Palmitaldehyde (BioDeep_00000004325)
Secondary id: BioDeep_00000629937, BioDeep_00000863714, BioDeep_00001868186
human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds
代谢物信息卡片
化学式: C16H32O (240.2453022)
中文名称: 十六醛, 棕榈醛
谱图信息:
最多检出来源 Homo sapiens(lipidomics) 0.04%
Last reviewed on 2024-07-29.
Cite this Page
Palmitaldehyde. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/palmitaldehyde (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000004325). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCCCCCCCCCCCC=O
InChI: InChI=1S/C16H32O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17/h16H,2-15H2,1H3
描述信息
Palmitaldehyde, also known as 1-hexadecanal, is a member of the class of compounds known as fatty aldehydes. Fatty aldehydes are long chain aldehydes with a chain of at least 12 carbon atoms. Thus, palmitaldehyde is considered to be a fatty aldehyde lipid molecule. Palmitaldehyde is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Palmitaldehyde can be found in a number of food items such as rose hip, lambsquarters, pak choy, and swede, which makes palmitaldehyde a potential biomarker for the consumption of these food products. Palmitaldehyde exists in all eukaryotes, ranging from yeast to humans. In humans, palmitaldehyde is involved in few metabolic pathways, which include globoid cell leukodystrophy, metachromatic leukodystrophy (MLD), and sphingolipid metabolism. Palmitaldehyde is also involved in few metabolic disorders, which include fabry disease, gaucher disease, and krabbe disease.
Palmitaldehyde is an intermediate in the metabolism of Glycosphingolipid. It is a substrate for Sphingosine-1-phosphate lyase 1.
Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].
Hexadecanal (Palmitaldehyde) is a free fatty aldehyde present in animals[1].
同义名列表
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:17600
- KEGG: C00517
- PubChem: 984
- HMDB: HMDB0001551
- Metlin: METLIN6317
- DrugBank: DB03381
- ChEMBL: CHEMBL1235338
- KNApSAcK: C00007542
- foodb: FDB031083
- chemspider: 959
- CAS: 629-80-1
- PMhub: MS000016549
- LipidMAPS: LMFA06000088
- 3DMET: B00119
- NIKKAJI: J1.704C
- RefMet: Palmitaldehyde
- medchemexpress: HY-W004305
- PubChem: 3800
- KNApSAcK: 17600
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
326 个相关的代谢反应过程信息。
Reactome(64)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Sphingolipid metabolism:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + HD2NAL + NAD ⟶ H+ + NADH + PALM
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + HD2NAL + NAD ⟶ H+ + NADH + PALM
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + HD2NAL + NAD ⟶ H+ + NADH + PALM
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
- Sphingolipid catabolism:
H2O + Plant-Ceramides-II ⟶ RCOO- + phytosphingosine
BioCyc(13)
- sphingolipid metabolism:
NADP+ + a sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid metabolism:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- sphingosine and sphingosine-1-phosphate metabolism:
NADP+ + palmitaldehyde ⟶ (2E)-hexadecenal + H+ + NADPH
- sphingosine and sphingosine-1-phosphate metabolism:
sphingosine 1-phosphate ⟶ (2E)-hexadecenal + O-phosphoethanolamine
- sphingosine and sphingosine-1-phosphate metabolism:
ATP + sphingosine ⟶ ADP + H+ + sphingosine-1-phosphate
- sphingosine and sphingosine-1-phosphate metabolism:
NADP+ + palmitaldehyde ⟶ (2E)-hexadecenal + H+ + NADPH
- sphingosine and sphingosine-1-phosphate metabolism:
ATP + sphingosine ⟶ ADP + H+ + sphingosine-1-phosphate
- sphingosine and sphingosine-1-phosphate metabolism:
ATP + sphingosine ⟶ ADP + H+ + sphingosine-1-phosphate
- sphingolipid metabolism:
L-serine + palmitoyl CoA ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- sphingolipid recycling and degradation (yeast):
H2O + a dihydroceramide ⟶ D-erythro-sphinganine + a carboxylate
- sphingolipid recycling and degradation (yeast):
sphinganine 1-phosphate ⟶ O-phosphoethanolamine + palmitaldehyde
- sphingolipid metabolism:
4-hydroxysphinganine + ATP ⟶ ADP + H+ + phytosphingosine-1-P
- sphingolipid metabolism:
ATP + a sphinganine ⟶ ADP + H+ + sphinganine 1-phosphate
WikiPathways(4)
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid metabolism (integrated pathway):
Palmitoyl-CoA ⟶ 3-keto-sphinganine
- Sphingolipid metabolism overview:
3-keto-sphinganine ⟶ Sphinganine
- Sphingolipid metabolism: integrated pathway:
Palmitoyl-CoA ⟶ 3-keto-sphinganine
Plant Reactome(222)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Fatty acid and lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Fatty acid and lipid metabolism:
NAD(P)H + Oxygen + lathosterol ⟶ H2O + NAD(P)+ + Provitamin D3
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Fatty acid and lipid metabolism:
ATP + CoA-SH + fatty acid ⟶ AMP + FACoA + PPi
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(22)
- Sphingolipid Metabolism:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Gaucher Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Globoid Cell Leukodystrophy:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Metachromatic Leukodystrophy (MLD):
