Benzeneacetonitrile (BioDeep_00000011000)

 

Secondary id: BioDeep_00000266589, BioDeep_00000862704

human metabolite


代谢物信息卡片


laquo omegaraquo -Cyanotoluene

化学式: C8H7N (117.0578)
中文名称: 苯乙腈
谱图信息: 最多检出来源 Homo sapiens(plant) 10.47%

分子结构信息

SMILES: C1=CC=C(C=C1)CC#N
InChI: InChI=1S/C8H7N/c9-7-6-8-4-2-1-3-5-8/h1-5H,6H2

描述信息

Isolated from oil of garden cress (Lepidium sativum) and other plant oils. Benzeneacetonitrile is found in many foods, some of which are peppermint, garden tomato (variety), papaya, and kohlrabi.
Benzeneacetonitrile is found in garden cress. Benzeneacetonitrile is isolated from oil of garden cress (Lepidium sativum) and other plant oils.

同义名列表

30 个代谢物同义名

laquo omegaraquo -Cyanotoluene; Acetic acid, phenyl-nitrile; Phenylacetonitrile, liquid; Benzeneacetonitrile, 9ci; Phenyl acetyl nitrile; .omega.-cyanotoluene; 2-phenylacetonitrile; (Cyanomethyl)benzene; alpha-cyano-Toluene; Benzeneacetonitrile; Phenyl-acetonitrile; alpha -Cyanotoluene; Cyanophenylmethane; Phenylacetonitrile; alpha -Tolunitrile; Omega-cyanotoluene; alpha-Cyanotoluene; alpha-Tolunitrile; Phenacetonitrile; Benzyl cyanide; a-Cyanotoluene; Benzyl nitrile; Α-cyanotoluene; Benzylnitrile; Α-tolunitrile; a-Tolunitrile; Enzylcyanide; Benzylkyanid; Phenylacetonitrile; Phenylacetonitrile



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

20 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(18)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

