Camalexin (BioDeep_00000000646)

 

Secondary id: BioDeep_00000397970

human metabolite PANOMIX_OTCML-2023 natural product


代谢物信息卡片


3-(1,3-thiazol-2-yl)-1H-indole

化学式: C11H8N2S (200.0408168)
中文名称: 千里光宁
谱图信息: 最多检出来源 Viridiplantae(plant) 0.08%

Reviewed

Last reviewed on 2024-08-14.

Cite this Page

Camalexin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/camalexin (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000000646). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C12=C(C=CC=C2)NC=C1C3=NC=CS3
InChI: InChI=1S/C11H8N2S/c1-2-4-10-8(3-1)9(7-13-10)11-12-5-6-14-11/h1-7,13H

描述信息

Camalexin is an indole phytoalexin that is indole substituted at position 3 by a 1,3-thiazol-2-yl group. It has a role as a metabolite. It is an indole phytoalexin and a member of 1,3-thiazoles.
Camalexin is a natural product found in Arabidopsis, Arabidopsis thaliana, and Camelina sativa with data available.
Camalexin is found in fats and oils. Camalexin is an alkaloid from the leaves of Camelina sativa (false flax) infected by the fungus Alternaria brassica
Alkaloid from the leaves of Camelina sativa (false flax) infected by the fungus Alternaria brassicae. Camalexin is found in fats and oils.
An indole phytoalexin that is indole substituted at position 3 by a 1,3-thiazol-2-yl group.
D000890 - Anti-Infective Agents
Camalexin is a phytoalexin isolated from Camelina sativa (Cruciferae) with antibacterial, antifungal, antiproliferative and anticancer activities. Camalexin can induce reactive oxygen species (ROS) production[1][2][3].

Camalexin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=135531-86-1 (retrieved 2024-08-14) (CAS RN: 135531-86-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

同义名列表

17 个代谢物同义名

InChI=1/C11H8N2S/c1-2-4-10-8(3-1)9(7-13-10)11-12-5-6-14-11/h1-7,13; (2z)-2-Indol-3-Ylidene-3h-1,3-Thiazole; 2-(1H-indol-3-yl)-1,3-thiazole; 3-(1,3-thiazol-2-yl)-1H-indole; 1H-indole, 3-(2-thiazolyl)-; 3-(Thiazol-2-yl)-1H-indole; 3-(2-Thiazolyl)-1H-indole; 3-thiazol-2-yl-1H-indole; Camalexin, >=98\\% (HPLC); 3-(thiazol-2-yl)indole; 3-thiazol-2-yl-indole; 2-(3-Indolyl)thiazole; 3-(2-thiazolyl)indole; 3-thiazol-2-ylindole; QY3Z69LA99; Camalexin; 7WB



数据库引用编号

15 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

19 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

  • camalexin biosynthesis: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
  • camalexin biosynthesis: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + NADP+ ⟶ H+ + NADPH + dihydrocamalexate + hydrogen cyanide

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(16)

  • camalexin biosynthesis: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: 2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin
  • camalexin biosynthesis: (R)-dihydrocamalexate + H+ + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + an oxidized [NADPH-hemoprotein reductase] + camalexin

COVID-19 Disease Map(0)

PathBank(1)

  • Camalexin Biosynthesis: Dehydro(indole-3-yl)acetonitrile + Glutathione ⟶ (glutathion-S-yl)(1H-indol-3-yl)acetonitrile

PharmGKB(0)