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Fabry Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Krabbe Disease:
Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
- Sphingolipid Metabolism:
L-Serine + Palmityl-CoA ⟶ 3-Dehydrosphinganine + Carbon dioxide
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Sphingolipid Metabolism:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Gaucher Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Globoid Cell Leukodystrophy:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Metachromatic Leukodystrophy (MLD):
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Fabry Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
- Krabbe Disease:
Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
PharmGKB(0)
22 个相关的物种来源信息
- 49984 - Ajuga chamaepitys: 10.1080/10412905.1999.9701111
- 4214 - Ambrosia trifida: 10.1016/0031-9422(93)85405-G
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 246357 - Commiphora rostrata: 10.1016/0031-9422(88)87020-1
- 40085 - Diatraea saccharalis: 10.1021/NP010551I
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 4397 - Hamamelis virginiana: 10.1055/S-2006-957420
- 987952 - Heliothis maritima: 10.1007/BF00636583
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 4606 - Lolium arundinaceum: 10.1016/0031-9422(91)84185-U
- 29780 - Mangifera indica: 10.1016/0031-9422(88)80124-9
- 1127086 - Mikania cordifolia: 10.1016/S0031-9422(00)80558-0
- 158596 - Pelargonium endlicherianum: 10.1055/S-2006-960872
- 5791 - Physarum polycephalum: 10.1248/CPB.32.797
- 246847 - Protium heptaphyllum: 10.1080/10412905.1995.9698581
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 265416 - Solanum stuckertii: 10.1080/10412905.1997.9700728
- 6123 - Stichodactyla helianthus: 10.1021/NP50114A011
- 105367 - Tripneustes ventricosus: 10.1021/NP50107A008
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Mathijs Drummen, Lea Tischmann, Blandine Gatta-Cherifi, Daniela Cota, Isabelle Matias, Anne Raben, Tanja Adam, Margriet Westerterp-Plantenga. Role of Endocannabinoids in Energy-Balance Regulation in Participants in the Postobese State-a PREVIEW Study.
The Journal of clinical endocrinology and metabolism.
2020 07; 105(7):. doi:
10.1210/clinem/dgaa193
. [PMID: 32333763] - Corinna Neuber, Fabian Schumacher, Erich Gulbins, Burkhard Kleuser. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry.
Analytical chemistry.
2014 Sep; 86(18):9065-73. doi:
10.1021/ac501677y
. [PMID: 25137547] - Verena Bautze, Wolfgang Schwack, Heinz Breer, Jörg Strotmann. Identification of a natural source for the OR37B ligand.
Chemical senses.
2014 Jan; 39(1):27-38. doi:
10.1093/chemse/bjt051
. [PMID: 24235213] - Xiaobo Zhou, Iris Wulfsen, Michael Korth, Heather McClafferty, Robert Lukowski, Michael J Shipston, Peter Ruth, Dobromir Dobrev, Thomas Wieland. Palmitoylation and membrane association of the stress axis regulated insert (STREX) controls BK channel regulation by protein kinase C.
The Journal of biological chemistry.
2012 Sep; 287(38):32161-71. doi:
10.1074/jbc.m112.386359
. [PMID: 22843729] - Mélissa Flamment, Jennifer Rieusset, Hubert Vidal, Gilles Simard, Yves Malthièry, Bernard Fromenty, Pierre-Henri Ducluzeau. Regulation of hepatic mitochondrial metabolism in response to a high fat diet: a longitudinal study in rats.
Journal of physiology and biochemistry.
2012 Sep; 68(3):335-44. doi:
10.1007/s13105-012-0145-3
. [PMID: 22278845] - Mahboubeh Mansourian, Armin Madadkar-Sobhani, Karim Mahnam, Afshin Fassihi, Lotfollah Saghaie. Characterization of adenosine receptor in its native environment: insights from molecular dynamics simulations of palmitoylated/glycosylated, membrane-integrated human A(2B) adenosine receptor.
Journal of molecular modeling.
2012 Sep; 18(9):4309-24. doi:
10.1007/s00894-012-1427-y
. [PMID: 22570080] - Matthew L Jones, Mark O Collins, David Goulding, Jyoti S Choudhary, Julian C Rayner. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis.
Cell host & microbe.
2012 Aug; 12(2):246-58. doi:
10.1016/j.chom.2012.06.005
. [PMID: 22901544] - Jarrod R Fortwendel, Praveen R Juvvadi, Luise E Rogg, Yohannes G Asfaw, Kimberlie A Burns, Scott H Randell, William J Steinbach. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus.
Eukaryotic cell.
2012 Aug; 11(8):966-77. doi:
10.1128/ec.00091-12
. [PMID: 22562470] - Sara B Triffo, Hector H Huang, Adam W Smith, Eldon T Chou, Jay T Groves. Monitoring lipid anchor organization in cell membranes by PIE-FCCS.
Journal of the American Chemical Society.
2012 Jul; 134(26):10833-42. doi:
10.1021/ja300374c
. [PMID: 22631607] - Markus A Keller, Katrin Watschinger, Karsten Lange, Georg Golderer, Gabriele Werner-Felmayer, Albin Hermetter, Ronald J A Wanders, Ernst R Werner. Studying fatty aldehyde metabolism in living cells with pyrene-labeled compounds.
Journal of lipid research.
