Joanna Goralska, Anna Zdzienicka, Danuta Fedak, Jinit Masania, Naila Rabbani, Paul Thornalley, Dorota Pawlica-Gosiewska, Katarzyna Gawlik, Aldona Dembinska-Kiec, Bogdan Solnica, Malgorzata Malczewska-Malec. Relation of the protein glycation, oxidation and nitration to the osteocalcin level in obese subjects.
Acta biochimica Polonica.
2017; 64(3):415-422. doi:
10.18388/abp.2017_1627
. [PMID: 28841723] - N Hanschke, M Kankofer, L Ruda, M Höltershinken, U Meyer, J Frank, S Dänicke, J Rehage. The effect of conjugated linoleic acid supplements on oxidative and antioxidative status of dairy cows.
Journal of dairy science.
2016 Oct; 99(10):8090-8102. doi:
10.3168/jds.2015-10685
. [PMID: 27497903] - Izabela Sadowska-Bartosz, Sabina Galiniak, Grzegorz Bartosz. Kinetics of glycoxidation of bovine serum albumin by glucose, fructose and ribose and its prevention by food components.
Molecules (Basel, Switzerland).
2014 Nov; 19(11):18828-49. doi:
10.3390/molecules191118828
. [PMID: 25407721] - Izabela Sadowska-Bartosz, Sabina Galiniak, Grzegorz Bartosz. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds.
Molecules (Basel, Switzerland).
2014 Apr; 19(4):4880-96. doi:
10.3390/molecules19044880
. [PMID: 24747646] - Izabela Sadowska-Bartosz, Monika Adamczyk-Sowa, Agnieszka Gajewska, Grzegorz Bartosz. Oxidative modification of blood serum proteins in multiple sclerosis after interferon or mitoxantrone treatment.
Journal of neuroimmunology.
2014 Jan; 266(1-2):67-74. doi:
10.1016/j.jneuroim.2013.11.005
. [PMID: 24290230] - Bruce A Perkins, Naila Rabbani, Andrew Weston, Linda H Ficociello, Antonysunil Adaikalakoteswari, Monika Niewczas, James Warram, Andrzej S Krolewski, Paul Thornalley. Serum levels of advanced glycation endproducts and other markers of protein damage in early diabetic nephropathy in type 1 diabetes.
PloS one.
2012; 7(4):e35655. doi:
10.1371/journal.pone.0035655
. [PMID: 22558190] - Ian M Møller, Brian K Kristensen. Protein oxidation in plant mitochondria detected as oxidized tryptophan.
Free radical biology & medicine.
2006 Feb; 40(3):430-5. doi:
10.1016/j.freeradbiomed.2005.08.036
. [PMID: 16443157] - Y Kudo, C A Boyd. Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection.
Biochimica et biophysica acta.
2000 Jan; 1500(1):119-24. doi:
10.1016/s0925-4439(99)00096-4
. [PMID: 10564724] - Y Kato, S Kawakishi, T Aoki, K Itakura, T Osawa. Oxidative modification of tryptophan residues exposed to peroxynitrite.
Biochemical and biophysical research communications.
1997 May; 234(1):82-4. doi:
10.1006/bbrc.1997.6587
. [PMID: 9168965] - A Giessauf, B van Wickern, T Simat, H Steinhart, H Esterbauer. Formation of N-formylkynurenine suggests the involvement of apolipoprotein B-100 centered tryptophan radicals in the initiation of LDL lipid peroxidation.
FEBS letters.
1996 Jul; 389(2):136-40. doi:
10.1016/0014-5793(96)00546-7
. [PMID: 8766816] - J Seifert, T Pewnim. Alteration of mice L-tryptophan metabolism by the organophosphorous acid triester diazinon.
Biochemical pharmacology.
1992 Dec; 44(11):2243-50. doi:
10.1016/0006-2952(92)90353-k
. [PMID: 1282004]