8 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Jogindra Naik, Shivi Tyagi, Ruchika Rajput, Pawan Kumar, Boas Pucker, Naveen C Bisht, Prashant Misra, Ralf Stracke, Ashutosh Pandey. Flavonols have opposite effects on the interrelated glucosinolate and camalexin biosynthetic pathways in Arabidopsis thaliana. Journal of experimental botany. 2023 Oct; ?(?):. doi: 10.1093/jxb/erad391. [PMID: 37813680]
  • Zi-Jie Li, Shu-Ya Tang, Hong-Shan Gao, Jin-Yao Ren, Pei-Ling Xu, Wen-Pan Dong, Ying Zheng, Wei Yang, Yi-Yang Yu, Jian-Hua Guo, Yu-Ming Luo, Dong-Dong Niu, Chun-Hao Jiang. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis. Plant, cell & environment. 2023 Sep; ?(?):. doi: 10.1111/pce.14729. [PMID: 37775913]
  • Bibek Aryal, Jian Xia, Zehan Hu, Michael Stumpe, Tashi Tsering, Jie Liu, John Huynh, Yoichiro Fukao, Nina Glöckner, Hsin-Yao Huang, Gloria Sáncho-Andrés, Konrad Pakula, Joerg Ziegler, Karin Gorzolka, Marta Zwiewka, Tomasz Nodzynski, Klaus Harter, Clara Sánchez-Rodríguez, Michał Jasiński, Sabine Rosahl, Markus M Geisler. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Current biology : CB. 2023 Apr; ?(?):. doi: 10.1016/j.cub.2023.04.029. [PMID: 37146609]
  • Anamika A Rawat, Michael Hartmann, Anne Harzen, Raphael Lugan, Sara Christina Stolze, Celine Forzani, Laura Abts, Sophie Reißenweber, Naganand Rayapuram, Hirofumi Nakagami, Jürgen Zeier, Heribert Hirt. OXIDATIVE SIGNAL-INDUCIBLE1 induces immunity by coordinating N-hydroxypipecolic acid, salicylic acid, and camalexin synthesis. The New phytologist. 2023 02; 237(4):1285-1301. doi: 10.1111/nph.18592. [PMID: 36319610]
  • Anna Koprivova, Melina Schwier, Vanessa Volz, Stanislav Kopriva. Shoot-root interaction in control of camalexin exudation in Arabidopsis. Journal of experimental botany. 2023 Jan; ?(?):. doi: 10.1093/jxb/erad031. [PMID: 36651631]
  • Ching-Han Chang, Wu-Guei Wang, Pei-Yu Su, Yu-Shuo Chen, Tri-Phuong Nguyen, Jian Xu, Masaru Ohme-Takagi, Tetsuro Mimura, Ping-Fu Hou, Hao-Jen Huang. The involvement of AtMKK1 and AtMKK3 in plant-deleterious microbial volatile compounds-induced defense responses. Plant molecular biology. 2023 Jan; 111(1-2):21-36. doi: 10.1007/s11103-022-01308-2. [PMID: 36109466]
  • Beatriz Val-Torregrosa, Mireia Bundó, Mani Deepika Mallavarapu, Tzyy-Jen Chiou, Victor Flors, Blanca San Segundo. Loss-of-function of NITROGEN LIMITATION ADAPTATION confers disease resistance in Arabidopsis by modulating hormone signaling and camalexin content. Plant science : an international journal of experimental plant biology. 2022 Oct; 323(?):111374. doi: 10.1016/j.plantsci.2022.111374. [PMID: 35839945]
  • Dimitri Bréard, Thibault Barrit, Daniel Sochard, Sophie Aligon, Elisabeth Planchet, Béatrice Teulat, Josiane Le Corff, Claire Campion, David Guilet. Development of a quantification method for routine analysis of glucosinolates and camalexin in brassicaceous small-sized samples by simultaneous extraction prior to liquid chromatography determination. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2022 Aug; 1205(?):123348. doi: 10.1016/j.jchromb.2022.123348. [PMID: 35777257]
  • Kevin L Cox. Stronger together: Ethylene, jasmonic acid, and MAPK signaling pathways synergistically induce camalexin synthesis for plant disease resistance. The Plant cell. 2022 07; 34(8):2829-2830. doi: 10.1093/plcell/koac155. [PMID: 35652267]
  • Ngoc Huu Nguyen, Patricia Trotel-Aziz, Sandra Villaume, Fanja Rabenoelina, Christophe Clément, Fabienne Baillieul, Aziz Aziz. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. Journal of experimental botany. 2022 06; 73(11):3743-3757. doi: 10.1093/jxb/erac070. [PMID: 35191984]
  • Ngoc Huu Nguyen, Patricia Trotel-Aziz, Christophe Clément, Philippe Jeandet, Fabienne Baillieul, Aziz Aziz. Camalexin accumulation as a component of plant immunity during interactions with pathogens and beneficial microbes. Planta. 2022 May; 255(6):116. doi: 10.1007/s00425-022-03907-1. [PMID: 35511374]
  • Ancai Liao, Lin Li, Tienan Wang, Aidang Lu, Ziwen Wang, Qingmin Wang. Discovery of Phytoalexin Camalexin and Its Derivatives as Novel Antiviral and Antiphytopathogenic-Fungus Agents. Journal of agricultural and food chemistry. 2022 Mar; 70(8):2554-2563. doi: 10.1021/acs.jafc.1c07805. [PMID: 35179026]
