FA 18:1;O (BioDeep_00000009581)

 

Secondary id: BioDeep_00000004046, BioDeep_00000278825


代谢物信息卡片


omega‐cycloheptyl‐alpha‐hydroxyundecanoic Acid

化学式: C18H34O3 (298.2508)
中文名称: 9,10-环氧硬脂酸-d17, 蓖麻醇酸
谱图信息: 最多检出来源 Homo sapiens(plant) 9.84%

分子结构信息

SMILES: C(/C=C/CC(O)CCCCCCCCCCCCC)(=O)O
InChI: InChI=1S/C18H34O3/c1-17(19)15-13-11-9-7-5-3-2-4-6-8-10-12-14-16-18(20)21/h2-16H2,1H3,(H,20,21)

描述信息

同义名列表

117 个代谢物同义名

(6R,7S)-6,7-Epoxyoctadecanoic acid; 6R,7S-epoxy-octadecanoic acid; 6R,7S-Epoxy-octadecanoate; FA 18:1;O; 11-hydroxy-12E-octadecenoic acid; 10-hydroxy-12E-octadecenoic acid; 10-hydroxy-12Z-octadecenoic acid; 12(Z)-10-HOME; 2-Oxiraneoctanoic acid,3-octyl-; 9,10-epoxyoctadecanoic acid; 9,10-EPOXYSTEARIC ACID; 11-Octadecenoic acid, 9-hydroxy-, (11Z)-; 9-Hydroxy-cis-11-octadecenoic acid; 9-hydroxy-11Z-Octadecenoic acid; 12-Octadecenoic acid, 9-hydroxy-, (9S,12Z)-; 9S-hydroxy-12Z-Octadecenoic acid; Isoricinoleic Acid; Strophanthus acid; 8-oxo-octadecanoic acid; 2-oxo-octadecanoic acid; 17-oxo-octadecanoic acid; 16-oxo-octadecanoic acid; 15-oxo-octadecanoic acid; 14-oxo-octadecanoic acid; 13-oxo-octadecanoic acid; 11-oxo-octadecanoic acid; 2-methyl-4-oxo-heptadecanoic acid; 16-methyl-10-oxo-heptadecanoic acid; 9-oxo-octadecanoic acid; 9-keto stearic acid; 7-oxo-octadecanoic acid; 7-keto-stearic acid; 6-oxo-octadecanoic acid; 6-keto stearic acid; Lactarinic acid; 5-oxo-octadecanoic acid; 5-keto stearic acid; 4-oxo-octadecanoic acid; 4-keto stearic acid; 3-oxo-octadecanoic acid; 3-keto stearic acid; 9-Octadecenoic acid, 12-hydroxy-, [S-(Z)]-; 12S-hydroxy-9Z-octadecenoic acid; 12S-HOME(9Z); 9-Octadecenoic acid, 12-hydroxy-, [S-(E)]-; 12S-hydroxy-9E-octadecenoic acid; 12S-HOME(9E); 9-Octadecenoic acid, 12-hydroxy-, [R-(E)]-; 12-D-hydroxy-9-trans-octadecenoic acid; 12R-hydroxy-9E-octadecenoic acid; 9-Octadecenoicacid, 12-hydroxy-; ricinelaidic acid; 12R-HOME(9E); 9-Octadecenoic acid, 11-hydroxy-; 11-hydroxy-9-octadecenoic acid; 11-HOME(9); 8-Octadecenoic acid, 10-hydroxy-, [R-(E)]-; 10R-hydroxy-8E-octadecenoic acid; 10R-HOME(8E); 8-Octadecenoic acid, 10-hydroxy-; 10-hydroxy-8-octadecenoic acid; 10-HOME(8); 12-Octadecenoic acid, 9-hydroxy-, [R-(Z)]-; 9R-hydroxy-12Z-octadecenoic acid; 9R-HOME(12Z); 12-Octadecenoic acid, 9-hydroxy-, [R-(E)]-; 9R-hydroxy-12E-octadecenoic acid; 9R-HOME(12E); 10-Octadecenoic acid, 9-hydroxy-, (E)-(1)-; 9-hydroxy-10E-octadecenoic acid; 9-HOME(10E); 10-Octadecenoic acid, 9-hydroxy-, [R-(E)]-; 9R-hydroxy-10E-octadecenoic acid; 9R-HOME(10E); 9-Octadecenoic acid, 8-hydroxy-; 8-hydroxy-9-octadecenoic acid; 8-HOME(9); 2-Octadecenoic acid, 5-hydroxy-; 5-hydroxy-2-octadecenoic acid; 5-HOME(2); 18-hydroxy-9Z-octadecenoic acid; 19-HOME(9Z); 17-hydroxy-9Z-octadecenoic acid; 17-HOME(9Z); 9-hydroxy-12-octadecenoic acid; 9-HOME(12); 9-hydroxy-10Z-octadecenoic acid; 9-HOME(10Z); 12-hydroxy-10E-octadecenoic acid; 12-HOME(10E); 12-hydroxy-trans-9-octadecenoic acid; 12-hydroxy-9E-octadecenoic acid; 12-Octadecenoic acid, 9-hydroxy-, (Z)-(1)-; 9-Hydroxyoctadec-12-enoic acid, (Z)-; 9-hydroxy-12Z-octadecenoic acid; Strophantus acid; 2R-hydroxy-9Z-octadecenoic acid; alpha-Hydroxyoleic acid; 2R-hydroxy-oleic acid; 2-Hydroxyoleic acid; 9R,10S-epoxy-octadecanoic acid; 9R,10S-epoxy-stearic acid; 9S,10R-epoxy-octadecanoic acid; 9S,10R-epoxy-stearic acid; omega‐cycloheptyl‐alpha‐hydroxyundecanoic Acid; 11-cycloheptyl,2R-hydroxyundecanoic acid; 10-hydroxy-11E-octadecenoic acid; 11(E)-10-HOME; 3-hydroxy-11Z-octadecenoic acid; 3-hydroxy-vaccenic acid; 10(S)-hydroxy-8E-octadecenoic acid; 10(S)-hydroxyoctadec-8E-enoic acid; 10(R)-hydroxy-8Z-octadeceneic acid; 10(R)-hydroxyoctadec-8Z-enoic acid; 10-hydroxyoctadec-8-enoic acid; cis-6,7-epoxyoctadecanoic acid; cis-9,10-Epoxystearic acid



