Sulfate (BioDeep_00000004373)
Secondary id: BioDeep_00001867747
human metabolite Endogenous blood metabolite Industrial Pollutants
代谢物信息卡片
化学式: H2O4S (97.9673812)
中文名称: 四氧化硫, 硫酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.04%
Last reviewed on 2024-08-09.
Cite this Page
Sulfate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/sulfate (retrieved
2024-11-03) (BioDeep RN: BioDeep_00000004373). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: O=S(=O)(O)O
InChI: InChI=1S/H2O4S/c1-5(2,3)4/h(H2,1,2,3,4)
描述信息
The sulfate ion is a polyatomic anion with the empirical formula SO42- and a molecular mass of 96.06 daltons; it consists of one central sulfur atom surrounded by four equivalent oxygen atoms in a tetrahedral arrangement. The sulfate ion carries a negative two charge and is the conjugate base of the hydrogen sulfate ion, HSO4-, which is the conjugate base of H2SO4, sulfuric acid. In inorganic chemistry, a sulfate (IUPAC-recommended spelling; also sulphate in British English) is a salt of sulfuric acid. Sulfate aerosols can act as cloud condensation nuclei and this leads to greater numbers of smaller droplets of water. Lots of smaller droplets can diffuse light more efficiently than just a few larger droplets.
It is used in food processing as a pH control agent and a flavour modifier
同义名列表
数据库引用编号
19 个数据库交叉引用编号
- ChEBI: CHEBI:26836
- KEGG: C00059
- KEGGdrug: D05963
- PubChem: 1118
- HMDB: HMDB0001448
- Metlin: METLIN3235
- DrugBank: DB11309
- ChEMBL: CHEMBL572964
- Wikipedia: Sulfuric_acid
- MetaCyc: NH42SO4
- KNApSAcK: C00007530
- foodb: FDB013392
- chemspider: 1086
- CAS: 7664-93-9
- PMhub: MS000016786
- ChEBI: CHEBI:16189
- PDB-CCD: SO4
- 3DMET: B00016
- NIKKAJI: J3.749D
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(5)
代谢反应
408 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- sulfate activation for sulfonation:
ATP + adenosine 5'-phosphosulfate ⟶ ADP + H+ + phosphoadenosine-5'-phosphosulfate
- sulfate reduction I (assimilatory):
adenosine 3',5'-bisphosphate + an oxidized thioredoxin + sulfite ⟶ a reduced thioredoxin + phosphoadenosine-5'-phosphosulfate
WikiPathways(3)
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
- Methionine metabolism leading to sulfur amino acids and related disorders:
Adenosine ⟶ AMP
- Molybdenum cofactor (Moco) biosynthesis:
Xanthine ⟶ urate
Plant Reactome(0)
INOH(1)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
PlantCyc(402)
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (herbivore attack):
H2O + glucobrassicin ⟶ D-glucopyranose + H+ + indol-3-yl-acetothiohydroxamate-O-sulfonate
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- indole glucosinolate activation (herbivore attack):
indole-3-carbinol ⟶ 3,3'-di(indol-3-yl)methane + H2O + formaldehyde
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
an N-(sulfonatooxy)alkanimidothioic acid ⟶ H+ + an isothiocyanate + sulfate
- glucosinolate activation:
H2O + an alkenyl-glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate with a terminal alkene
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- aromatic glucosinolate activation:
2-benzyl-thiohydroximate-O-sulfate ⟶ benzylisothiocyanate + sulfate
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- glucosinolate activation:
H2O + an alkenyl-glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate with a terminal alkene
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- glucosinolate activation:
an N-(sulfonatooxy)alkanimidothioic acid ⟶ H+ + an isothiocyanate + sulfate
- aromatic glucosinolate activation:
2-benzyl-thiohydroximate-O-sulfate ⟶ benzylisothiocyanate + sulfate
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
2-benzyl-thiohydroximate-O-sulfate ⟶ benzylisothiocyanate + sulfate
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- aromatic glucosinolate activation:
H2O + glucotropaeolin ⟶ 2-benzyl-thiohydroximate-O-sulfate + D-glucopyranose + H+
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- indole glucosinolate activation (intact plant cell):
4-methoxy-3-indolylmethyl glucosinolate aglycone ⟶ 4-methoxy-3-indolylmethylisothiocyanate + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- adenosine 5'-phosphoramidate biosynthesis:
APS + ammonium ⟶ H+ + adenosine 5'-phosphoramidate + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- glucosinolate activation:
H2O + an aliphatic glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- glucosinolate activation:
H2O + a glucosinolate ⟶ D-glucopyranose + a thiohydroximate-O-sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- adenosine 5'-phosphoramidate biosynthesis:
APS + ammonium ⟶ H+ + adenosine 5'-phosphoramidate + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- glucosinolate activation:
an N-(sulfonatooxy)alkanimidothioic acid ⟶ H+ + an isothiocyanate + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- indole glucosinolate activation (intact plant cell):
4-methoxy-3-indolylmethyl glucosinolate aglycone ⟶ 4-methoxy-3-indolylmethylisothiocyanate + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- adenosine 5'-phosphoramidate biosynthesis:
APS + ammonium ⟶ H+ + adenosine 5'-phosphoramidate + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- indole glucosinolate activation (intact plant cell):
indol-3-yl-acetothiohydroxamate-O-sulfonate ⟶ indolylmethylisothiocyanate + sulfate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- assimilatory sulfate reduction II:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfate activation for sulfonation:
ATP + H+ + sulfate ⟶ APS + diphosphate
- sulfite oxidation IV:
H2O + O2 + sulfite ⟶ hydrogen peroxide + sulfate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yue Wang, Shunli Wang, Ji-Qin Ni, Shengwei Shi, Xiaoli Su, Jingyu Zhang, Zhiping Zhu, Hongmin Dong. The influence of using different types of modified vermiculite cover on ammonia mitigation from animal slurry storage: The role of sulfuric acid.