25 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 ANXA5, BECN1, CASP8, CAT, CNDP2, DBH, ESR1, HPGDS, MME, NIT1, NIT2, PTGS2, SOD1, TUBB4B
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 6 ACHE, ANXA5, BECN1, CYP1B1, ESR1, PTGS2
Endosome membrane 1 BECN1
Endoplasmic reticulum membrane 3 BECN1, CYP1B1, PTGS2
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 1 BECN1
Nucleus 7 ACHE, BECN1, CASP8, ESR1, NIT1, SOD1, TUBB4B
autophagosome 1 BECN1
cytosol 11 ANXA5, BECN1, CASP8, CAT, CNDP2, ESR1, HPGDS, NIT2, PRKCQ, SOD1, TUBB4B
dendrite 2 BECN1, MME
mitochondrial membrane 1 BECN1
nuclear body 1 BECN1
phagocytic vesicle 1 BECN1
phosphatidylinositol 3-kinase complex, class III 1 BECN1
trans-Golgi network 2 BECN1, MME
centrosome 1 NIT2
nucleoplasm 5 CASP8, CNDP2, ESR1, HPGDS, SOD1
Cell membrane 4 ACHE, ESR1, MME, SLC12A6
Cytoplasmic side 1 ESR1
lamellipodium 1 CASP8
Multi-pass membrane protein 1 SLC12A6
Synapse 4 ACHE, DBH, MME, SLC12A6
cell surface 2 ACHE, MME
Golgi apparatus 3 ACHE, ATRN, ESR1
neuromuscular junction 1 ACHE
neuronal cell body 2 MME, SOD1
sarcolemma 1 ANXA5
synaptic vesicle 1 MME
Presynapse 1 MME
endosome 1 BECN1
plasma membrane 6 ACHE, ATRN, ESR1, MME, PRKCQ, SLC12A6
Membrane 8 ACHE, ANXA5, CAT, CYP1B1, DBH, ESR1, MME, SLC12A6
axon 2 MME, SLC12A6
basolateral plasma membrane 1 SLC12A6
brush border 1 MME
caveola 1 PTGS2
extracellular exosome 8 ANXA5, ATRN, CAT, CNDP2, MME, NIT2, SOD1, TUBB4B
endoplasmic reticulum 3 BECN1, DBH, PTGS2
extracellular space 5 ACHE, ATRN, DBH, SOD1, TST
perinuclear region of cytoplasm 1 ACHE
mitochondrion 7 CASP8, CAT, CYP1B1, NIT1, NIT2, SOD1, TST
protein-containing complex 5 CASP8, CAT, ESR1, PTGS2, SOD1
intracellular membrane-bounded organelle 4 CAT, CYP1B1, DBH, HPGDS
Microsome membrane 2 CYP1B1, PTGS2
Single-pass type I membrane protein 1 ATRN
Secreted 2 ACHE, DBH
extracellular region 7 ACHE, ANXA5, CAT, DBH, NIT2, SOD1, TUBB4B
mitochondrial outer membrane 1 CASP8
[Isoform 2]: Secreted 1 ATRN
Mitochondrion matrix 1 TST
mitochondrial matrix 3 CAT, SOD1, TST
Extracellular side 1 ACHE
transcription regulator complex 1 ESR1
centriolar satellite 2 DBH, PRKCQ
external side of plasma membrane 1 ANXA5
Extracellular vesicle 1 TUBB4B
cytoplasmic vesicle 2 MME, SOD1
microtubule cytoskeleton 1 TUBB4B
axon cytoplasm 1 SOD1
Early endosome 1 MME
Single-pass type II membrane protein 2 DBH, MME
Cell projection, lamellipodium 1 CASP8
Membrane raft 1 MME
Cytoplasm, cytoskeleton 1 TUBB4B
focal adhesion 3 ANXA5, CAT, MME
microtubule 1 TUBB4B
Peroxisome 2 CAT, SOD1
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
mitochondrial intermembrane space 1 SOD1
collagen-containing extracellular matrix 1 ANXA5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
dendrite cytoplasm 1 SOD1
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
chromatin 1 ESR1
mitotic spindle 1 TUBB4B
cytoskeleton 2 CASP8, TUBB4B
[Isoform 2]: Mitochondrion 1 NIT1
Basolateral cell membrane 1 SLC12A6
Lipid-anchor, GPI-anchor 1 ACHE
[Isoform 3]: Secreted 1 ATRN
intercellular bridge 1 TUBB4B
Cytoplasm, cytoskeleton, flagellum axoneme 1 TUBB4B
sperm flagellum 1 TUBB4B
axonemal microtubule 1 TUBB4B
phagophore assembly site 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type I 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type II 1 BECN1
euchromatin 1 ESR1
cell body 1 CASP8
side of membrane 1 ACHE
[Isoform 1]: Cytoplasm 1 NIT1
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, DBH
secretory granule membrane 2 DBH, MME
endoplasmic reticulum lumen 1 PTGS2
specific granule lumen 1 NIT2
tertiary granule lumen 1 NIT2
azurophil granule lumen 1 TUBB4B
immunological synapse 1 PRKCQ
aggresome 1 PRKCQ
vesicle membrane 1 ANXA5
[Isoform 1]: Nucleus 1 ESR1
synaptic cleft 1 ACHE
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 1 CASP8
ripoptosome 1 CASP8
[Isoform 1]: Cell membrane 1 ATRN
Cytoplasmic vesicle, secretory vesicle membrane 1 DBH
Cytoplasmic vesicle, secretory vesicle, chromaffin granule lumen 1 DBH
chromaffin granule lumen 1 DBH
transport vesicle membrane 1 DBH
catalase complex 1 CAT
neuron projection terminus 1 MME
endothelial microparticle 1 ANXA5
[Soluble dopamine beta-hydroxylase]: Cytoplasmic vesicle, secretory vesicle lumen 1 DBH
Cytoplasmic vesicle, secretory vesicle, chromaffin granule membrane 1 DBH
chromaffin granule membrane 1 DBH
[Isoform H]: Cell membrane 1 ACHE
cytoplasmic side of mitochondrial outer membrane 1 BECN1
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1