数据库引用编号

140 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

9 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ANXA5, CAT, HPGDS, LPO, ODC1, PLA2G12A, POLB, PPARG, SREBF1
Peripheral membrane protein 2 ANXA5, CYP1B1
Endoplasmic reticulum membrane 3 CYP1B1, CYP3A7, SREBF1
Nucleus 5 POLB, PPARA, PPARG, PSIP1, SREBF1
cytosol 10 ACOX1, ANXA5, CAT, DHODH, EPHX2, HPGDS, ODC1, PPARG, PSIP1, SREBF1
nucleoplasm 8 ATP2B1, DHODH, HPGDS, POLB, PPARA, PPARG, PSIP1, SREBF1
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 2 ATP2B1, SELP
Multi-pass membrane protein 3 ATP2B1, SREBF1, UCP3
Golgi apparatus membrane 1 SREBF1
Synapse 1 ATP2B1
glutamatergic synapse 1 ATP2B1
Golgi membrane 1 SREBF1
mitochondrial inner membrane 2 DHODH, UCP3
presynaptic membrane 1 ATP2B1
sarcolemma 1 ANXA5
plasma membrane 2 ATP2B1, SELP
synaptic vesicle membrane 1 ATP2B1
Membrane 6 ACOX1, ANXA5, ATP2B1, CAT, CYP1B1, DHODH
basolateral plasma membrane 2 ATP2B1, LPO
extracellular exosome 6 ANXA5, ATP2B1, CAT, EPHX2, LPO, SELP
endoplasmic reticulum 1 SREBF1
extracellular space 2 LPO, SELP
perinuclear region of cytoplasm 1 PPARG
mitochondrion 4 CAT, CYP1B1, DHODH, UCP3
protein-containing complex 3 CAT, POLB, SREBF1
intracellular membrane-bounded organelle 5 ATP2B1, CAT, CYP1B1, HPGDS, PPARG
Microsome membrane 2 CYP1B1, CYP3A7
Single-pass type I membrane protein 1 SELP
Secreted 3 LPO, PLA2G12A, SELP
extracellular region 5 ANXA5, CAT, LPO, PLA2G12A, SELP
Single-pass membrane protein 1 DHODH
mitochondrial matrix 1 CAT
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
external side of plasma membrane 2 ANXA5, SELP
Mitochondrion inner membrane 2 DHODH, UCP3
heterochromatin 1 PSIP1
focal adhesion 2 ANXA5, CAT
microtubule 1 POLB
Peroxisome 3 ACOX1, CAT, EPHX2
Peroxisome matrix 1 CAT
peroxisomal matrix 3 ACOX1, CAT, EPHX2
peroxisomal membrane 2 ACOX1, CAT
collagen-containing extracellular matrix 1 ANXA5
lateral plasma membrane 1 ATP2B1
receptor complex 1 PPARG
Zymogen granule membrane 1 ANXA5
chromatin 3 PPARA, PPARG, SREBF1
cell projection 1 ATP2B1
Basolateral cell membrane 1 ATP2B1
nuclear envelope 1 SREBF1
Cytoplasmic vesicle membrane 1 SREBF1
euchromatin 1 PSIP1
Presynaptic cell membrane 1 ATP2B1
platelet dense granule membrane 1 SELP
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
immunological synapse 1 ATP2B1
ER to Golgi transport vesicle membrane 1 SREBF1
vesicle membrane 1 ANXA5
spindle microtubule 1 POLB
platelet alpha granule membrane 1 SELP
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
nuclear periphery 1 PSIP1
platelet dense granule lumen 1 SELP
catalase complex 1 CAT
endothelial microparticle 1 ANXA5
photoreceptor ribbon synapse 1 ATP2B1
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1