Waste management (New York, N.Y.).
2024 Apr; 178(?):311-320. doi:
10.1016/j.wasman.2024.02.046
. [PMID: 38428381] - Qiang Liu, Tsubasa Kawai, Yoshiaki Inukai, Dan Aoki, Zhihang Feng, Yihui Xiao, Kazuhiko Fukushima, Xianyong Lin, Weiming Shi, Wolfgang Busch, Yasuyuki Matsushita, Baohai Li. A lignin-derived material improves plant nutrient bioavailability and growth through its metal chelating capacity.
Nature communications.
2023 08; 14(1):4866. doi:
10.1038/s41467-023-40497-2
. [PMID: 37567879] - I M Garder, B Gómez-Muñoz, L Stoumann Jensen, I Regueiro. Nitrogen fertiliser value of bioacidified slurry.
Waste management (New York, N.Y.).
2023 Jul; 166(?):86-95. doi:
10.1016/j.wasman.2023.04.050
. [PMID: 37163971] - Luis Caballero-Sanchez, Pedro E Lázaro-Mixteco, Alejandra Vargas-Tah, Agustín J Castro-Montoya. Pilot-scale bioethanol production from the starch of avocado seeds using a combination of dilute acid-based hydrolysis and alcoholic fermentation by Saccharomyces cerevisiae.
Microbial cell factories.
2023 Jun; 22(1):119. doi:
10.1186/s12934-023-02110-5
. [PMID: 37386435] - Inês F Mota, João da Silva Burgal, Filipa Antunes, Manuela E Pintado, Patrícia S Costa. High value-added lignin extracts from sugarcane by-products.
International journal of biological macromolecules.
2023 Mar; 230(?):123144. doi:
10.1016/j.ijbiomac.2023.123144
. [PMID: 36610579] - Vikash Singh, Vimal Chandra Srivastava. Insight into the thermal kinetics and thermodynamics of sulfuric acid plant sludge for efficient recovery of sulfur.
Waste management (New York, N.Y.).
2022 Mar; 140(?):233-244. doi:
10.1016/j.wasman.2021.11.015
. [PMID: 34840023] - Canbiao Zeng, Guangying Ye, Guochao Li, He Cao, Zaihua Wang, Shengguo Ji. RID serve as a more appropriate measure than phenol sulfuric acid method for natural water-soluble polysaccharides quantification.
Carbohydrate polymers.
2022 Feb; 278(?):118928. doi:
10.1016/j.carbpol.2021.118928
. [PMID: 34973746] - Shuyu Lu, Tao Ma, Xinna Hu, Jing Zhao, Xiaojun Liao, Yi Song, Xiaosong Hu. Facile extraction and characterization of cellulose nanocrystals from agricultural waste sugarcane straw.
Journal of the science of food and agriculture.
2022 Jan; 102(1):312-321. doi:
10.1002/jsfa.11360
. [PMID: 34096072] - Yu Wu, Yong Bao Shen. Sulfuric Acid and Gibberellic Acid (GA3) Treatment Combined with Exposure to Cold Temperature Modulates Seed Proteins during Breaking of Dormancy to Germination in Tilia miqueliana.
The protein journal.
2021 12; 40(6):940-954. doi:
10.1007/s10930-021-10018-5
. [PMID: 34480247] - Bartosz Mikoda, Anna Potysz, Agnieszka Gruszecka-Kosowska, Ewa Kmiecik, Anna Tomczyk. Spent sulfuric acid plant catalyst: valuable resource of vanadium or risky residue? Process comparison for environmental implications.
Environmental science and pollution research international.
2021 Nov; 28(42):59358-59367. doi:
10.1007/s11356-020-11349-z
. [PMID: 33111226] - Michelle da Cunha Abreu Xavier, Telma Teixeira Franco. Obtaining hemicellulosic hydrolysate from sugarcane bagasse for microbial oil production by Lipomyces starkeyi.
Biotechnology letters.
2021 May; 43(5):967-979. doi:
10.1007/s10529-021-03080-7
. [PMID: 33517513] - Yue Wang, He Guo, Shunli Wang, Jianan Zhang, Zhiping Zhu, Xinrong Li, Hongmin Dong. Sulfuric acid modified expanded vermiculite cover for reducing ammonia emissions from animal slurry storage.
Journal of hazardous materials.
2021 02; 403(?):123954. doi:
10.1016/j.jhazmat.2020.123954
. [PMID: 33264998] - Brandon Whipple, Jennifer Agar, Jing Zhao, David A Pearce, Attila D Kovács. The acidified drinking water-induced changes in the behavior and gut microbiota of wild-type mice depend on the acidification mode.