  • Yihao Li, Kun Liu, Ganlu Tong, Chao Xi, Jin Liu, Heping Zhao, Yingdian Wang, Dongtao Ren, Shengcheng Han. MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes. Journal of experimental botany. 2022 01; 73(1):413-428. doi: 10.1093/jxb/erab415. [PMID: 34499162]
  • D S Makhazen, G N Veremeichik, Y N Shkryl, G K Tchernoded, V P Grigorchuk, V P Bulgakov. Inhibition of the JAZ1 gene causes activation of camalexin biosynthesis in Arabidopsis callus cultures. Journal of biotechnology. 2021 Dec; 342(?):102-113. doi: 10.1016/j.jbiotec.2021.10.012. [PMID: 34736953]
  • Kangmei Zhao, Deze Kong, Benjamin Jin, Christina D Smolke, Seung Yon Rhee. A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. eLife. 2021 09; 10(?):. doi: 10.7554/elife.69508. [PMID: 34523419]
  • Ayumi Kosaka, Marta Pastorczyk, Mariola Piślewska-Bednarek, Takumi Nishiuchi, Erika Ono, Haruka Suemoto, Atsushi Ishikawa, Henning Frerigmann, Masanori Kaido, Kazuyuki Mise, Paweł Bednarek, Yoshitaka Takano. Tryptophan-derived metabolites and BAK1 separately contribute to Arabidopsis postinvasive immunity against Alternaria brassicicola. Scientific reports. 2021 01; 11(1):1488. doi: 10.1038/s41598-020-79562-x. [PMID: 33452278]
  • Chang Ge, Wensheng Zhao, Lanchun Nie, Shance Niu, Siyu Fang, Yaqian Duan, Jiateng Zhao, Kedong Guo, Qian Zhang. Transcriptome profiling reveals the occurrence mechanism of bisexual flowers in melon (Cucumis melo L.). Plant science : an international journal of experimental plant biology. 2020 Dec; 301(?):110694. doi: 10.1016/j.plantsci.2020.110694. [PMID: 33218617]
  • Liuyi Yang, Yan Zhang, Rongxia Guan, Sen Li, Xuwen Xu, Shuqun Zhang, Juan Xu. Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways. Journal of integrative plant biology. 2020 Nov; 62(11):1780-1796. doi: 10.1111/jipb.12973. [PMID: 32449805]
  • Jinggeng Zhou, Xiaoyang Wang, Yunxia He, Tian Sang, Pengcheng Wang, Shaojun Dai, Shuqun Zhang, Xiangzong Meng. Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin Biosynthesis in Arabidopsis. The Plant cell. 2020 08; 32(8):2621-2638. doi: 10.1105/tpc.19.00971. [PMID: 32439826]
  • Baoda Han, Yunhe Jiang, Guoxin Cui, Jianing Mi, M Rob G Roelfsema, Grégory Mouille, Julien Sechet, Salim Al-Babili, Manuel Aranda, Heribert Hirt. CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae. Plant physiology. 2020 02; 182(2):1052-1065. doi: 10.1104/pp.19.01279. [PMID: 31806735]
  • Karen J Kloth, Ilka N Abreu, Nicolas Delhomme, Ivan Petřík, Cloé Villard, Cecilia Ström, Fariba Amini, Ondřej Novák, Thomas Moritz, Benedicte R Albrectsen. PECTIN ACETYLESTERASE9 Affects the Transcriptome and Metabolome and Delays Aphid Feeding. Plant physiology. 2019 12; 181(4):1704-1720. doi: 10.1104/pp.19.00635. [PMID: 31551361]
  • Céline Caseys. A Plant Metabolon Efficiently Mass-Produces Phytochemical Defenses. The Plant cell. 2019 11; 31(11):2554-2555. doi: 10.1105/tpc.19.00699. [PMID: 31511314]
  • Stefanie Mucha, Stephanie Heinzlmeir, Verena Kriechbaumer, Benjamin Strickland, Charlotte Kirchhelle, Manisha Choudhary, Natalie Kowalski, Ruth Eichmann, Ralph Hückelhoven, Erwin Grill, Bernhard Kuster, Erich Glawischnig. The Formation of a Camalexin Biosynthetic Metabolon. The Plant cell. 2019 11; 31(11):2697-2710. doi: 10.1105/tpc.19.00403. [PMID: 31511315]
  • Yunxia He, Juan Xu, Xiaoyang Wang, Xiaomeng He, Yangxiayu Wang, Jinggeng Zhou, Shuqun Zhang, Xiangzong Meng. The Arabidopsis Pleiotropic Drug Resistance Transporters PEN3 and PDR12 Mediate Camalexin Secretion for Resistance to Botrytis cinerea. The Plant cell. 2019 09; 31(9):2206-2222. doi: 10.1105/tpc.19.00239. [PMID: 31239392]
  • Philip Carella. Resistance on Tap: PDR Transporters Direct Antimicrobial Metabolites Toward Invading Pathogens. The Plant cell. 2019 09; 31(9):1943-1944. doi: 10.1105/tpc.19.00470. [PMID: 31266849]
  • Brenden Barco, Yoseph Kim, Nicole K Clay. Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense. Nature communications. 2019 08; 10(1):3444. doi: 10.1038/s41467-019-11406-3. [PMID: 31371717]