文献列表

  • Kelsey Hildreth, Sean D Kodani, Bruce D Hammock, Ling Zhao. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. The Journal of nutritional biochemistry. 2020 12; 86(?):108484. doi: 10.1016/j.jnutbio.2020.108484. [PMID: 32827665]
  • Ying Liu, Jinwei Li, Yuanfa Liu. Effects of epoxy stearic acid on lipid metabolism in HepG2 cells. Journal of food science. 2020 Oct; 85(10):3644-3652. doi: 10.1111/1750-3841.15405. [PMID: 32885409]
  • Bo Tian, Meijuan Sun, Kethmi Jayawardana, Ding Wu, Guanqun Chen. Characterization of a PLDζ2 Homology Gene from Developing Castor Bean Endosperm. Lipids. 2020 09; 55(5):537-548. doi: 10.1002/lipd.12231. [PMID: 32115716]
  • Lijun Wang, Xiaoling Jiang, Lei Wang, Wei Wang, Chunling Fu, Xingchu Yan, Xinxin Geng. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis. BMC genomics. 2019 Jun; 20(1):456. doi: 10.1186/s12864-019-5832-9. [PMID: 31170917]
  • Jay Shockey, Ida Lager, Sten Stymne, Hari Kiran Kotapati, Jennifer Sheffield, Catherine Mason, Philip D Bates. Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic Euphorbiaceae seed oils. Planta. 2019 May; 249(5):1285-1299. doi: 10.1007/s00425-018-03086-y. [PMID: 30610363]
  • Wessal Massalha, Mark Markovits, Edward Pichinuk, Yael Feinstein-Rotkopf, Mark Tarshish, Kumudesh Mishra, Victoria Llado, Miguel Weil, Pablo V Escriba, Or Kakhlon. Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity. Bioscience reports. 2019 01; 39(1):. doi: 10.1042/bsr20181661. [PMID: 30602451]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Chinnaperumal Kamaraj, Pachiyappan Rajiv Gandhi, Gandhi Elango, Sengodan Karthi, Ill-Min Chung, Govindasamy Rajakumar. Novel and environmental friendly approach; Impact of Neem (Azadirachta indica) gum nano formulation (NGNF) on Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.). International journal of biological macromolecules. 2018 Feb; 107(Pt A):59-69. doi: 10.1016/j.ijbiomac.2017.08.145. [PMID: 28860055]
  • Daniel Lunn, James G Wallis, John Browse. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds. Plant & cell physiology. 2018 Jan; 59(1):205-214. doi: 10.1093/pcp/pcx177. [PMID: 29149288]
  • Hiroko Kaikiri, Junki Miyamoto, Takahiro Kawakami, Si-Bum Park, Nahoko Kitamura, Shigenobu Kishino, Yasunori Yonejima, Keiko Hisa, Jun Watanabe, Tasuku Ogita, Jun Ogawa, Soichi Tanabe, Takuya Suzuki. Supplemental feeding of a gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, alleviates spontaneous atopic dermatitis and modulates intestinal microbiota in NC/nga mice. International journal of food sciences and nutrition. 2017 Dec; 68(8):941-951. doi: 10.1080/09637486.2017.1318116. [PMID: 28438083]
  • Claudia Oellig. Screening for Ricinoleic Acid as a Chemical Marker for Secale cornutum in Rye by High-Performance Thin-Layer Chromatography with Fluorescence Detection. Journal of agricultural and food chemistry. 2016 Nov; 64(43):8246-8253. doi: 10.1021/acs.jafc.6b03841. [PMID: 27700105]
  • Karla Rejane de Andrade Porto, Priscilla Rezende Motti, Alexandre Alves Machado, Antonia Railda Roel. In vitro evaluation of the effect of botanical formulations used in the control of Aedes aegypti L. (Diptera: Culicidae) on liver enzymes. Revista da Sociedade Brasileira de Medicina Tropical. 2016 Nov; 49(6):693-697. doi: 10.1590/0037-8682-0117-2016. [PMID: 28001215]