Scientific reports.
2021 02; 11(1):2877. doi:
10.1038/s41598-021-82570-0
. [PMID: 33536529] - Peize Song, Fa Zhou, Feiyang Li, Zhe Han, Lan Wang, Jiana Xu, Bo Zhang, Mengze Wang, Junfeng Fan, Bolin Zhang. Superfine pulverisation pretreatment to enhance crystallinity of cellulose from Lycium barbarum L. leaves.
Carbohydrate polymers.
2021 Feb; 253(?):117207. doi:
10.1016/j.carbpol.2020.117207
. [PMID: 33278976] - Piraporn Sombutsuwan, Apiwat Jirattisakul, Akkaradech Nakornsadet, Saengchai Akepratumchai, Salisa Chumsantea, Siriluck Pojjanapornpun, Supathra Lilitchan, Kanit Krisnangkura, Kornkanok Aryusuk. A Simple and Efficient Method for Synthesis and Extraction of Ethyl Ferulate from γ-Oryzanol.
Journal of oleo science.
2021; 70(6):757-767. doi:
10.5650/jos.ess20180
. [PMID: 34078757] - Loredana Raciti, Rocco Salvatore Calabrò. Can volcanic trace elements facilitate Covid-19 diffusion? A hypothesis stemming from the Mount Etna area, Sicily.
Medical hypotheses.
2020 Nov; 144(?):110058. doi:
10.1016/j.mehy.2020.110058
. [PMID: 32758894] - Francisco Fuente-Maqueda, Ana Rodríguez, Juan Majada, Belén Fernández, Isabel Feito. Methodology optimization for the analysis of phenolic compounds in chestnut (Castanea sativa Mill.).
Food science and technology international = Ciencia y tecnologia de los alimentos internacional.
2020 Sep; 26(6):520-534. doi:
10.1177/1082013220911782
. [PMID: 32223433] - J W M E S Weerappuliarachchi, I C Perera, S S Gunathilake, S K S Thennakoon, B S Dassanayake. Synthesis of cellulose microcrystals (CMC)/nylon 6,10 composite by incorporating CMC isolated from Pandanus ceylanicus.
Carbohydrate polymers.
2020 Aug; 241(?):116227. doi:
10.1016/j.carbpol.2020.116227
. [PMID: 32507174] - Alessandra Moraes Pedrosa, Whocely Victor de Castro, Ana Hortência Fonseca Castro, Joaquim M Duarte-Almeida. Validated spectrophotometric method for quantification of total triterpenes in plant matrices.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2020 Jun; 28(1):281-286. doi:
10.1007/s40199-020-00342-z
. [PMID: 32285314] - Jarosław Domański, Olga Marchut-Mikołajczyk, Weronika Cieciura-Włoch, Piotr Patelski, Urszula Dziekońska-Kubczak, Bartłomiej Januszewicz, Bolin Zhang, Piotr Dziugan. Production of Methane, Hydrogen and Ethanol from Secale cereale L. Straw Pretreated with Sulfuric Acid.
Molecules (Basel, Switzerland).
2020 Feb; 25(4):. doi:
10.3390/molecules25041013
. [PMID: 32102411] - Lidiane F Dos Santos, Rogério P Lana, Marliane C S DA Silva, Tomás G R Veloso, Maria Catarina M Kasuya, Karina G Ribeiro. Effective microorganisms inoculant: Diversity and effect on the germination of palisade grass seeds.
Anais da Academia Brasileira de Ciencias.
2020; 92(suppl 1):e20180426. doi:
10.1590/0001-3765202020180426
. [PMID: 32159585] - Waleeporn Pongkua, Rujira Dolphen, Paitip Thiravetyan. Bioremediation of gaseous methyl tert-butyl ether by combination of sulfuric acid modified bagasse activated carbon-bone biochar beads and Acinetobacter indicus screened from petroleum contaminated soil.
Chemosphere.
2020 Jan; 239(?):124724. doi:
10.1016/j.chemosphere.2019.124724
. [PMID: 31505447] - Yongkun Lv, Monireh Marsafari, Mattheos Koffas, Jingwen Zhou, Peng Xu. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
ACS synthetic biology.
2019 11; 8(11):2514-2523. doi:
10.1021/acssynbio.9b00193
. [PMID: 31622552] - Ehab Mahran, Ibrahim El Gamal, Michael Keusgen, Gertrud E Morlock. Effect-directed analysis by high-performance thin-layer chromatography for bioactive metabolites tracking in Primula veris flower and Primula boveana leaf extracts.
Journal of chromatography. A.
2019 Nov; 1605(?):460371. doi:
10.1016/j.chroma.2019.460371
. [PMID: 31375330] - Jie Huang, Hanyue Wang, Yuduan Zhong, Jinggui Huang, Xiaofeng Fu, Linghui Wang, Weichao Teng. Growth and physiological response of an endangered tree, Horsfieldia hainanensis merr., to simulated sulfuric and nitric acid rain in southern China.
Plant physiology and biochemistry : PPB.
2019 Nov; 144(?):118-126. doi:
10.1016/j.plaphy.2019.09.029
. [PMID: 31563092] - Katarzyna Robak, Maria Balcerek, Urszula Dziekońska-Kubczak, Piotr Dziugan. Effect of dilute acid pretreatment on the saccharification and fermentation of rye straw.