文献列表

  • Khemais Abdellaoui, Meriam Miladi, Marouane Mkhinini, Iteb Boughattas, Amel Ben Hamouda, Lobna Hajji-Hedfi, Haithem Tlili, Fatma Acheuk. The aggregation pheromone phenylacetonitrile: Joint action with the entomopathogenic fungus Metarhizium anisopliae var. acridum and physiological and transcriptomic effects on Schistocerca gregaria nymphs. Pesticide biochemistry and physiology. 2020 Jul; 167(?):104594. doi: 10.1016/j.pestbp.2020.104594. [PMID: 32527433]
  • Katarzyna Rafińska, Paweł Pomastowski, Joanna Rudnicka, Aneta Krakowska, Audrius Maruśka, Monika Narkute, Bogusław Buszewski. Effect of solvent and extraction technique on composition and biological activity of Lepidium sativum extracts. Food chemistry. 2019 Aug; 289(?):16-25. doi: 10.1016/j.foodchem.2019.03.025. [PMID: 30955598]
  • Ashraf M El-Sayed, Andrew Sporle, César Gemeno, Júlia K Jósvai, Gregory S Simmons, David M Suckling. Leafroller-induced phenylacetonitrile and acetic acid attract adult Lobesia botrana in European vineyards. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2019 May; 74(5-6):161-165. doi: 10.1515/znc-2018-0163. [PMID: 30721146]
  • Carla Kühn, Franziska Kupke, Susanne Baldermann, Rebecca Klopsch, Evelyn Lamy, Silke Hornemann, Andreas F H Pfeiffer, Monika Schreiner, Franziska S Hanschen, Sascha Rohn. Diverse Excretion Pathways of Benzyl Glucosinolate in Humans after Consumption of Nasturtium (Tropaeolum majus L.)-A Pilot Study. Molecular nutrition & food research. 2018 10; 62(20):e1800588. doi: 10.1002/mnfr.201800588. [PMID: 30091516]
  • D M Suckling, A M El-Sayed. Caterpillar-Induced Plant Volatiles Attract Adult Tortricidae. Journal of chemical ecology. 2017 May; 43(5):487-492. doi: 10.1007/s10886-017-0847-7. [PMID: 28477139]
  • Takuya Yamaguchi, Koji Noge, Yasuhisa Asano. Cytochrome P450 CYP71AT96 catalyses the final step of herbivore-induced phenylacetonitrile biosynthesis in the giant knotweed, Fallopia sachalinensis. Plant molecular biology. 2016 Jun; 91(3):229-39. doi: 10.1007/s11103-016-0459-6. [PMID: 26928800]
  • Foteini G Pashalidou, Enric Frago, Eddie Griese, Erik H Poelman, Joop J A van Loon, Marcel Dicke, Nina E Fatouros. Early herbivore alert matters: plant-mediated effects of egg deposition on higher trophic levels benefit plant fitness. Ecology letters. 2015 Sep; 18(9):927-36. doi: 10.1111/ele.12470. [PMID: 26147078]
  • Yuta Miki, Yasuhisa Asano. Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Applied and environmental microbiology. 2014 Nov; 80(21):6828-36. doi: 10.1128/aem.01623-14. [PMID: 25172862]
  • Koji Noge, Shigeru Tamogami. Herbivore-induced phenylacetonitrile is biosynthesized from de novo-synthesized L-phenylalanine in the giant knotweed, Fallopia sachalinensis. FEBS letters. 2013 Jun; 587(12):1811-7. doi: 10.1016/j.febslet.2013.04.038. [PMID: 23673319]
  • D M Suckling, A M Twidle, A R Gibb, L M Manning, V J Mitchell, T E S Sullivan, S L Wee, A M El-Sayed. Volatiles from apple trees infested with light brown apple moth larvae attract the parasitoid Dolichogenidia tasmanica. Journal of agricultural and food chemistry. 2012 Sep; 60(38):9562-6. doi: 10.1021/jf302874g. [PMID: 22950817]
  • Beatrice Blenn, Michele Bandoly, Astrid Küffner, Tobias Otte, Sven Geiselhardt, Nina E Fatouros, Monika Hilker. Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana. Journal of chemical ecology. 2012 Jul; 38(7):882-92. doi: 10.1007/s10886-012-0132-8. [PMID: 22588570]