2012 Jul; 53(7):1410-6. doi:
10.1194/jlr.d025650
. [PMID: 22508945] - Naoki Tanaka, Tsutomu Matsubara, Kristopher W Krausz, Andrew D Patterson, Frank J Gonzalez. Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis.
Hepatology (Baltimore, Md.).
2012 Jul; 56(1):118-29. doi:
10.1002/hep.25630
. [PMID: 22290395] - Quan-Jiang Zhang, William L Holland, Lloyd Wilson, Jason M Tanner, Devin Kearns, Judd M Cahoon, Dix Pettey, Jason Losee, Bradlee Duncan, Derrick Gale, Christopher A Kowalski, Nicholas Deeter, Alexandrea Nichols, Michole Deesing, Colton Arrant, Ting Ruan, Christoph Boehme, Dane R McCamey, Janvida Rou, Kapil Ambal, Krishna K Narra, Scott A Summers, E Dale Abel, J David Symons. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex.
Diabetes.
2012 Jul; 61(7):1848-59. doi:
10.2337/db11-1399
. [PMID: 22586587] - Brian F Lin, Dimitris Missirlis, Daniel V Krogstad, Matthew Tirrell. Structural effects and lipid membrane interactions of the pH-responsive GALA peptide with fatty acid acylation.
Biochemistry.
2012 Jun; 51(23):4658-68. doi:
10.1021/bi300314h
. [PMID: 22591394] - David M Suckling, Gillian F McLaren, Lee-Anne M Manning, Vanessa J Mitchell, Bernie Attfield, Kate Colhoun, Ashraf M El-Sayed. Development of single-dispenser pheromone suppression of Epiphyas postvittana, Planotortrix octo and Ctenopseustis obliquana in New Zealand stone fruit orchards.
Pest management science.
2012 Jun; 68(6):928-34. doi:
10.1002/ps.3252
. [PMID: 22337555] - Navin Chandra Gupta, Pradeep K Jain, S R Bhat, R Srinivasan. Upstream sequence of fatty acyl-CoA reductase (FAR6) of Arabidopsis thaliana drives wound-inducible and stem-specific expression.
Plant cell reports.
2012 May; 31(5):839-50. doi:
10.1007/s00299-011-1205-9
. [PMID: 22189440] - Catherine A Fox, Marc R Gartenberg. Palmitoylation in the nucleus: a little fat around the edges.
Nucleus (Austin, Tex.).
2012 May; 3(3):251-5. doi:
10.4161/nucl.20391
. [PMID: 22572952] - Lijun Tian, Heather McClafferty, Hans-Guenther Knaus, Peter Ruth, Michael J Shipston. Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels.
The Journal of biological chemistry.
2012 Apr; 287(18):14718-25. doi:
10.1074/jbc.m111.335547
. [PMID: 22399288] - Ming Li, Changhong Li, Aron Allen, Charles A Stanley, Thomas J Smith. The structure and allosteric regulation of mammalian glutamate dehydrogenase.
Archives of biochemistry and biophysics.
2012 Mar; 519(2):69-80. doi:
10.1016/j.abb.2011.10.015
. [PMID: 22079166] - Clifford R Elcombe, Barbara M Elcombe, John R Foster, Shu-Ching Chang, David J Ehresman, John L Butenhoff. Hepatocellular hypertrophy and cell proliferation in Sprague-Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR.
Toxicology.
2012 Mar; 293(1-3):16-29. doi:
10.1016/j.tox.2011.12.014
. [PMID: 22245121] - Bjoern E S Olausson, Alan Grossfield, Michael C Pitman, Michael F Brown, Scott E Feller, Alexander Vogel. Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes.
Journal of the American Chemical Society.
2012 Mar; 134(9):4324-31. doi:
10.1021/ja2108382
. [PMID: 22280374] - Ami Oguro, Susumu Imaoka. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.
Journal of lipid research.
2012 Mar; 53(3):505-512. doi:
10.1194/jlr.m022319
. [PMID: 22217705] - Daniel P O'Connell, Daniel F LeBlanc, Debra Cromley, Jeffrey Billheimer, Daniel J Rader, William W Bachovchin. Design and synthesis of boronic acid inhibitors of endothelial lipase.
Bioorganic & medicinal chemistry letters.
2012 Feb; 22(3):1397-401. doi:
10.1016/j.bmcl.2011.12.043
. [PMID: 22225633] - Michael J Jurczak, Ann-Hwee Lee, Francois R Jornayvaz, Hui-Young Lee, Andreas L Birkenfeld, Blas A Guigni, Mario Kahn, Varman T Samuel, Laurie H Glimcher, Gerald I Shulman. Dissociation of inositol-requiring enzyme (IRE1α)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice.
The Journal of biological chemistry.
2012 Jan; 287(4):2558-67. doi:
10.1074/jbc.m111.316760
. [PMID: 22128176] - Owen Jeffries, Lijun Tian, Heather McClafferty, Michael J Shipston. An electrostatic switch controls palmitoylation of the large conductance voltage- and calcium-activated potassium (BK) channel.
The Journal of biological chemistry.
2012 Jan; 287(2):1468-77. doi:
10.1074/jbc.m111.224840
. [PMID: 22084244] - Shona Pryor, Gretchen McCaffrey, Lindsay R Young, Mark L Grimes. NGF causes TrkA to specifically attract microtubules to lipid rafts.