Biotechnology progress.
2019 05; 35(3):e2789. doi:
10.1002/btpr.2789
. [PMID: 30773839] - Isarawut Prasertsung, Korkiet Aroonraj, Khanita Kamwilaisak, Nagahiro Saito, Siriporn Damrongsakkul. Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP).
Carbohydrate polymers.
2019 Feb; 205(?):472-479. doi:
10.1016/j.carbpol.2018.10.090
. [PMID: 30446130] - Akhil Saxena, Dwarika Prasad, Rajesh Haldhar. Investigation of corrosion inhibition effect and adsorption activities of Cuscuta reflexa extract for mild steel in 0.5 M H2SO4.
Bioelectrochemistry (Amsterdam, Netherlands).
2018 Dec; 124(?):156-164. doi:
10.1016/j.bioelechem.2018.07.006
. [PMID: 30059849] - Delanie J Losey, Sarah K Sihvonen, Daniel P Veghte, Esther Chong, Miriam Arak Freedman. Acidic processing of fly ash: chemical characterization, morphology, and immersion freezing.
Environmental science. Processes & impacts.
2018 Nov; 20(11):1581-1592. doi:
10.1039/c8em00319j
. [PMID: 30339168] - Mahmoud A Omar, Mohamed A Hammad, Mohamed Awad. New enhanced spectrofluorimetric approach for picogram detection of Fenoterol hydrobromide through Von Pechman synthesis of coumarins.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2018 Nov; 204(?):702-707. doi:
10.1016/j.saa.2018.06.108
. [PMID: 29982162] - Yin Li, Rushabh Mehta, Joachim Messing. A new high-throughput assay for determining soluble sugar in sorghum internode-extracted juice.
Planta.
2018 Oct; 248(4):785-793. doi:
10.1007/s00425-018-2932-8
. [PMID: 29948129] - Ran Xiao, Jim J Wang, Ronghua Li, Jonghwan Park, Yili Meng, Baoyue Zhou, Scott Pensky, Zengqiang Zhang. Enhanced sorption of hexavalent chromium [Cr(VI)] from aqueous solutions by diluted sulfuric acid-assisted MgO-coated biochar composite.
Chemosphere.
2018 Oct; 208(?):408-416. doi:
10.1016/j.chemosphere.2018.05.175
. [PMID: 29885507] - Xin Liu, Zhiyuan Fu, Bo Zhang, Lu Zhai, Miaojing Meng, Jie Lin, Jiayao Zhuang, G Geoff Wang, Jinchi Zhang. Effects of sulfuric, nitric, and mixed acid rain on Chinese fir sapling growth in Southern China.
Ecotoxicology and environmental safety.
2018 Sep; 160(?):154-161. doi:
10.1016/j.ecoenv.2018.04.071
. [PMID: 29803190] - Mohamed Awad, Mohamed A Hammad, Ahmed M Abdel-Megied, Mahmoud A Omar. Utility of Von Pechman synthesis of coumarin reaction for development of spectrofluorimetric method for quantitation of salmeterol xinafoate in pharmaceutical preparations and human plasma.
Luminescence : the journal of biological and chemical luminescence.
2018 Aug; 33(5):913-918. doi:
10.1002/bio.3490
. [PMID: 29708303] - Anthony Sehl, Leslie Couëdelo, Laurence Fonseca, Carole Vaysse, Maud Cansell. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.
Food chemistry.
2018 Jun; 251(?):1-8. doi:
10.1016/j.foodchem.2018.01.060
. [PMID: 29426414] - Xingwen Zheng, Min Gong, Qiang Li, Lei Guo. Corrosion inhibition of mild steel in sulfuric acid solution by loquat (Eriobotrya japonica Lindl.) leaves extract.
Scientific reports.
2018 06; 8(1):9140. doi:
10.1038/s41598-018-27257-9
. [PMID: 29904168] - Preston S Watkins, Benjamin T Castellon, Chiyen Tseng, Moncie V Wright, Cole W Matson, George P Cobb. Validation of a Sulfuric Acid Digestion Method for Inductively Coupled Plasma Mass Spectrometry Quantification of TiO2 Nanoparticles.
Bulletin of environmental contamination and toxicology.
2018 Jun; 100(6):809-814. doi:
10.1007/s00128-018-2336-2
. [PMID: 29654375] - Young-Jin Ryu, Z-Hun Kim, Seul Gi Lee, Ji-Hyun Yang, Hee-Yong Shin, Choul-Gyun Lee. Development of Carbon-Based Solid Acid Catalysts Using a Lipid-Extracted Alga, Dunaliella tertiolecta, for Esterification.
Journal of microbiology and biotechnology.
2018 May; 28(5):732-738. doi:
10.4014/jmb.1712.12004
. [PMID: 29551017] - Lan Ngoc Pham, Boi Van Luu, Hung Duong Phuoc, Hanh Ngoc Thi Le, Hoa Thi Truong, Phuong Duc Luu, Masakazu Furuta, Kiyoshi Imamura, Yasuaki Maeda. Production of Biodiesel from Candlenut Oil Using a Two-step Co-solvent Method and Evaluation of Its Gaseous Emissions.
Journal of oleo science.