  • Y Mohini, R B N Prasad, M S L Karuna, Y Poornachandra, C Ganesh Kumar. Synthesis and biological evaluation of ricinoleic acid-based lipoamino acid derivatives. Bioorganic & medicinal chemistry letters. 2016 11; 26(21):5198-5202. doi: 10.1016/j.bmcl.2016.09.063. [PMID: 27707604]
  • Ping Wang, Shangde Sun. Enhanced Enzymatic Preparation of Biodiesel Using Ricinoleic Acid as Acyl Donor: Optimization Using Response Surface Methodology. Journal of oleo science. 2016 Sep; 65(9):785-95. doi: 10.5650/jos.ess16052. [PMID: 27477073]
  • Hashem Alsaab, Rami M Alzhrani, Sai H S Boddu. Evaluation of the percutaneous absorption of chlorpromazine from PLO gels across porcine ear and human abdominal skin. Drug development and industrial pharmacy. 2016 Aug; 42(8):1258-66. doi: 10.3109/03639045.2015.1122610. [PMID: 26599694]
  • Grace Q Chen, Harrie van Erp, Jose Martin-Moreno, Kumiko Johnson, Eva Morales, John Browse, Peter J Eastmond, Jiann-Tsyh Lin. Expression of Castor LPAT2 Enhances Ricinoleic Acid Content at the sn-2 Position of Triacylglycerols in Lesquerella Seed. International journal of molecular sciences. 2016 Apr; 17(4):507. doi: 10.3390/ijms17040507. [PMID: 27058535]
  • Dauenpen Meesapyodsuk, Yan Chen, Siew Hon Ng, Jianan Chen, Xiao Qiu. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance. Journal of lipid research. 2015 Nov; 56(11):2102-9. doi: 10.1194/jlr.m060954. [PMID: 26323290]
  • Michiki Takeuchi, Shigenobu Kishino, Akiko Hirata, Si-Bum Park, Nahoko Kitamura, Jun Ogawa. Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. Journal of bioscience and bioengineering. 2015 Jun; 119(6):636-41. doi: 10.1016/j.jbiosc.2014.10.022. [PMID: 25476761]
  • Shen Bayon, Guanqun Chen, Randall J Weselake, John Browse. A small phospholipase A2-α from castor catalyzes the removal of hydroxy fatty acids from phosphatidylcholine in transgenic Arabidopsis seeds. Plant physiology. 2015 Apr; 167(4):1259-70. doi: 10.1104/pp.114.253641. [PMID: 25667315]
  • Noureddin El-Boulifi, Siti Efliza Ashari, Marta Serrano, Jose Aracil, Mercedes Martínez. Solvent-free lipase-catalyzed synthesis of a novel hydroxyl-fatty acid derivative of kojic acid. Enzyme and microbial technology. 2014 Feb; 55(?):128-32. doi: 10.1016/j.enzmictec.2013.10.009. [PMID: 24411455]
  • A Beopoulos, J Verbeke, F Bordes, M Guicherd, M Bressy, A Marty, Jean-Marc Nicaud. Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied microbiology and biotechnology. 2014 Jan; 98(1):251-62. doi: 10.1007/s00253-013-5295-x. [PMID: 24136468]
  • Hisashi Yazawa, Hiromichi Kumagai, Hiroshi Uemura. Secretory production of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Applied microbiology and biotechnology. 2013 Oct; 97(19):8663-71. doi: 10.1007/s00253-013-5060-1. [PMID: 23820557]
  • Petra Kocbek, Slavko Kralj, Mateja Erdani Kreft, Julijana Kristl. Targeting intracellular compartments by magnetic polymeric nanoparticles. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2013 Sep; 50(1):130-8. doi: 10.1016/j.ejps.2013.04.004. [PMID: 23603023]