PloS one.
2012; 7(4):e35163. doi:
10.1371/journal.pone.0035163
. [PMID: 22496904] - Erin E Mulvihill, Murray W Huff. Protection from Metabolic Dysregulation, Obesity, and Atherosclerosis by Citrus Flavonoids: Activation of Hepatic PGC1α-Mediated Fatty Acid Oxidation.
PPAR research.
2012; 2012(?):857142. doi:
10.1155/2012/857142
. [PMID: 22701469] - Shinji Takasu, Michihiro Mutoh, Mami Takahashi, Hitoshi Nakagama. Lipoprotein lipase as a candidate target for cancer prevention/therapy.
Biochemistry research international.
2012; 2012(?):398697. doi:
10.1155/2012/398697
. [PMID: 22028972] - Arti Sharma, Rajinder Singh Chauhan. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants.
Comparative and functional genomics.
2012; 2012(?):914843. doi:
10.1155/2012/914843
. [PMID: 22312320] - Roberto P Stock, Jonathan Brewer, Kerstin Wagner, Blanca Ramos-Cerrillo, Lars Duelund, Kit Drescher Jernshøj, Lars Folke Olsen, Luis A Bagatolli. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.
PloS one.
2012; 7(4):e36003. doi:
10.1371/journal.pone.0036003
. [PMID: 22558302] - Longxin Qiu, Jianhui Lin, Fangui Xu, Yuehong Gao, Cuilin Zhang, Ying Liu, Yu Luo, James Y Yang. Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-α and ameliorates hepatosteatosis in diabetic db/db mice.
Experimental diabetes research.
2012; 2012(?):789730. doi:
10.1155/2012/789730
. [PMID: 22110479] - John R Ussher, Clifford D L Folmes, Wendy Keung, Natasha Fillmore, Jagdip S Jaswal, Virgilio J Cadete, Donna L Beker, Victoria H Lam, Liyan Zhang, Gary D Lopaschuk. Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance.
PloS one.
2012; 7(5):e37703. doi:
10.1371/journal.pone.0037703
. [PMID: 22629445] - Nai-Jyuan Wang, Chi-Ching Lee, Chao-Sheng Cheng, Wei-Cheng Lo, Ya-Fen Yang, Ming-Nan Chen, Ping-Chiang Lyu. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB).
BMC genomics.
2012; 13 Suppl 1(?):S9. doi:
10.1186/1471-2164-13-s1-s9
. [PMID: 22369214] - Sergio A Rosales-Corral, Gabriela Lopez-Armas, Jose Cruz-Ramos, Valery G Melnikov, Dun-Xian Tan, Lucien C Manchester, Ruben Munoz, Russel J Reiter. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin.
International journal of Alzheimer's disease.
2012; 2012(?):459806. doi:
10.1155/2012/459806
. [PMID: 22666620] - Masaki Ino, Yoshibumi Shimizu, Tamotsu Tanaka, Akira Tokumura. Alterations of plasma levels of lysophosphatidic acid in response to fasting of rats.
Biological & pharmaceutical bulletin.
2012; 35(11):2059-63. doi:
10.1248/bpb.b12-00497
. [PMID: 23123475] - Abby L Parrill, Irene W Wanjala, Truc Chi T Pham, Daniel L Baker. Computational identification and experimental characterization of substrate binding determinants of nucleotide pyrophosphatase/phosphodiesterase 7.
BMC biochemistry.
2011 Dec; 12(?):65. doi:
10.1186/1471-2091-12-65
. [PMID: 22177013] - Janine Hellenbrand, Eva-Maria Biester, Jens Gruber, Mats Hamberg, Margrit Frentzen. Fatty acyl-CoA reductases of birds.
BMC biochemistry.
2011 Dec; 12(?):64. doi:
10.1186/1471-2091-12-64
. [PMID: 22151413] - Clara Aicart-Ramos, Ruth Ana Valero, Ignacio Rodriguez-Crespo. Protein palmitoylation and subcellular trafficking.
Biochimica et biophysica acta.
2011 Dec; 1808(12):2981-94. doi:
10.1016/j.bbamem.2011.07.009
. [PMID: 21819967] - Per Hofvander, Thuy T P Doan, Mats Hamberg. A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol.
FEBS letters.
2011 Nov; 585(22):3538-43. doi:
10.1016/j.febslet.2011.10.016
. [PMID: 22020216] - Thomas K M Nyholm, Bianca van Duyl, Dirk T S Rijkers, Rob M J Liskamp, J Antoinette Killian. Probing the lipid-protein interface using model transmembrane peptides with a covalently linked acyl chain.
Biophysical journal.
2011 Oct; 101(8):1959-67. doi:
10.1016/j.bpj.2011.09.020
. [PMID: 22004750] - William J Chirico. Protein release through nonlethal oncotic pores as an alternative nonclassical secretory pathway.
BMC cell biology.
2011 Oct; 12(?):46. doi:
10.1186/1471-2121-12-46
. [PMID: 22008609] - Roshni R Singaraja, Kun Huang, Shaun S Sanders, Austen J Milnerwood, Rochelle Hines, Jason P Lerch, Sonia Franciosi, Renaldo C Drisdel, Kuljeet Vaid, Fiona B Young, Crystal Doty, Junmei Wan, Nagat Bissada, R Mark Henkelman, William N Green, Nicholas G Davis, Lynn A Raymond, Michael R Hayden. Altered palmitoylation and neuropathological deficits in mice lacking HIP14.