2018 May; 67(5):617-626. doi:
10.5650/jos.ess17220
. [PMID: 29628489] - Wahdatullah Khpalwak, Sherif M Abdel-Dayem, Hiroshi Sakugawa. Individual and combined effects of fluoranthene, phenanthrene, mannitol and sulfuric acid on marigold (Calendula officinalis).
Ecotoxicology and environmental safety.
2018 Feb; 148(?):834-841. doi:
10.1016/j.ecoenv.2017.11.065
. [PMID: 29197798] - Kris Niño G Valdehuesa, Grace M Nisola, Seong-Poong Lee, Alex V Anonas, Enkhdul Tuuguu, Melvin M Galera, Eulsaeng Cho, Wook-Jin Chung. Removal of odorous compounds emitted from a food-waste composting facility in Korea using a pilot-scale scrubber.
Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.
2018; 53(12):1094-1101. doi:
10.1080/10934529.2018.1474586
. [PMID: 29842847] - Lizhen Qin, Hanyu Qian, Yucai He. Microbial Lipid Production from Enzymatic Hydrolysate of Pecan Nutshell Pretreated by Combined Pretreatment.
Applied biochemistry and biotechnology.
2017 Dec; 183(4):1336-1350. doi:
10.1007/s12010-017-2501-9
. [PMID: 28516417] - Britteny R Scott-Bullard, Ifigenia Geornaras, Robert J Delmore, Dale R Woerner, James O Reagan, J Bred Morgan, Keith E Belk. Efficacy of a Blend of Sulfuric Acid and Sodium Sulfate against Shiga Toxin-Producing Escherichia coli, Salmonella, and Nonpathogenic Escherichia coli Biotype I on Inoculated Prerigor Beef Surface Tissue.
Journal of food protection.
2017 Dec; 80(12):1987-1992. doi:
10.4315/0362-028x.jfp-17-022
. [PMID: 29130764] - Xin Liu, Bo Zhang, Wenrui Zhao, Ling Wang, Dejin Xie, Wentong Huo, Yanwen Wu, Jinchi Zhang. Comparative effects of sulfuric and nitric acid rain on litter decomposition and soil microbial community in subtropical plantation of Yangtze River Delta region.
The Science of the total environment.
2017 Dec; 601-602(?):669-678. doi:
10.1016/j.scitotenv.2017.05.151
. [PMID: 28577402] - Dan Dong, Enzai Du, Zhengzhong Sun, Xuetong Zeng, Wim de Vries. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.
Environmental pollution (Barking, Essex : 1987).
2017 Dec; 231(Pt 2):1442-1445. doi:
10.1016/j.envpol.2017.09.005
. [PMID: 28916280] - Honggao Xu, Kedong Tai, Tong Wei, Fang Yuan, Yanxiang Gao. Physicochemical and in vitro antioxidant properties of pectin extracted from hot pepper (Capsicum annuum L. var. acuminatum (Fingerh.)) residues with hydrochloric and sulfuric acids.
Journal of the science of food and agriculture.
2017 Nov; 97(14):4953-4960. doi:
10.1002/jsfa.8372
. [PMID: 28397347] - Khan Loon Ng, Sook Mei Khor. Graphite-Based Nanocomposite Electrochemical Sensor for Multiplex Detection of Adenine, Guanine, Thymine, and Cytosine: A Biomedical Prospect for Studying DNA Damage.
Analytical chemistry.
2017 09; 89(18):10004-10012. doi:
10.1021/acs.analchem.7b02432
. [PMID: 28845664] - Alberto Amadasi, Arianna Camici, Davide Porta, Lucia Cucca, Daniele Merli, Chiara Milanese, Antonella Profumo, Nabila Rassifi, Cristina Cattaneo. Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer?.
Journal of forensic sciences.
2017 Sep; 62(5):1297-1303. doi:
10.1111/1556-4029.13429
. [PMID: 28144942] - Hiroshi Teramura, Kengo Sasaki, Hideo Kawaguchi, Fumio Matsuda, Jun Kikuchi, Tomokazu Shirai, Takashi Sazuka, Masanori Yamasaki, Shigeo Takumi, Chiaki Ogino, Akihiko Kondo. Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment.
Bioscience, biotechnology, and biochemistry.
2017 Aug; 81(8):1650-1656. doi:
10.1080/09168451.2017.1336922
. [PMID: 28622080] - Lihui Gao, Hong Wen, Quanzhi Tian, Yongtian Wang, Guosheng Li. Influence of surface modification by sulfuric acid on coking coal's adsorption of coking wastewater.
Water science and technology : a journal of the International Association on Water Pollution Research.
2017 Jul; 76(3-4):555-566. doi:
10.2166/wst.2017.219
. [PMID: 28759438] - Sumeng Wang, Jianming Yang. Isoprenoids Production from Lipid-Extracted Microalgal Biomass Residues Using Engineered E. coli.
Molecules (Basel, Switzerland).
2017 Jun; 22(6):. doi:
10.3390/molecules22060960
. [PMID: 28598364] - Bora Kim, Yong Keun Chang, Jae W Lee. Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production.
Bioprocess and biosystems engineering.