  • Hisashi Yazawa, Roman Holic, Hiromichi Kumagai, Hiroshi Uemura. Toxicity of ricinoleic acid production in fission yeast Schizosaccharomyces pombe is suppressed by the overexpression of plg7, a phospholipase A2 of a platelet-activating factor (PAF) family homolog. Applied microbiology and biotechnology. 2013 Sep; 97(18):8193-203. doi: 10.1007/s00253-013-4987-6. [PMID: 23700240]
  • Xue-Rong Zhou, Surinder P Singh, Allan G Green. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant. Phytochemistry. 2013 Aug; 92(?):42-8. doi: 10.1016/j.phytochem.2013.05.006. [PMID: 23747094]
  • Brenna A Black, Chenxing Sun, Yuan Yuan Zhao, Michael G Gänzle, Jonathan M Curtis. Antifungal lipids produced by lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization−MS/MS. Journal of agricultural and food chemistry. 2013 Jun; 61(22):5338-46. doi: 10.1021/jf400932g. [PMID: 23706022]
  • José María Arroyo-Caro, Tarik Chileh, Michael Kazachkov, Jitao Zou, Diego López Alonso, Federico García-Maroto. The multigene family of lysophosphatidate acyltransferase (LPAT)-related enzymes in Ricinus communis: cloning and molecular characterization of two LPAT genes that are expressed in castor seeds. Plant science : an international journal of experimental plant biology. 2013 Feb; 199-200(?):29-40. doi: 10.1016/j.plantsci.2012.09.015. [PMID: 23265316]
  • Kunduru Konda Reddy, Thumu Ravinder, Sanjit Kanjilal. Synthesis and evaluation of antioxidant and antifungal activities of novel ricinoleate-based lipoconjugates of phenolic acids. Food chemistry. 2012 Oct; 134(4):2201-7. doi: 10.1016/j.foodchem.2012.04.046. [PMID: 23442675]
  • Martina Decker, Magdalena Adamska, Annette Cronin, Francesca Di Giallonardo, Julia Burgener, Anne Marowsky, John R Falck, Christophe Morisseau, Bruce D Hammock, Artiom Gruzdev, Darryl C Zeldin, Michael Arand. EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides. Journal of lipid research. 2012 Oct; 53(10):2038-2045. doi: 10.1194/jlr.m024448. [PMID: 22798687]
  • Aswani Dutt Vadlapudi, Ramya Krishna Vadlapatla, Deep Kwatra, Ravinder Earla, Swapan K Samanta, Dhananjay Pal, Ashim K Mitra. Targeted lipid based drug conjugates: a novel strategy for drug delivery. International journal of pharmaceutics. 2012 Sep; 434(1-2):315-24. doi: 10.1016/j.ijpharm.2012.05.033. [PMID: 22692074]
  • Roman Holic, Hisashi Yazawa, Hiromichi Kumagai, Hiroshi Uemura. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Applied microbiology and biotechnology. 2012 Jul; 95(1):179-87. doi: 10.1007/s00253-012-3959-6. [PMID: 22370951]
  • Adrian P Brown, Johan T M Kroon, David Swarbreck, Melanie Febrer, Tony R Larson, Ian A Graham, Mario Caccamo, Antoni R Slabas. Tissue-specific whole transcriptome sequencing in castor, directed at understanding triacylglycerol lipid biosynthetic pathways. PloS one. 2012; 7(2):e30100. doi: 10.1371/journal.pone.0030100. [PMID: 22319559]
  • Dimitrios Tsikas, Alexander A Zoerner, Jens Jordan. Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochimica et biophysica acta. 2011 Nov; 1811(11):694-705. doi: 10.1016/j.bbalip.2011.06.015. [PMID: 21771665]
  • Ming Li Wang, J Bradley Morris, Brandon Tonnis, David Pinnow, Jerry Davis, Paul Raymer, Gary A Pederson. Screening of the entire USDA castor germplasm collection for oil content and fatty acid composition for optimum biodiesel production. Journal of agricultural and food chemistry. 2011 Sep; 59(17):9250-6. doi: 10.1021/jf202949v. [PMID: 21838261]