Human molecular genetics.
2011 Oct; 20(20):3899-909. doi:
10.1093/hmg/ddr308
. [PMID: 21775500] - David Maxwell Suckling, Lloyd D Stringer, Joshua E Corn. Argentine ant trail pheromone disruption is mediated by trail concentration.
Journal of chemical ecology.
2011 Oct; 37(10):1143-9. doi:
10.1007/s10886-011-0019-0
. [PMID: 21964852] - Weiwei Chen, Xiao-Hong Yu, Kaisi Zhang, Jianxin Shi, Sheron De Oliveira, Lukas Schreiber, John Shanklin, Dabing Zhang. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis.
Plant physiology.
2011 Oct; 157(2):842-53. doi:
10.1104/pp.111.181693
. [PMID: 21813653] - Ilse Delint-Ramirez, Debbie Willoughby, Gerald R V Hammond, Gerald V R Hammond, Laura J Ayling, Dermot M F Cooper. Palmitoylation targets AKAP79 protein to lipid rafts and promotes its regulation of calcium-sensitive adenylyl cyclase type 8.
The Journal of biological chemistry.
2011 Sep; 286(38):32962-75. doi:
10.1074/jbc.m111.243899
. [PMID: 21771783] - Jason W Holder, Jil C Ulrich, Anthony C DeBono, Paul A Godfrey, Christopher A Desjardins, Jeremy Zucker, Qiandong Zeng, Alex L B Leach, Ion Ghiviriga, Christine Dancel, Thomas Abeel, Dirk Gevers, Chinnappa D Kodira, Brian Desany, Jason P Affourtit, Bruce W Birren, Anthony J Sinskey. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
PLoS genetics.
2011 Sep; 7(9):e1002219. doi:
10.1371/journal.pgen.1002219
. [PMID: 21931557] - Eri Oyanagi, Hiromi Yano, Masataka Uchida, Kozo Utsumi, Junzo Sasaki. Protective action of L-carnitine on cardiac mitochondrial function and structure against fatty acid stress.
Biochemical and biophysical research communications.
2011 Aug; 412(1):61-7. doi:
10.1016/j.bbrc.2011.07.039
. [PMID: 21791201] - Yan Kwok, Wang-Chou Sung, Annie Li-Hsiu Lin, Hsueh-Hung Liu, Frieda Ai-Hsiang Chou, Steve Shih-Yang Hsieh, Chih-Hsiang Leng, Pele Chong. Rapid isolation and characterization of bacterial lipopeptides using liquid chromatography and mass spectrometry analysis.
Proteomics.
2011 Jul; 11(13):2620-7. doi:
10.1002/pmic.201000688
. [PMID: 21630453] - Brennan K Smith, Swati S Jain, Stéphanie Rimbaud, Aaron Dam, Joe Quadrilatero, Renée Ventura-Clapier, Arend Bonen, Graham P Holloway. FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation.
The Biochemical journal.
2011 Jul; 437(1):125-34. doi:
10.1042/bj20101861
. [PMID: 21463259] - F Yarrow. An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers.
European biophysics journal : EBJ.
2011 Jul; 40(7):825-33. doi:
10.1007/s00249-011-0696-1
. [PMID: 21461794] - Ashraf M El-Sayed, Vanessa J Mitchell, Lee-Anne M Manning, David Max Suckling. New sex pheromone blend for the lightbrown apple moth, Epiphyas postvittana.
Journal of chemical ecology.
2011 Jun; 37(6):640-6. doi:
10.1007/s10886-011-9964-x
. [PMID: 21573864] - Jianxin Yang, Margit L MacDougall, Michael T McDowell, Li Xi, Ru Wei, William J Zavadoski, Mark P Molloy, John D Baker, Max Kuhn, Over Cabrera, Judith L Treadway. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR) knockout mice: implications on anti-glucagon therapies for diabetes.
BMC genomics.
2011 Jun; 12(?):281. doi:
10.1186/1471-2164-12-281
. [PMID: 21631939] - Ines Warnke, Regina Goralczyk, Erna Fuhrer, Joseph Schwager. Dietary constituents reduce lipid accumulation in murine C3H10 T1/2 adipocytes: A novel fluorescent method to quantify fat droplets.
Nutrition & metabolism.
2011 May; 8(1):30. doi:
10.1186/1743-7075-8-30
. [PMID: 21569430] - Hua Song, Hongquan Geng, Jing Ruan, Kan Wang, Chenchen Bao, Juan Wang, Xia Peng, Xueqing Zhang, Daxiang Cui. Development of Polysorbate 80/Phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models.
Nanoscale research letters.
2011 Apr; 6(1):354. doi:
10.1186/1556-276x-6-354
. [PMID: 21711889] - Purushothaman Natarajan, Madasamy Parani. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing.
BMC genomics.
2011 Apr; 12(?):191. doi:
10.1186/1471-2164-12-191
. [PMID: 21492485] - Tsutomu Matsubara, Naoki Tanaka, Andrew D Patterson, Joo-Youn Cho, Kristopher W Krausz, Frank J Gonzalez. Lithocholic acid disrupts phospholipid and sphingolipid homeostasis leading to cholestasis in mice.