2017 May; 40(5):723-730. doi:
10.1007/s00449-017-1738-6
. [PMID: 28210816] - Mikael Pedersen, Henrik L Frandsen, Jens H Andersen. Optimised deconjugation of androgenic steroid conjugates in bovine urine.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2017 Apr; 34(4):482-488. doi:
10.1080/19440049.2016.1276637
. [PMID: 28107105] - Sun Ae Kim, Si Hong Park, Sang In Lee, Casey M Owens, Steven C Ricke. Assessment of Chicken Carcass Microbiome Responses During Processing in the Presence of Commercial Antimicrobials Using a Next Generation Sequencing Approach.
Scientific reports.
2017 02; 7(?):43354. doi:
10.1038/srep43354
. [PMID: 28230180] - Mahmoud M Fouad, Taha M A Razek, Ahmed S Elgendy. Utilization of Drinking Water Treatment Slurry to Produce Aluminum Sulfate Coagulant.
Water environment research : a research publication of the Water Environment Federation.
2017 Feb; 89(2):186-191. doi:
10.2175/106143016x14504669769056
. [PMID: 27086857] - Johanna Méndez Arias, Anelize de Oliveira Moraes, Luiz Felipe Amarante Modesto, Aline Machado de Castro, Nei Pereira. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse.
Applied biochemistry and biotechnology.
2017 Feb; 181(2):593-603. doi:
10.1007/s12010-016-2234-1
. [PMID: 27631122] - Mahmoud M Fouad, Ahmed S El-Gendy, Taha M A Razek. Evaluation of leached metals in recovered aluminum coagulants from water treatment slurry.
Water science and technology : a journal of the International Association on Water Pollution Research.
2017 02; 75(3-4):998-1006. doi:
10.2166/wst.2016.582
. [PMID: 28234300] - Hongsen Zhang, Xushen Han, Chengxiang Wei, Jie Bao. Oxidative production of xylonic acid using xylose in distillation stillage of cellulosic ethanol fermentation broth by Gluconobacter oxydans.
Bioresource technology.
2017 Jan; 224(?):573-580. doi:
10.1016/j.biortech.2016.11.039
. [PMID: 27955866] - Sravan Kumar Yellapu, Rajwinder Kaur, Rajeshwar D Tyagi. Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass.
Bioresource technology.
2017 Jan; 224(?):365-372. doi:
10.1016/j.biortech.2016.11.037
. [PMID: 27866805] - Ping-Ping Zhou, Jiao Meng, Jie Bao. Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification.
Bioresource technology.
2017 Jan; 224(?):563-572. doi:
10.1016/j.biortech.2016.11.046
. [PMID: 27913168] - Vasiliki Savvilotidou, Alexandra Antoniou, Evangelos Gidarakos. Toxicity assessment and feasible recycling process for amorphous silicon and CIS waste photovoltaic panels.
Waste management (New York, N.Y.).
2017 Jan; 59(?):394-402. doi:
10.1016/j.wasman.2016.10.003
. [PMID: 27742228] - Jie Chu, Li Ma, Jun-hua Zhang. [The Chemical Composition of Bamboo after Heat Pretreatment with Fourier Infrared Spectrum Analysis].
Guang pu xue yu guang pu fen xi = Guang pu.
2016 Nov; 36(11):3557-62. doi:
"
. [PMID: 30198674] - Le Gao, Jian Li, Yandan Wu, Miaohao Yu, Tian Chen, Zhixiong Shi, Xianqing Zhou, Zhiwei Sun. Determination of novel brominated flame retardants and polybrominated diphenyl ethers in serum using gas chromatography-mass spectrometry with two simplified sample preparation procedures.
Analytical and bioanalytical chemistry.
2016 Nov; 408(27):7835-7844. doi:
10.1007/s00216-016-9887-z
. [PMID: 27614976] - Wenhang Wang, Guanhua Du, Cong Li, Hongjie Zhang, Yunduo Long, Yonghao Ni. Preparation of cellulose nanocrystals from asparagus (Asparagus officinalis L.) and their applications to palm oil/water Pickering emulsion.
Carbohydrate polymers.
2016 Oct; 151(?):1-8. doi:
10.1016/j.carbpol.2016.05.052
. [PMID: 27474537] - Wang Jun-Jun, Miao Xiao-Lei, Chen Jing-Ya, Chen Yong. The Pharmacokinetics and Tissue Distribution of Honokiol and its Metabolites in Rats.
European journal of drug metabolism and pharmacokinetics.
2016 Oct; 41(5):587-94. doi:
10.1007/s13318-015-0281-6
. [PMID: 25956504] - Jiayu Huang, Hongmei Wang, Yingjie Shi, Fan Zhang, Xiaoqing Dang, Hui Zhang, Yun Shu, Shuang Deng, Yu Liu. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.
Environmental science and pollution research international.
2016 Oct; 23(19):19219-28. doi:
10.1007/s11356-016-7151-x
. [PMID: 27357706] - Amit Kumar Sharma, Pradeepta Kumar Sahoo, Shailey Singhal, Girdhar Joshi. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.
Bioresource technology.
2016 Sep; 216(?):793-800. doi:
10.1016/j.biortech.2016.06.013
. [PMID: 27318156] - Jun Liu, Ting Guo, Dong Wang, Jiahui Xu, Hanjie Ying. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.
Biotechnology and applied biochemistry.
2016 Sep; 63(5):727-733. doi:
10.1002/bab.1418
. [PMID: 26201246] - Jidapha Tinoi, Nuansri Rakariyatham. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.