  • Anna Koprivova, Stefan Schuck, Richard P Jacoby, Irene Klinkhammer, Bastian Welter, Lisa Leson, Anna Martyn, Julia Nauen, Niklas Grabenhorst, Jan F Mandelkow, Alga Zuccaro, Jürgen Zeier, Stanislav Kopriva. Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences of the United States of America. 2019 07; 116(31):15735-15744. doi: 10.1073/pnas.1818604116. [PMID: 31311863]
  • J Pastor-Fernández, V Pastor, D Mateu, J Gamir, P Sánchez-Bel, V Flors. Accumulating evidences of callose priming by indole- 3- carboxylic acid in response to Plectospharella cucumerina. Plant signaling & behavior. 2019; 14(7):1608107. doi: 10.1080/15592324.2019.1608107. [PMID: 31010375]
  • M Soledade C Pedras, Abbas Abdoli. Methoxycamalexins and related compounds: Syntheses, antifungal activity and inhibition of brassinin oxidase. Bioorganic & medicinal chemistry. 2018 08; 26(15):4461-4469. doi: 10.1016/j.bmc.2018.07.030. [PMID: 30078606]
  • Will Buswell, Roland E Schwarzenbacher, Estrella Luna, Matthew Sellwood, Beining Chen, Victor Flors, Pierre Pétriacq, Jurriaan Ton. Chemical priming of immunity without costs to plant growth. The New phytologist. 2018 05; 218(3):1205-1216. doi: 10.1111/nph.15062. [PMID: 29465773]
  • Yang Yang, Gang Wang, Wenjun Wu, Shunnan Yao, Xiaoyan Han, Donghua He, Jingsong He, Gaofeng Zheng, Yi Zhao, Zhen Cai, Rui Yu. Camalexin Induces Apoptosis via the ROS-ER Stress-Mitochondrial Apoptosis Pathway in AML Cells. Oxidative medicine and cellular longevity. 2018; 2018(?):7426950. doi: 10.1155/2018/7426950. [PMID: 30538806]
  • Wei Zhang, Jason A Corwin, Daniel Copeland, Julie Feusier, Robert Eshbaugh, Fang Chen, Susana Atwell, Daniel J Kliebenstein. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem. The Plant cell. 2017 Nov; 29(11):2727-2752. doi: 10.1105/tpc.17.00348. [PMID: 29042403]
  • Shouan Liu, Jörg Ziegler, Jürgen Zeier, Rainer P Birkenbihl, Imre E Somssich. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Plant, cell & environment. 2017 Oct; 40(10):2189-2206. doi: 10.1111/pce.13022. [PMID: 28708934]
  • Mrunmay K Giri, Nidhi Singh, Zeeshan Z Banday, Vijayata Singh, Hathi Ram, Deepjyoti Singh, Sudip Chattopadhyay, Ashis K Nandi. GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2017 Sep; 91(5):802-815. doi: 10.1111/tpj.13608. [PMID: 28622438]
  • C Cheval, M Perez, L J Leba, B Ranty, A Perochon, M Reichelt, A Mithöfer, E Robe, C Mazars, J P Galaud, D Aldon. PRR2, a pseudo-response regulator, promotes salicylic acid and camalexin accumulation during plant immunity. Scientific reports. 2017 08; 7(1):6979. doi: 10.1038/s41598-017-07535-8. [PMID: 28765536]
  • Deepa Khare, Hyunju Choi, Sung Un Huh, Barbara Bassin, Jeongsik Kim, Enrico Martinoia, Kee Hoon Sohn, Kyung-Hee Paek, Youngsook Lee. Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proceedings of the National Academy of Sciences of the United States of America. 2017 07; 114(28):E5712-E5720. doi: 10.1073/pnas.1702259114. [PMID: 28652324]
  • Baptiste Genot, Julien Lang, Souha Berriri, Marie Garmier, Françoise Gilard, Stéphanie Pateyron, Katrien Haustraete, Dominique Van Der Straeten, Heribert Hirt, Jean Colcombet. Constitutively Active Arabidopsis MAP Kinase 3 Triggers Defense Responses Involving Salicylic Acid and SUMM2 Resistance Protein. Plant physiology. 2017 06; 174(2):1238-1249. doi: 10.1104/pp.17.00378. [PMID: 28400495]
  • David C Prince, Ghanasyam Rallapalli, Deyang Xu, Henk-Jan Schoonbeek, Volkan Çevik, Shuta Asai, Eric Kemen, Neftaly Cruz-Mireles, Ariane Kemen, Khaoula Belhaj, Sebastian Schornack, Sophien Kamoun, Eric B Holub, Barbara A Halkier, Jonathan D G Jones. Albugo-imposed changes to tryptophan-derived antimicrobial metabolite biosynthesis may contribute to suppression of non-host resistance to Phytophthora infestans in Arabidopsis thaliana. BMC biology. 2017 03; 15(1):20. doi: 10.1186/s12915-017-0360-z. [PMID: 28320402]
  • Nurmi Pangesti, Michael Reichelt, Judith E van de Mortel, Eleni Kapsomenou, Jonathan Gershenzon, Joop J A van Loon, Marcel Dicke, Ana Pineda. Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore. Journal of chemical ecology. 2016 Dec; 42(12):1212-1225. doi: 10.1007/s10886-016-0787-7. [PMID: 27848154]
