2-Aminoacrylic acid (BioDeep_00000004872)
Secondary id: BioDeep_00001869174, BioDeep_00001891734
human metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C3H5NO2 (87.032027)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.03%
分子结构信息
SMILES: C=C(C(=O)O)N
InChI: InChI=1S/C3H5NO2/c1-2(4)3(5)6/h1,4H2,(H,5,6)
描述信息
Dehydroalanine (or (alpha)-(beta)-di-dehydroalanine) is an uncommon amino acid found in peptides of microbial origin (an unsaturated amino acid). [HMDB]
Dehydroalanine (or (alpha)-(beta)-di-dehydroalanine) is an uncommon amino acid found in peptides of microbial origin (an unsaturated amino acid).
同义名列表
23 个代谢物同义名
Anhydroserine2-aminopropenoic acid; (alpha)-(beta)-Di-dehydroalanine; Anhydroserine2-aminopropenoate; alpha-beta-Di-dehydroalanine; alpha,beta-Didehydroalanine; alpha,beta-Dehydroalanine; 2-Amino-2-propenoic acid; 2-Aminoprop-2-enoic acid; alpha-Aminoacrylic acid; a-b-Di-dehydroalanine; α,β-Didehydroalanine; 2,3-Didehydroalanine; 2-Aminoprop-2-enoate; α-Aminoacrylic acid; 2-Aminoacrylic acid; alpha-Aminoacrylate; a,b-Dehydroalanine; Α,β-dehydroalanine; Dehydro-L-alanine; Aminoacrylic acid; 2-Aminoacrylate; dehydroalanine; Dehydroalanine
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:76565
- ChEBI: CHEBI:17123
- KEGG: C02218
- PubChem: 123991
- HMDB: HMDB0003609
- Metlin: METLIN58164
- DrugBank: DB02688
- MetaCyc: 2-AMINOACRYLATE
- foodb: FDB023206
- chemspider: 110510
- CAS: 28453-71-6
- CAS: 1948-56-7
- PMhub: MS000017499
- PubChem: 5284
- PDB-CCD: DHA
- 3DMET: B00405
- NIKKAJI: J80.352I
- RefMet: 2-Aminoacrylic acid
- RefMet: Aminoacrylic acid
- KNApSAcK: 17123
- LOTUS: LTS0193313
- wikidata: Q1183089
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
71 个相关的代谢反应过程信息。
Reactome(0)
WikiPathways(0)
Plant Reactome(0)
INOH(1)
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
PlantCyc(49)
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- L-methionine biosynthesis II (plants):
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- felinine and 3-methyl-3-sulfanylbutan-1-ol biosynthesis:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
- D-serine metabolism:
2-iminopropanoate + H2O ⟶ ammonium + pyruvate
COVID-19 Disease Map(0)
PathBank(20)
- Uracil Degradation III:
FMNH2 + Oxygen + Uracil ⟶ Flavin Mononucleotide + Hydrogen Ion + Peroxyaminoacrylate
- Serine Biosynthesis and Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- D-Serine Degradation:
2-iminopropanoate + Hydrogen Ion + Water ⟶ Ammonium + Pyruvic acid
- Sulfur Metabolism:
L-Cystathionine + Water ⟶ 2-Ketobutyric acid + Ammonium + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- D-Serine Degradation:
2-iminopropanoate + Hydrogen Ion + Water ⟶ Ammonium + Pyruvic acid
- Sulfur Metabolism (Butanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Propanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Ethanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Isethionate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Sulfur Metabolism (Methanesulfonate):
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Uracil Degradation III:
Hydrogen Ion + Malonic semialdehyde + NADPH ⟶ Hydroxypropionic acid + NADP
PharmGKB(0)
5 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Jessica L Irons, Kelsey Hodge-Hanson, Diana M Downs. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates.
Microbiology and molecular biology reviews : MMBR.
2020 08; 84(3):. doi:
10.1128/mmbr.00024-20
. [PMID: 32669283] - Allyson M Freedy, Maria J Matos, Omar Boutureira, Francisco Corzana, Ana Guerreiro, Padma Akkapeddi, Víctor J Somovilla, Tiago Rodrigues, Karl Nicholls, Bangwen Xie, Gonzalo Jiménez-Osés, Kevin M Brindle, André A Neves, Gonçalo J L Bernardes. Chemoselective Installation of Amine Bonds on Proteins through Aza-Michael Ligation.
Journal of the American Chemical Society.
2017 12; 139(50):18365-18375. doi:
10.1021/jacs.7b10702
. [PMID: 29206031] - Ine Rombouts, Marlies A Lambrecht, Sebastien C Carpentier, Jan A Delcour. Identification of lanthionine and lysinoalanine in heat-treated wheat gliadin and bovine serum albumin using tandem mass spectrometry with higher-energy collisional dissociation.
Amino acids.
2016 Apr; 48(4):959-971. doi:
10.1007/s00726-015-2139-2
. [PMID: 26661033] - Jack C Slootweg, Eric F van Herwerden, Mark F M van Doremalen, Eefjan Breukink, Rob M J Liskamp, Dirk T S Rijkers. Synthesis of nisin AB dicarba analogs using ring-closing metathesis: influence of sp(3) versus sp(2) hybridization of the α-carbon atom of residues dehydrobutyrine-2 and dehydroalanine-5 on the lipid II binding affinity.
Organic & biomolecular chemistry.
2015 Jun; 13(21):5997-6009. doi:
10.1039/c5ob00336a
. [PMID: 25940216] - Paula M T Ferreira, Luis S Monteiro, T Coban, S Suzen. Comparative effect of N-substituted dehydroamino acids and alpha-tocopherol on rat liver lipid peroxidation activities.
Journal of enzyme inhibition and medicinal chemistry.
2009 Aug; 24(4):967-71. doi:
10.1080/14756360802561162
. [PMID: 19555173] - Denis E Corpet, Sylviane Taché, Michael C Archer, W Robert Bruce. Dehydroalanine and lysinoalanine in thermolyzed casein do not promote colon cancer in the rat.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2008 Sep; 46(9):3037-42. doi:
10.1016/j.fct.2008.06.002
. [PMID: 18585427] - Raphael Bar-Or, Leonard T Rael, David Bar-Or. Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin.
Rapid communications in mass spectrometry : RCM.
2008; 22(5):711-6. doi:
10.1002/rcm.3421
. [PMID: 18265430] - Sibel Suzen, Gokce Gurkok, Tulay Coban. Novel N-acyl dehydroalanine derivatives as antioxidants: studies on rat liver lipid peroxidation levels and DPPH free radical scavenging activity.
Journal of enzyme inhibition and medicinal chemistry.
2006 Apr; 21(2):179-85. doi:
10.1080/14756360500533109
. [PMID: 16789432] - Shuguang Ma, Richard M Caprioli, Kristina E Hill, Raymond F Burk. Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro.
Journal of the American Society for Mass Spectrometry.
2003 Jun; 14(6):593-600. doi:
10.1016/s1044-0305(03)00141-7
. [PMID: 12781460] - T F Schwede, J Rétey, G E Schulz. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile.
Biochemistry.
1999 Apr; 38(17):5355-61. doi:
10.1021/bi982929q
. [PMID: 10220322] - G Palumbo. Thyroid hormonogenesis. Identification of a sequence containing iodophenyl donor site(s) in calf thyroglobulin.
The Journal of biological chemistry.
1987 Dec; 262(35):17182-8. doi:
. [PMID: 3680296]
- . .
.
. doi:
. [PMID: 17567578]