Bioscience, biotechnology, and biochemistry.
2016 Aug; 80(8):1641-9. doi:
10.1080/09168451.2016.1177444
. [PMID: 27149319] - Yu-Shen Cheng, Jang-Hong Wu, Li-Hsien Yeh. Utilization of Calophyllum inophyllum shell and kernel oil cake for reducing sugar production.
Bioresource technology.
2016 Jul; 212(?):338-341. doi:
10.1016/j.biortech.2016.04.069
. [PMID: 27130225] - Di Cai, Zhongshi Dong, Yong Wang, Changjing Chen, Ping Li, Peiyong Qin, Zheng Wang, Tianwei Tan. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process.
Bioresource technology.
2016 Jul; 211(?):677-84. doi:
10.1016/j.biortech.2016.03.159
. [PMID: 27060242] - Darinka Bojinova, Ralitsa Teodosieva. Leaching of valuable elements from thermal power plant bottom ash using a thermo-hydrometallurgical process.
Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.
2016 Jun; 34(6):511-7. doi:
10.1177/0734242x16633775
. [PMID: 26951342] - Yuki Audette, Ivan P O'Halloran, Les J Evans, R Paul Voroney. Preliminary validation of a sequential fractionation method to study phosphorus chemistry in a calcareous soil.
Chemosphere.
2016 Jun; 152(?):369-75. doi:
10.1016/j.chemosphere.2016.03.014
. [PMID: 26994430] - Ceren Erust, Ata Akcil. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.
Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.
2016 Jun; 34(6):527-33. doi:
10.1177/0734242x16636676
. [PMID: 26987736] - Takashi Goda, Hiroshi Teramura, Miki Suehiro, Kengo Kanamaru, Hideo Kawaguchi, Chiaki Ogino, Akihiko Kondo, Masanori Yamasaki. Natural variation in the glucose content of dilute sulfuric acid-pretreated rice straw liquid hydrolysates: implications for bioethanol production.
Bioscience, biotechnology, and biochemistry.
2016 May; 80(5):863-9. doi:
10.1080/09168451.2015.1136882
. [PMID: 26872499] - Yanjie Pei, Yuyang Li, Youbing Zhang, Changbing Yu, Tingdong Fu, Jun Zou, Yuanyuan Tu, Liangcai Peng, Peng Chen. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed.
Bioresource technology.
2016 Mar; 203(?):325-33. doi:
10.1016/j.biortech.2015.12.072
. [PMID: 26748046] - Ceren Erust, Ata Akcil, Zyuldyz Bedelova, Kuanysh Anarbekov, Aliya Baikonurova, Aysenur Tuncuk. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.
Waste management (New York, N.Y.).
2016 Mar; 49(?):455-461. doi:
10.1016/j.wasman.2015.12.002
. [PMID: 26711187] - Imali A Mudunkotuwa, T Renée Anthony, Vicki H Grassian, Thomas M Peters. Accurate quantification of tio2 nanoparticles collected on air filters using a microwave-assisted acid digestion method.
Journal of occupational and environmental hygiene.
2016; 13(1):30-9. doi:
10.1080/15459624.2015.1072278
. [PMID: 26181824] - Gülsün Özyurt, Saadet Gökdoğan, Ayşe Şimşek, Ilknur Yuvka, Merve Ergüven, Esmeray Kuley Boga. Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study.
Archives of animal nutrition.
2016; 70(1):72-86. doi:
10.1080/1745039x.2015.1117696
. [PMID: 26635094] - Liping Tan, Meimei Wang, Xuezhi Li, Hongxing Li, Jian Zhao, Yinbo Qu, Yuen May Choo, Soh Kheang Loh. Fractionation of oil palm empty fruit bunch by bisulfite pretreatment for the production of bioethanol and high value products.
Bioresource technology.
2016 Jan; 200(?):572-8. doi:
10.1016/j.biortech.2015.10.079
. [PMID: 26539970] - Mohamed Yassine Sayah, Rachida Chabir, Hamid Benyahia, Youssef Rodi Kandri, Fouad Ouazzani Chahdi, Hanan Touzani, Faouzi Errachidi. Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions.
PloS one.
2016; 11(9):e0161751. doi:
10.1371/journal.pone.0161751
. [PMID: 27644093] - Ying Liao, Wen-yu Yuan, Wen-ke Zheng, Ao-xue Luo, Yi-jun Fan. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Nov; 38(11):2281-4. doi:
"
. [PMID: 27356377] - Lei Wang, Honggao Xu, Fang Yuan, Rui Fan, Yanxiang Gao. Preparation and physicochemical properties of soluble dietary fiber from orange peel assisted by steam explosion and dilute acid soaking.
Food chemistry.
2015 Oct; 185(?):90-8. doi:
10.1016/j.foodchem.2015.03.112
. [PMID: 25952845] - Jesus David Coral Medina, Adenise Woiciechowski, Arion Zandona Filho, Miguel D Noseda, Brar Satinder Kaur, Carlos Ricardo Soccol. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment--A biorefinery approach.
Bioresource technology.