  • Marcella A Teixeira, Lihui Wei, Isgouhi Kaloshian. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. The New phytologist. 2016 07; 211(1):276-87. doi: 10.1111/nph.13893. [PMID: 26892116]
  • Bo Wang, Xinghua Qin, Juan Wu, Hongying Deng, Yuan Li, Hailian Yang, Zhongzhou Chen, Guoqin Liu, Dongtao Ren. Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity. Scientific reports. 2016 05; 6(?):25646. doi: 10.1038/srep25646. [PMID: 27160427]
  • Elia Stahl, Patricia Bellwon, Stefan Huber, Klaus Schlaeppi, Friederike Bernsdorff, Armelle Vallat-Michel, Felix Mauch, Jürgen Zeier. Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular plant. 2016 05; 9(5):662-681. doi: 10.1016/j.molp.2016.01.005. [PMID: 26802249]
  • Alexandra Chapman, Christian Lindermayr, Erich Glawischnig. Expression of antimicrobial peptides under control of a camalexin-biosynthetic promoter confers enhanced resistance against Pseudomonas syringae. Phytochemistry. 2016 Feb; 122(?):76-80. doi: 10.1016/j.phytochem.2016.01.001. [PMID: 26795461]
  • Jason A Corwin, Daniel Copeland, Julie Feusier, Anushriya Subedy, Robert Eshbaugh, Christine Palmer, Julin Maloof, Daniel J Kliebenstein. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics. PLoS genetics. 2016 Feb; 12(2):e1005789. doi: 10.1371/journal.pgen.1005789. [PMID: 26866607]
  • Tatjana Peskan-Berghöfer, Amaya Vilches-Barro, Teresa M Müller, Erich Glawischnig, Michael Reichelt, Jonathan Gershenzon, Thomas Rausch. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. The New phytologist. 2015 Nov; 208(3):873-86. doi: 10.1111/nph.13504. [PMID: 26075497]
  • Huijuan Mo, Xingfen Wang, Yan Zhang, Guiyin Zhang, Jinfa Zhang, Zhiying Ma. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae. The Plant journal : for cell and molecular biology. 2015 Sep; 83(6):962-75. doi: 10.1111/tpj.12941. [PMID: 26221980]
  • Teresa M Müller, Christoph Böttcher, Robert Morbitzer, Cornelia C Götz, Johannes Lehmann, Thomas Lahaye, Erich Glawischnig. TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR NUCLEASE-Mediated Generation and Metabolic Analysis of Camalexin-Deficient cyp71a12 cyp71a13 Double Knockout Lines. Plant physiology. 2015 Jul; 168(3):849-58. doi: 10.1104/pp.15.00481. [PMID: 25953104]
  • Stefanie Mucha, Dirk Walther, Teresa M Müller, Dirk K Hincha, Erich Glawischnig. Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. BMC plant biology. 2015 Jun; 15(?):137. doi: 10.1186/s12870-015-0506-5. [PMID: 26063239]
  • Yanting Zhao, Jiansheng Wang, Yuanyuan Liu, Huiying Miao, Congxi Cai, Zhiyong Shao, Rongfang Guo, Bo Sun, Chengguo Jia, Liping Zhang, Tamara Gigolashvili, Qiaomei Wang. Classic myrosinase-dependent degradation of indole glucosinolate attenuates fumonisin B1-induced programmed cell death in Arabidopsis. The Plant journal : for cell and molecular biology. 2015 Mar; 81(6):920-33. doi: 10.1111/tpj.12778. [PMID: 25645692]
  • Nana Zhang, Stephen J Tonsor, M Brian Traw. A geographic cline in leaf salicylic acid with increasing elevation in Arabidopsis thaliana. Plant signaling & behavior. 2015; 10(3):e992741. doi: 10.4161/15592324.2014.992741. [PMID: 25875692]
  • Miriam D Cargnel, Patricia V Demkura, Carlos L Ballaré. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. The New phytologist. 2014 Oct; 204(2):342-54. doi: 10.1111/nph.13032. [PMID: 25236170]
  • Nana Zhang, Andy Lariviere, Stephen J Tonsor, M Brian Traw. Constitutive camalexin production and environmental stress response variation in Arabidopsis populations from the Iberian Peninsula. Plant science : an international journal of experimental plant biology. 2014 Aug; 225(?):77-85. doi: 10.1016/j.plantsci.2014.05.020. [PMID: 25017162]
  • Joy Michal Johnson, Michael Reichelt, Jyothilakshmi Vadassery, Jonathan Gershenzon, Ralf Oelmüller. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC plant biology. 2014 Jun; 14(?):162. doi: 10.1186/1471-2229-14-162. [PMID: 24920452]