  • Einar J Stauber, Petrissa Kuczka, Maike van Ohlen, Birgit Vogt, Tim Janowitz, Markus Piotrowski, Till Beuerle, Ute Wittstock. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. PloS one. 2012; 7(4):e35545. doi: 10.1371/journal.pone.0035545. [PMID: 22536404]
  • Vikas S Padalkar, Vikas S Patil, N Sekar. Synthesis and characterization of novel 2, 2'-bipyrimidine fluorescent derivative for protein binding. Chemistry Central journal. 2011 Nov; 5(?):72. doi: 10.1186/1752-153x-5-72. [PMID: 22067202]
  • Koji Noge, Makoto Abe, Shigeru Tamogami. Phenylacetonitrile from the giant knotweed, Fallopia sachalinensis, infested by the Japanese beetle, Popillia japonica, is induced by exogenous methyl jasmonate. Molecules (Basel, Switzerland). 2011 Aug; 16(8):6481-8. doi: 10.3390/molecules16086481. [PMID: 21814160]
  • Martinus E Huigens, Erik de Swart, Roland Mumm. Risk of egg parasitoid attraction depends on anti-aphrodisiac titre in the large cabbage white butterfly Pieris brassicae. Journal of chemical ecology. 2011 Apr; 37(4):364-7. doi: 10.1007/s10886-011-9935-2. [PMID: 21452001]
  • Yigen Chen, Justin G A Whitehill, Pierluigi Bonello, Therese M Poland. Differential response in foliar chemistry of three ash species to emerald ash borer adult feeding. Journal of chemical ecology. 2011 Jan; 37(1):29-39. doi: 10.1007/s10886-010-9892-1. [PMID: 21153046]
  • Igor Jerković, Zvonimir Marijanović. Volatile composition screening of Salix spp. nectar honey: benzenecarboxylic acids, norisoprenoids, terpenes, and others. Chemistry & biodiversity. 2010 Sep; 7(9):2309-25. doi: 10.1002/cbdv.201000021. [PMID: 20860033]
  • Nicole M van Dam, Bao-Li Qiu, Cornelis A Hordijk, Louise E M Vet, Jeroen J Jansen. Identification of biologically relevant compounds in aboveground and belowground induced volatile blends. Journal of chemical ecology. 2010 Sep; 36(9):1006-16. doi: 10.1007/s10886-010-9844-9. [PMID: 20737198]
  • Soichi Kugimiya, Takeshi Shimoda, Jun Tabata, Junji Takabayashi. Present or past herbivory: a screening of volatiles released from Brassica rapa under caterpillar attacks as attractants for the solitary parasitoid, Cotesia vestalis. Journal of chemical ecology. 2010 Jun; 36(6):620-8. doi: 10.1007/s10886-010-9802-6. [PMID: 20490899]
  • Glenn P Svensson, Tomoko Okamoto, Atsushi Kawakita, Ryutaro Goto, Makoto Kato. Chemical ecology of obligate pollination mutualisms: testing the 'private channel' hypothesis in the Breynia-Epicephala association. The New phytologist. 2010 Jun; 186(4):995-1004. doi: 10.1111/j.1469-8137.2010.03227.x. [PMID: 20345644]
  • Amedeo Pietri, Silvia Rastelli, Terenzio Bertuzzi. Ochratoxin A and aflatoxins in liquorice products. Toxins. 2010 04; 2(4):758-70. doi: 10.3390/toxins2040758. [PMID: 22069608]
  • Nina E Fatouros, Foteini G Pashalidou, Wilma V Aponte Cordero, Joop J A van Loon, Roland Mumm, Marcel Dicke, Monika Hilker, Martinus E Huigens. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. Journal of chemical ecology. 2009 Nov; 35(11):1373-81. doi: 10.1007/s10886-009-9714-5. [PMID: 19949841]
  • Martinus E Huigens, Foteini G Pashalidou, Ming-Hui Qian, Tibor Bukovinszky, Hans M Smid, Joop J A van Loon, Marcel Dicke, Nina E Fatouros. Hitch-hiking parasitic wasp learns to exploit butterfly antiaphrodisiac. Proceedings of the National Academy of Sciences of the United States of America. 2009 Jan; 106(3):820-5. doi: 10.1073/pnas.0812277106. [PMID: 19139416]