Hepatology (Baltimore, Md.).
2011 Apr; 53(4):1282-93. doi:
10.1002/hep.24193
. [PMID: 21480330] - Denis Khnykin, Jeffrey H Miner, Frode Jahnsen. Role of fatty acid transporters in epidermis: Implications for health and disease.
Dermato-endocrinology.
2011 Apr; 3(2):53-61. doi:
10.4161/derm.3.2.14816
. [PMID: 21695012] - Oscar Ekholm, Shishir Jaikishan, Max Lönnfors, Thomas K M Nyholm, J Peter Slotte. Membrane bilayer properties of sphingomyelins with amide-linked 2- or 3-hydroxylated fatty acids.
Biochimica et biophysica acta.
2011 Mar; 1808(3):727-32. doi:
10.1016/j.bbamem.2010.12.006
. [PMID: 21167130] - Ayelén González Montoro, Sabrina Chumpen Ramirez, Rodrigo Quiroga, Javier Valdez Taubas. Specificity of transmembrane protein palmitoylation in yeast.
PloS one.
2011 Feb; 6(2):e16969. doi:
10.1371/journal.pone.0016969
. [PMID: 21383992] - A A A Jacobs, J van Baal, M A Smits, H Z H Taweel, W H Hendriks, A M van Vuuren, J Dijkstra. Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows.
Journal of dairy science.
2011 Feb; 94(2):874-87. doi:
10.3168/jds.2010-3511
. [PMID: 21257056] - Rithika Kulathila, Ragini Kulathila, Mridhu Indic, Bert van den Berg. Crystal structure of Escherichia coli CusC, the outer membrane component of a heavy metal efflux pump.
PloS one.
2011 Jan; 6(1):e15610. doi:
10.1371/journal.pone.0015610
. [PMID: 21249122] - Mark N Adams, Melinda E Christensen, Yaowu He, Nigel J Waterhouse, John D Hooper. The role of palmitoylation in signalling, cellular trafficking and plasma membrane localization of protease-activated receptor-2.
PloS one.
2011; 6(11):e28018. doi:
10.1371/journal.pone.0028018
. [PMID: 22140500] - Mihaela Mihailescu, Olivier Soubias, David Worcester, Stephen H White, Klaus Gawrisch. Structure and dynamics of cholesterol-containing polyunsaturated lipid membranes studied by neutron diffraction and NMR.
The Journal of membrane biology.
2011 Jan; 239(1-2):63-71. doi:
10.1007/s00232-010-9326-6
. [PMID: 21161517] - Adriana Maria Mariano Silveira E Souza, Vivian Marino Mazucato, Maria Célia Jamur, Constance Oliver. Lipid rafts in mast cell biology.
Journal of lipids.
2011; 2011(?):752906. doi:
10.1155/2011/752906
. [PMID: 21490812] - Vladimir Krasikov, Henk L Dekker, Martijn Rep, Frank L W Takken. The tomato xylem sap protein XSP10 is required for full susceptibility to Fusarium wilt disease.
Journal of experimental botany.
2011 Jan; 62(3):963-73. doi:
10.1093/jxb/erq327
. [PMID: 20974736] - Weidong Xie, Dayong Gu, Jianna Li, Kai Cui, Yaou Zhang. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice.
PloS one.
2011; 6(9):e24520. doi:
10.1371/journal.pone.0024520
. [PMID: 21915347] - Joseph S Lam, Véronique L Taylor, Salim T Islam, Youai Hao, Dana Kocíncová. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide.
Frontiers in microbiology.
2011; 2(?):118. doi:
10.3389/fmicb.2011.00118
. [PMID: 21687428] - Gyan P Mishra, Mahuya Bagui, Viral Tamboli, Ashim K Mitra. Recent applications of liposomes in ophthalmic drug delivery.
Journal of drug delivery.
2011; 2011(?):863734. doi:
10.1155/2011/863734
. [PMID: 21490757] - Susana J Pasquaré, Virginia L Gaveglio, Norma M Giusto. Regulation of phosphatidic Acid metabolism by sphingolipids in the central nervous system.
Journal of lipids.
2011; 2011(?):342576. doi:
10.1155/2011/342576
. [PMID: 21490799] - Klementina Fon Tacer, Damjana Rozman. Nonalcoholic Fatty liver disease: focus on lipoprotein and lipid deregulation.
Journal of lipids.
2011; 2011(?):783976. doi:
10.1155/2011/783976
. [PMID: 21773052] - Lan Feng, Huali Wu, Ping Ma, Russell J Mumper, S Rahima Benhabbour. Development and optimization of oil-filled lipid nanoparticles containing docetaxel conjugates designed to control the drug release rate in vitro and in vivo.
International journal of nanomedicine.
2011; 6(?):2545-56. doi:
10.2147/ijn.s24954
. [PMID: 22072889] - Kathryn Bauerly, Calliandra Harris, Winyoo Chowanadisai, James Graham, Peter J Havel, Eskouhie Tchaparian, Mike Satre, Joel S Karliner, Robert B Rucker. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats.
PloS one.