  • Clara Simon, Mathilde Langlois-Meurinne, Laure Didierlaurent, Sejir Chaouch, Floriant Bellvert, Kamal Massoud, Marie Garmier, Vincent Thareau, Gilles Comte, Graham Noctor, Patrick Saindrenan. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant, cell & environment. 2014 May; 37(5):1114-29. doi: 10.1111/pce.12221. [PMID: 24131360]
  • Basil Smith, Diandra Randle, Roman Mezencev, LeeShawn Thomas, Cimona Hinton, Valerie Odero-Marah. Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D. Molecules (Basel, Switzerland). 2014 Apr; 19(4):3988-4005. doi: 10.3390/molecules19043988. [PMID: 24699144]
  • Shengchun Li, Amna Mhamdi, Andrea Trotta, Saijaliisa Kangasjärvi, Graham Noctor. The protein phosphatase subunit PP2A-B'γ is required to suppress day length-dependent pathogenesis responses triggered by intracellular oxidative stress. The New phytologist. 2014 Apr; 202(1):145-160. doi: 10.1111/nph.12622. [PMID: 24299221]
  • Ivan Baccelli, Lara Lombardi, Simone Luti, Rodolfo Bernardi, Piero Picciarelli, Aniello Scala, Luigia Pazzagli. Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis. PloS one. 2014; 9(6):e100959. doi: 10.1371/journal.pone.0100959. [PMID: 24968226]
  • Muhammad Amjad Ali, Krzysztof Wieczorek, David P Kreil, Holger Bohlmann. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PloS one. 2014; 9(7):e102360. doi: 10.1371/journal.pone.0102360. [PMID: 25033038]
  • Morten E Møldrup, Bo Salomonsen, Fernando Geu-Flores, Carl E Olsen, Barbara A Halkier. De novo genetic engineering of the camalexin biosynthetic pathway. Journal of biotechnology. 2013 Sep; 167(3):296-301. doi: 10.1016/j.jbiotec.2013.06.013. [PMID: 23830903]
  • M Soledade C Pedras, Abbas Abdoli. Metabolism of the phytoalexins camalexins, their bioisosteres and analogues in the plant pathogenic fungus Alternaria brassicicola. Bioorganic & medicinal chemistry. 2013 Aug; 21(15):4541-9. doi: 10.1016/j.bmc.2013.05.026. [PMID: 23773956]
  • Basil A Smith, Corey L Neal, Mahandranauth Chetram, BaoHan Vo, Roman Mezencev, Cimona Hinton, Valerie A Odero-Marah. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species. Journal of natural medicines. 2013 Jul; 67(3):607-18. doi: 10.1007/s11418-012-0722-3. [PMID: 23179315]
  • Moritz Schön, Armin Töller, Celia Diezel, Charlotte Roth, Lore Westphal, Marcel Wiermer, Imre E Somssich. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Molecular plant-microbe interactions : MPMI. 2013 Jul; 26(7):758-67. doi: 10.1094/mpmi-11-12-0265-r. [PMID: 23617415]
  • Yan Wang, Klaas Bouwmeester, Judith E van de Mortel, Weixing Shan, Francine Govers. Induced expression of defense-related genes in Arabidopsis upon infection with Phytophthora capsici. Plant signaling & behavior. 2013 Jul; 8(7):e24618. doi: 10.4161/psb.24618. [PMID: 23603944]
  • Yan Wang, Klaas Bouwmeester, Judith E van de Mortel, Weixing Shan, Francine Govers. A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence. Plant, cell & environment. 2013 Jun; 36(6):1192-203. doi: 10.1111/pce.12052. [PMID: 23237451]
  • Graeme J Kettles, Claire Drurey, Henk-Jan Schoonbeek, Andy J Maule, Saskia A Hogenhout. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. The New phytologist. 2013 Jun; 198(4):1178-1190. doi: 10.1111/nph.12218. [PMID: 23528052]
  • Timo Engelsdorf, Robin J Horst, Reinhard Pröls, Marlene Pröschel, Franziska Dietz, Ralph Hückelhoven, Lars M Voll. Reduced carbohydrate availability enhances the susceptibility of Arabidopsis toward Colletotrichum higginsianum. Plant physiology. 2013 May; 162(1):225-38. doi: 10.1104/pp.112.209676. [PMID: 23487433]
  • Kobi Buxdorf, Hila Yaffe, Omer Barda, Maggie Levy. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PloS one. 2013; 8(8):e70771. doi: 10.1371/journal.pone.0070771. [PMID: 23940639]
  • Judith E van de Mortel, Ric C H de Vos, Ester Dekkers, Ana Pineda, Leandre Guillod, Klaas Bouwmeester, Joop J A van Loon, Marcel Dicke, Jos M Raaijmakers. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant physiology. 2012 Dec; 160(4):2173-88. doi: 10.1104/pp.112.207324. [PMID: 23073694]