2015 Oct; 194(?):172-8. doi:
10.1016/j.biortech.2015.07.018
. [PMID: 26188560] - Kendall R Corbin, Yves S Y Hsieh, Natalie S Betts, Caitlin S Byrt, Marilyn Henderson, Jozsef Stork, Seth DeBolt, Geoffrey B Fincher, Rachel A Burton. Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification.
Bioresource technology.
2015 Oct; 193(?):76-83. doi:
10.1016/j.biortech.2015.06.030
. [PMID: 26117238] - Emir Cabrera, María J Muñoz, Ricardo Martín, Ildefonso Caro, Caridad Curbelo, Ana B Díaz. Comparison of industrially viable pretreatments to enhance soybean straw biodegradability.
Bioresource technology.
2015 Oct; 194(?):1-6. doi:
10.1016/j.biortech.2015.06.090
. [PMID: 26164601] - Shengfei Zhou, Troy M Runge. Mechanism of improved cellulosic bio-ethanol production from alfalfa stems via ambient-temperature acid pretreatment.
Bioresource technology.
2015 Oct; 193(?):288-96. doi:
10.1016/j.biortech.2015.06.096
. [PMID: 26142995] - Facundo Beltramino, M Blanca Roncero, Teresa Vidal, Antonio L Torres, Cristina Valls. Increasing yield of nanocrystalline cellulose preparation process by a cellulase pretreatment.
Bioresource technology.
2015 Sep; 192(?):574-81. doi:
10.1016/j.biortech.2015.06.007
. [PMID: 26092069] - Priyanka Sharma, Bijender Kumar Bajaj. Production of poly-β-hydroxybutyrate by Bacillus cereus PS 10 using biphasic-acid-pretreated rice straw.
International journal of biological macromolecules.
2015 Aug; 79(?):704-10. doi:
10.1016/j.ijbiomac.2015.05.049
. [PMID: 26047898] - Fedia Bettaieb, Ramzi Khiari, Alain Dufresne, Mohamed Farouk Mhenni, Mohamed Naceur Belgacem. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer.
Carbohydrate polymers.
2015 Jun; 123(?):99-104. doi:
10.1016/j.carbpol.2015.01.026
. [PMID: 25843839] - Shengli Si, Yan Chen, Chunfen Fan, Huizhen Hu, Ying Li, Jiangfeng Huang, Haofeng Liao, Bo Hao, Qing Li, Liangcai Peng, Yuanyuan Tu. Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments.
Bioresource technology.
2015 May; 183(?):248-54. doi:
10.1016/j.biortech.2015.02.031
. [PMID: 25746301] - Hansol Lee, Won-Sub Shin, Joo-Young Jung, Chul Woong Kim, Jae W Lee, Jong-Hee Kwon, Ji-Won Yang. Optimization of variables affecting the direct transesterification of wet biomass from Nannochloropsis oceanica using ionic liquid as a co-solvent.
Bioprocess and biosystems engineering.
2015 May; 38(5):981-7. doi:
10.1007/s00449-014-1343-x
. [PMID: 25634438] - T Sarat Chandra, S N Mudliar, S Vidyashankar, S Mukherji, R Sarada, K Krishnamurthi, V S Chauhan. Defatted algal biomass as a non-conventional low-cost adsorbent: surface characterization and methylene blue adsorption characteristics.
Bioresource technology.
2015 May; 184(?):395-404. doi:
10.1016/j.biortech.2014.10.018
. [PMID: 25479690] - Edwin van der Pol, Rob Bakker, Alniek van Zeeland, David Sanchez Garcia, Arjen Punt, Gerrit Eggink. Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale: differences between autohydrolysis, alkaline and acid pretreatment.
Bioresource technology.
2015 Apr; 181(?):114-23. doi:
10.1016/j.biortech.2015.01.033
. [PMID: 25643957] - Yu Huang, Xiaoyang Wei, Shiguang Zhou, Mingyong Liu, Yuanyuan Tu, Ao Li, Peng Chen, Yanting Wang, Xuewen Zhang, Hongzhong Tai, Liangcai Peng, Tao Xia. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum.
Bioresource technology.
2015 Apr; 181(?):224-30. doi:
10.1016/j.biortech.2015.01.020
. [PMID: 25656866] - Michel Brienzo, Luvuyo Tyhoda, Yuda Benjamin, Johann Görgens. Relationship between physicochemical properties and enzymatic hydrolysis of sugarcane bagasse varieties for bioethanol production.
New biotechnology.
2015 Mar; 32(2):253-62. doi:
10.1016/j.nbt.2014.12.007
. [PMID: 25576176] - Shre Kumar Chatterjee, Saptarshi Das, Koushik Maharatna, Elisa Masi, Luisa Santopolo, Stefano Mancuso, Andrea Vitaletti. Exploring strategies for classification of external stimuli using statistical features of the plant electrical response.
Journal of the Royal Society, Interface.
2015 Mar; 12(104):20141225. doi:
10.1098/rsif.2014.1225
. [PMID: 25631569] - J Prakash Maran, B Priya. Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil.
Ultrasonics sonochemistry.
2015 Mar; 23(?):192-200. doi:
10.1016/j.ultsonch.2014.10.019
. [PMID: 25457517] - M A Kärcher, Y Iqbal, I Lewandowski, T Senn. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.
Bioresource technology.
2015 Mar; 180(?):360-4. doi:
10.1016/j.biortech.2014.12.107
. [PMID: 25613555]