2011; 6(7):e21779. doi:
10.1371/journal.pone.0021779
. [PMID: 21814553] - Maike Rudolph, Armin Schlereth, Martina Körner, Kirstin Feussner, Ekkehardt Berndt, Michael Melzer, Ellen Hornung, Ivo Feussner. The lipoxygenase-dependent oxygenation of lipid body membranes is promoted by a patatin-type phospholipase in cucumber cotyledons.
Journal of experimental botany.
2011 Jan; 62(2):749-60. doi:
10.1093/jxb/erq310
. [PMID: 21081663] - Greger Orädd, Artur Schmidtchen, Martin Malmsten. Effects of peptide hydrophobicity on its incorporation in phospholipid membranes--an NMR and ellipsometry study.
Biochimica et biophysica acta.
2011 Jan; 1808(1):244-52. doi:
10.1016/j.bbamem.2010.08.015
. [PMID: 20801096] - Juan Peng, Jian-Ping Yuan, Chou-Fei Wu, Jiang-Hai Wang. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health.
Marine drugs.
2011; 9(10):1806-1828. doi:
10.3390/md9101806
. [PMID: 22072997] - Vandana K Grover, J Gerardo Valadez, Aaron B Bowman, Michael K Cooper. Lipid modifications of Sonic hedgehog ligand dictate cellular reception and signal response.
PloS one.
2011; 6(7):e21353. doi:
10.1371/journal.pone.0021353
. [PMID: 21747935] - Michel Bidet, Olivier Joubert, Benoit Lacombe, Marine Ciantar, Rony Nehmé, Patrick Mollat, Lionel Brétillon, Hélène Faure, Robert Bittman, Martial Ruat, Isabelle Mus-Veteau. The hedgehog receptor patched is involved in cholesterol transport.
PloS one.
2011; 6(9):e23834. doi:
10.1371/journal.pone.0023834
. [PMID: 21931618] - Andrea Huwiler, Florence Bourquin, Nataliya Kotelevets, Oleksandr Pastukhov, Guido Capitani, Markus G Grütter, Uwe Zangemeister-Wittke. A prokaryotic S1P lyase degrades extracellular S1P in vitro and in vivo: implication for treating hyperproliferative disorders.
PloS one.
2011; 6(8):e22436. doi:
10.1371/journal.pone.0022436
. [PMID: 21829623] - Chengliang Zhang, Aimin Li, Shenglan Gao, Xinchun Zhang, Hua Xiao. The TIP30 protein complex, arachidonic acid and coenzyme A are required for vesicle membrane fusion.
PloS one.
2011; 6(6):e21233. doi:
10.1371/journal.pone.0021233
. [PMID: 21731680] - Hae Jin Kim, Sung Han Ok, Sung Chul Bahn, Juno Jang, Sung Aeong Oh, Soon Ki Park, David Twell, Stephen Beungtae Ryu, Jeong Sheop Shin. Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination.
The Plant cell.
2011 Jan; 23(1):94-110. doi:
10.1105/tpc.110.074799
. [PMID: 21278126] - Mario Brameshuber, Julian Weghuber, Verena Ruprecht, Imre Gombos, Ibolya Horváth, László Vigh, Paul Eckerstorfer, Endre Kiss, Hannes Stockinger, Gerhard J Schütz. Imaging of mobile long-lived nanoplatforms in the live cell plasma membrane.
The Journal of biological chemistry.
2010 Dec; 285(53):41765-71. doi:
10.1074/jbc.m110.182121
. [PMID: 20966075] - Daniel A Holdbrook, Yuk Ming Leung, Thomas J Piggot, Phedra Marius, Philip T F Williamson, Syma Khalid. Stability and membrane orientation of the fukutin transmembrane domain: a combined multiscale molecular dynamics and circular dichroism study.
Biochemistry.
2010 Dec; 49(51):10796-802. doi:
10.1021/bi101743w
. [PMID: 21105749] - Suma Mohan, Aswathy Sheena, Ninu Poulose, Gopalakrishnapillai Anilkumar. Molecular dynamics simulation studies of GLUT4: substrate-free and substrate-induced dynamics and ATP-mediated glucose transport inhibition.
PloS one.
2010 Dec; 5(12):e14217. doi:
10.1371/journal.pone.0014217
. [PMID: 21151967] - Kacee Sims, Christopher A Haynes, Samuel Kelly, Jeremy C Allegood, Elaine Wang, Amin Momin, Martina Leipelt, Donna Reichart, Christopher K Glass, M Cameron Sullards, Alfred H Merrill. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy.
The Journal of biological chemistry.
2010 Dec; 285(49):38568-79. doi:
10.1074/jbc.m110.170621
. [PMID: 20876532] - Eric Martinez, Gunnar N Schroeder, Cedric N Berger, Sau Fung Lee, Keith S Robinson, Luminita Badea, Nandi Simpson, Randy A Hall, Elizabeth L Hartland, Valerie F Crepin, Gad Frankel. Binding to Na(+) /H(+) exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH.
Cellular microbiology.
2010 Dec; 12(12):1718-31. doi:
10.1111/j.1462-5822.2010.01503.x
. [PMID: 20618342] - Katherine C Thompson, Adrian R Rennie, Martin D King, Samantha J O Hardman, Claire O M Lucas, Christian Pfrang, Brian R Hughes, Arwel V Hughes. Reaction of a phospholipid monolayer with gas-phase ozone at the air-water interface: measurement of surface excess and surface pressure in real time.
Langmuir : the ACS journal of surfaces and colloids.