  • Tim Iven, Stefanie König, Seema Singh, Susanna A Braus-Stromeyer, Matthias Bischoff, Lutz F Tietze, Gerhard H Braus, Volker Lipka, Ivo Feussner, Wolfgang Dröge-Laser. Transcriptional activation and production of tryptophan-derived secondary metabolites in arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Molecular plant. 2012 Nov; 5(6):1389-402. doi: 10.1093/mp/sss044. [PMID: 22522512]
  • Paweł Bednarek. Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. Chembiochem : a European journal of chemical biology. 2012 Sep; 13(13):1846-59. doi: 10.1002/cbic.201200086. [PMID: 22807086]
  • Pyniarlang L Nongbri, Joy Michal Johnson, Irena Sherameti, Erich Glawischnig, Barbara Ann Halkier, Ralf Oelmüller. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Molecular plant-microbe interactions : MPMI. 2012 Sep; 25(9):1186-97. doi: 10.1094/mpmi-03-12-0071-r. [PMID: 22852809]
  • Paweł Bednarek. Chemical warfare or modulators of defence responses - the function of secondary metabolites in plant immunity. Current opinion in plant biology. 2012 Aug; 15(4):407-14. doi: 10.1016/j.pbi.2012.03.002. [PMID: 22445190]
  • Mu-Yang Wang, Xue-Ting Liu, Ying Chen, Xiao-Jing Xu, Biao Yu, Shu-Qun Zhang, Qun Li, Zu-Hua He. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. Journal of integrative plant biology. 2012 Jul; 54(7):471-85. doi: 10.1111/j.1744-7909.2012.01131.x. [PMID: 22624950]
  • Caryn Ann Beets, Ju-Chi Huang, Ntakadzeni Edwin Madala, Ian Dubery. Activation of camalexin biosynthesis in Arabidopsis thaliana in response to perception of bacterial lipopolysaccharides: a gene-to-metabolite study. Planta. 2012 Jul; 236(1):261-72. doi: 10.1007/s00425-012-1606-1. [PMID: 22350766]
  • Lars M Voll, Martina B Zell, Timo Engelsdorf, Alexandra Saur, Mariel Gerrard Wheeler, Maria F Drincovich, Andreas P M Weber, Veronica G Maurino. Loss of cytosolic NADP-malic enzyme 2 in Arabidopsis thaliana is associated with enhanced susceptibility to Colletotrichum higginsianum. The New phytologist. 2012 Jul; 195(1):189-202. doi: 10.1111/j.1469-8137.2012.04129.x. [PMID: 22497207]
  • Patricia V Demkura, Carlos L Ballaré. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Molecular plant. 2012 May; 5(3):642-52. doi: 10.1093/mp/sss025. [PMID: 22447155]
  • Kamal Massoud, Thierry Barchietto, Thomas Le Rudulier, Laurane Pallandre, Laure Didierlaurent, Marie Garmier, Françoise Ambard-Bretteville, Jean-Marc Seng, Patrick Saindrenan. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant physiology. 2012 May; 159(1):286-98. doi: 10.1104/pp.112.194647. [PMID: 22408091]
  • Cordula Kruse, Florian H Haas, Ricarda Jost, Bianca Reiser, Michael Reichelt, Markus Wirtz, Jonathan Gershenzon, Ewald Schnug, Rüdiger Hell. Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola. Journal of plant physiology. 2012 May; 169(7):740-3. doi: 10.1016/j.jplph.2011.12.017. [PMID: 22342657]
  • Hirohisa Saga, Takumi Ogawa, Kosuke Kai, Hideyuki Suzuki, Yoshiyuki Ogata, Nozomu Sakurai, Daisuke Shibata, Daisaku Ohta. Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Molecular plant-microbe interactions : MPMI. 2012 May; 25(5):684-96. doi: 10.1094/mpmi-09-11-0244. [PMID: 22295908]
  • Rainer P Birkenbihl, Celia Diezel, Imre E Somssich. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant physiology. 2012 May; 159(1):266-85. doi: 10.1104/pp.111.192641. [PMID: 22392279]
  • Sébastien Besseau, Jing Li, E Tapio Palva. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of experimental botany. 2012 Apr; 63(7):2667-79. doi: 10.1093/jxb/err450. [PMID: 22268143]
  • Mikael Brosché, Jaakko Kangasjärvi. Low antioxidant concentrations impact on multiple signalling pathways in Arabidopsis thaliana partly through NPR1. Journal of experimental botany. 2012 Mar; 63(5):1849-61. doi: 10.1093/jxb/err358. [PMID: 22213815]
  • Yan Wang, Xiaoli Peng, Wentao Xu, Yunbo Luo, Weiwei Zhao, Junran Hao, Zhihong Liang, Yu Zhang, Kunlun Huang. Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. Journal of experimental botany. 2012 Mar; 63(5):2171-87. doi: 10.1093/jxb/err447. [PMID: 22207617]