  • Seyed Mehdi Razavi, Samad Nejad-Ebrahimi. Chemical composition, allelopatic and cytotoxic effects of essential oils of flowering tops and leaves of Crambe orientalis L. from Iran. Natural product research. 2009; 23(16):1492-8. doi: 10.1080/14786410802611303. [PMID: 19662570]
  • Joseph Schwarz, Regine Gries, Kirk Hillier, Neil Vickers, Gerhard Gries. Phenology of semiochemical-mediated host foraging by the western boxelder bug, Boisea rubrolineata, an aposematic seed predator. Journal of chemical ecology. 2009 Jan; 35(1):58-70. doi: 10.1007/s10886-008-9575-3. [PMID: 19123035]
  • Eleftherios Alissandrakis, Petros A Tarantilis, Paschalis C Harizanis, Moschos Polissiou. Comparison of the volatile composition in thyme honeys from several origins in Greece. Journal of agricultural and food chemistry. 2007 Oct; 55(20):8152-7. doi: 10.1021/jf071442y. [PMID: 17824662]
  • R C Smallegange, J J A van Loon, S E Blatt, J A Harvey, N Agerbirk, M Dicke. Flower vs. leaf feeding by Pieris brassicae: glucosinolate-rich flower tissues are preferred and sustain higher growth rate. Journal of chemical ecology. 2007 Oct; 33(10):1831-44. doi: 10.1007/s10886-007-9350-x. [PMID: 17828429]
  • Delia M Pinto, James D Blande, Riikka Nykänen, Wen-Xia Dong, Anne-Marja Nerg, Jarmo K Holopainen. Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?. Journal of chemical ecology. 2007 Apr; 33(4):683-94. doi: 10.1007/s10886-007-9255-8. [PMID: 17333375]
  • Fredd Vergara, Ales Svatos, Bernd Schneider, Michael Reichelt, Jonathan Gershenzon, Ute Wittstock. Glycine conjugates in a lepidopteran insect herbivore--the metabolism of benzylglucosinolate in the cabbage white butterfly, Pieris rapae. Chembiochem : a European journal of chemical biology. 2006 Dec; 7(12):1982-9. doi: 10.1002/cbic.200600280. [PMID: 17086559]
  • D-L Cheng, K Hashimoto, Y Uda. In vitro digestion of sinigrin and glucotropaeolin by single strains of Bifidobacterium and identification of the digestive products. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2004 Mar; 42(3):351-7. doi: 10.1016/j.fct.2003.09.008. [PMID: 14871576]
  • M E DePuy, D G Musson, S Yu, A L Fisher. LC-MS/MS determination of a farnesyl transferase inhibitor in human plasma and urine. Journal of pharmaceutical and biomedical analysis. 2002 Nov; 30(4):1157-71. doi: 10.1016/s0731-7085(02)00451-x. [PMID: 12408906]
  • R Kermanshai, B E McCarry, J Rosenfeld, P S Summers, E A Weretilnyk, G J Sorger. Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry. 2001 Jun; 57(3):427-35. doi: 10.1016/s0031-9422(01)00077-2. [PMID: 11393524]
  • J Potter, R L Smith, A M Api. Urinary thiocyanate levels as a biomarker for the generation of inorganic cyanide from benzyl cyanide in the rat. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2001 Feb; 39(2):141-6. doi: 10.1016/s0278-6915(00)00126-5. [PMID: 11267707]
  • J Potter, R L Smith, A M Api. An assessment of the release of inorganic cyanide from the fragrance materials benzyl cyanide, geranyl nitrile and citronellyl nitrile applied dermally to the rat. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2001 Feb; 39(2):147-51. doi: 10.1016/s0278-6915(00)00125-3. [PMID: 11267708]
  • A Guest, J R Jackson, S P James. Toxicity of benzyl cyanide in the rat. Toxicology letters. 1982 Feb; 10(2-3):265-72. doi: 10.1016/0378-4274(82)90086-8. [PMID: 7080096]