2010 Nov; 26(22):17295-303. doi:
10.1021/la1022714
. [PMID: 20883049] - Timo Vuorela, Andrea Catte, Perttu S Niemelä, Anette Hall, Marja T Hyvönen, Siewert-Jan Marrink, Mikko Karttunen, Ilpo Vattulainen. Role of lipids in spheroidal high density lipoproteins.
PLoS computational biology.
2010 Oct; 6(10):e1000964. doi:
10.1371/journal.pcbi.1000964
. [PMID: 21060857] - Sung Ha Lee, Siham Raboune, J Michael Walker, Heather B Bradshaw. Distribution of endogenous farnesyl pyrophosphate and four species of lysophosphatidic acid in rodent brain.
International journal of molecular sciences.
2010 Oct; 11(10):3965-76. doi:
10.3390/ijms11103965
. [PMID: 21152313] - Woei-Ping Cheng, Colin Thompson, Sinéad M Ryan, Tanira Aguirre, Laurence Tetley, David J Brayden. In vitro and in vivo characterisation of a novel peptide delivery system: amphiphilic polyelectrolyte-salmon calcitonin nanocomplexes.
Journal of controlled release : official journal of the Controlled Release Society.
2010 Oct; 147(2):289-97. doi:
10.1016/j.jconrel.2010.07.128
. [PMID: 20705108] - Shishir Jaikishan, Anders Björkbom, J Peter Slotte. Sphingomyelin analogs with branched N-acyl chains: the position of branching dramatically affects acyl chain order and sterol interactions in bilayer membranes.
Biochimica et biophysica acta.
2010 Oct; 1798(10):1987-94. doi:
10.1016/j.bbamem.2010.07.006
. [PMID: 20637720] - Ronald J A Wanders, Jos P N Ruiter, Lodewijk IJLst, Hans R Waterham, Sander M Houten. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results.
Journal of inherited metabolic disease.
2010 Oct; 33(5):479-94. doi:
10.1007/s10545-010-9104-8
. [PMID: 20490924] - Laura A Engel, Zheng Jing, Daniel E O'Brien, Mengyang Sun, Paul T Kotzbauer. Catalytic function of PLA2G6 is impaired by mutations associated with infantile neuroaxonal dystrophy but not dystonia-parkinsonism.
PloS one.
2010 Sep; 5(9):e12897. doi:
10.1371/journal.pone.0012897
. [PMID: 20886109] - Roger L Chang, Li Xie, Lei Xie, Philip E Bourne, Bernhard Ø Palsson. Drug off-target effects predicted using structural analysis in the context of a metabolic network model.
PLoS computational biology.
2010 Sep; 6(9):e1000938. doi:
10.1371/journal.pcbi.1000938
. [PMID: 20957118] - Roland Meyer, Andreas F-P Sonnen, Werner M Nau. Phase-dependent lateral diffusion of α-tocopherol in DPPC liposomes monitored by fluorescence quenching.
Langmuir : the ACS journal of surfaces and colloids.
2010 Sep; 26(18):14723-9. doi:
10.1021/la101915x
. [PMID: 20722430] - Jose Antonio Cuesta-Seijo, Chris Neale, M Adil Khan, Joel Moktar, Christopher D Tran, Russell E Bishop, Régis Pomès, Gilbert G Privé. PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler.
Structure (London, England : 1993).
2010 Sep; 18(9):1210-9. doi:
10.1016/j.str.2010.06.014
. [PMID: 20826347] - Dasheng Zhang, Wanqi Liang, Changsong Yin, Jie Zong, Fangwei Gu, Dabing Zhang. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice.
Plant physiology.
2010 Sep; 154(1):149-62. doi:
10.1104/pp.110.158865
. [PMID: 20610705] - Ya-Ling Chiu, Yi-Cheng Ho, Yu-Ming Chen, Shu-Fen Peng, Cherng-Jyh Ke, Ko-Jie Chen, Fwu-Long Mi, Hsing-Wen Sung. The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan.
Journal of controlled release : official journal of the Controlled Release Society.
2010 Aug; 146(1):152-9. doi:
10.1016/j.jconrel.2010.05.023
. [PMID: 20580915] - Jennifer Greaves, Oforiwa A Gorleku, Christine Salaun, Luke H Chamberlain. Palmitoylation of the SNAP25 protein family: specificity and regulation by DHHC palmitoyl transferases.
The Journal of biological chemistry.
2010 Aug; 285(32):24629-38. doi:
10.1074/jbc.m110.119289
. [PMID: 20519516] - Barak Rotblat, Liron Belanis, Hong Liang, Roni Haklai, Galit Elad-Zefadia, John F Hancock, Yoel Kloog, Sarah J Plowman. H-Ras nanocluster stability regulates the magnitude of MAPK signal output.
PloS one.
2010 Aug; 5(8):e11991. doi:
10.1371/journal.pone.0011991
. [PMID: 20700538] - Myoung-Nam Woo, Seon-Min Jeon, Hye-Jin Kim, Mi-Kyung Lee, Su-Kyung Shin, Young Chul Shin, Yong-Bok Park, Myung-Sook Choi. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice.
Chemico-biological interactions.
2010 Aug; 186(3):316-22. doi:
10.1016/j.cbi.2010.05.006
. [PMID: 20519145]