  • Sejir Chaouch, Guillaume Queval, Graham Noctor. AtRbohF is a crucial modulator of defence-associated metabolism and a key actor in the interplay between intracellular oxidative stress and pathogenesis responses in Arabidopsis. The Plant journal : for cell and molecular biology. 2012 Feb; 69(4):613-27. doi: 10.1111/j.1365-313x.2011.04816.x. [PMID: 21985584]
  • Ishita Ahuja, Ralph Kissen, Atle M Bones. Phytoalexins in defense against pathogens. Trends in plant science. 2012 Feb; 17(2):73-90. doi: 10.1016/j.tplants.2011.11.002. [PMID: 22209038]
  • Rocío González-Lamothe, Mohamed El Oirdi, Normand Brisson, Kamal Bouarab. The conjugated auxin indole-3-acetic acid-aspartic acid promotes plant disease development. The Plant cell. 2012 Feb; 24(2):762-77. doi: 10.1105/tpc.111.095190. [PMID: 22374398]
  • Bo Zhu, Qing Zhou, Guanlin Xie, Guoqing Zhang, Xiaowei Zhang, Yanli Wang, Gunchang Sun, Bin Li, Gulei Jin. Interkingdom gene transfer may contribute to the evolution of phytopathogenicity in botrytis cinerea. Evolutionary bioinformatics online. 2012; 8(?):105-17. doi: 10.4137/ebo.s8486. [PMID: 22346340]
  • Takayuki Shindo, Johana C Misas-Villamil, Anja C Hörger, Jing Song, Renier A L van der Hoorn. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PloS one. 2012; 7(1):e29317. doi: 10.1371/journal.pone.0029317. [PMID: 22238602]
  • Miguel Lopez-Gomez, Niels Sandal, Jens Stougaard, Thomas Boller. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. Journal of experimental botany. 2012 Jan; 63(1):393-401. doi: 10.1093/jxb/err291. [PMID: 21934117]
  • Samantha Rayson, Luis Arciga-Reyes, Lucie Wootton, Marta De Torres Zabala, William Truman, Neil Graham, Murray Grant, Brendan Davies. A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants. PloS one. 2012; 7(2):e31917. doi: 10.1371/journal.pone.0031917. [PMID: 22384098]
  • Chuanfu An, Zhonglin Mou. Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. PloS one. 2012; 7(1):e31130. doi: 10.1371/journal.pone.0031130. [PMID: 22299054]
  • Floriane Consales, Fabian Schweizer, Matthias Erb, Caroline Gouhier-Darimont, Natacha Bodenhausen, Friederike Bruessow, Islam Sobhy, Philippe Reymond. Insect oral secretions suppress wound-induced responses in Arabidopsis. Journal of experimental botany. 2012 Jan; 63(2):727-37. doi: 10.1093/jxb/err308. [PMID: 21994175]
  • Dayakar V Badri, Jacqueline M Chaparro, Daniel K Manter, Enrico Martinoia, Jorge M Vivanco. Influence of ATP-Binding Cassette Transporters in Root Exudation of Phytoalexins, Signals, and in Disease Resistance. Frontiers in plant science. 2012; 3(?):149. doi: 10.3389/fpls.2012.00149. [PMID: 22783269]
  • Inga Mewis, Mohammed A M Khan, Erich Glawischnig, Monika Schreiner, Christian Ulrichs. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.). PloS one. 2012; 7(11):e48661. doi: 10.1371/journal.pone.0048661. [PMID: 23144921]
  • Einar J Stauber, Petrissa Kuczka, Maike van Ohlen, Birgit Vogt, Tim Janowitz, Markus Piotrowski, Till Beuerle, Ute Wittstock. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore. PloS one. 2012; 7(4):e35545. doi: 10.1371/journal.pone.0035545. [PMID: 22536404]
  • Marion Andrew, Reeta Barua, Steven M Short, Linda M Kohn. Evidence for a common toolbox based on necrotrophy in a fungal lineage spanning necrotrophs, biotrophs, endophytes, host generalists and specialists. PloS one. 2012; 7(1):e29943. doi: 10.1371/journal.pone.0029943. [PMID: 22253834]
  • Janick Mathys, Kaat De Cremer, Pieter Timmermans, Stefan Van Kerckhove, Bart Lievens, Mieke Vanhaecke, Bruno P A Cammue, Barbara De Coninck. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. Frontiers in plant science. 2012; 3(?):108. doi: 10.3389/fpls.2012.00108. [PMID: 22661981]
  • Salma Balazadeh, Nils Jaspert, Muhammad Arif, Bernd Mueller-Roeber, Veronica G Maurino. Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts. Frontiers in plant science. 2012; 3(?):234. doi: 10.3389/fpls.2012.00234. [PMID: 23125844]
  • R Velazquez-Robledo, H A Contreras-Cornejo, L Macias-Rodriguez, A Hernandez-Morales, J Aguirre, S Casas-Flores, J Lopez-Bucio, A Herrera-Estrella. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Molecular plant-microbe interactions : MPMI. 2011 Dec; 24(12):1459-71. doi: 10.1094/mpmi-02-11-0045. [PMID: 21830953]