  • Megan L Robertson, Jessica M Paxton, Marc A Hillmyer. Tough blends of polylactide and castor oil. ACS applied materials & interfaces. 2011 Sep; 3(9):3402-10. doi: 10.1021/am2006367. [PMID: 21823623]
  • Gollapalle Lakshminaraya Shastry Viswanatha, Shylaja Hanumanthappa, Nandakumar Krishnadas, Srinath Rangappa. Antidiarrheal effect of fractions from stem bark of Thespesia populnea in rodents: Possible antimotility and antisecretory mechanisms. Asian Pacific journal of tropical medicine. 2011 Jun; 4(6):451-6. doi: 10.1016/s1995-7645(11)60124-7. [PMID: 21771697]
  • Hyun Uk Kim, Kyeong-Ryeol Lee, Young Sam Go, Jin Hee Jung, Mi-Chung Suh, Jong Bum Kim. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant & cell physiology. 2011 Jun; 52(6):983-93. doi: 10.1093/pcp/pcr051. [PMID: 21659329]
  • Thomas Thum, Sandor Batkai, Philipp G Malinski, Thomas Becker, Iris Mevius, Jürgen Klempnauer, Hartmut H Meyer, Jürgen C Frölich, Jürgen Borlak, Dimitrios Tsikas. Measurement and diagnostic use of hepatic cytochrome P450 metabolism of oleic acid in liver disease. Liver international : official journal of the International Association for the Study of the Liver. 2010 Sep; 30(8):1181-8. doi: 10.1111/j.1478-3231.2010.02310.x. [PMID: 20629947]
  • Victoria Llado, Antonio Gutierrez, Jordi Martínez, Jesús Casas, Silvia Terés, Mónica Higuera, Antonio Galmés, Carles Saus, Joan Besalduch, Xavier Busquets, Pablo V Escribá. Minerval induces apoptosis in Jurkat and other cancer cells. Journal of cellular and molecular medicine. 2010 Mar; 14(3):659-70. doi: 10.1111/j.1582-4934.2008.00625.x. [PMID: 19413889]
  • Ioannis Mavraganis, Dauenpen Meesapyodsuk, Patricia Vrinten, Mark Smith, Xiao Qiu. Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate. Applied and environmental microbiology. 2010 Feb; 76(4):1135-42. doi: 10.1128/aem.02297-09. [PMID: 20023082]
  • Hui Li, Franck Pinot, Vincent Sauveplane, Danièle Werck-Reichhart, Patrik Diehl, Lukas Schreiber, Rochus Franke, Ping Zhang, Liang Chen, Yawei Gao, Wanqi Liang, Dabing Zhang. Cytochrome P450 family member CYP704B2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant cell. 2010 Jan; 22(1):173-90. doi: 10.1105/tpc.109.070326. [PMID: 20086189]
  • Elizabeth R Dumas, Amy E Michaud, Chantal Bergeron, Jennifer L Lafrance, Susan Mortillo, Stefan Gafner. Deodorant effects of a supercritical hops extract: antibacterial activity against Corynebacterium xerosis and Staphylococcus epidermidis and efficacy testing of a hops/zinc ricinoleate stick in humans through the sensory evaluation of axillary deodorancy. Journal of cosmetic dermatology. 2009 Sep; 8(3):197-204. doi: 10.1111/j.1473-2165.2009.00449.x. [PMID: 19735518]
  • Yonghua Li, Fred Beisson. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. Biochimie. 2009 Jun; 91(6):685-91. doi: 10.1016/j.biochi.2009.03.016. [PMID: 19344744]
  • Vincent Sauveplane, Sylvie Kandel, Pierre-Edouard Kastner, Jürgen Ehlting, Vincent Compagnon, Danièle Werck-Reichhart, Franck Pinot. Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. The FEBS journal. 2009 Feb; 276(3):719-35. doi: 10.1111/j.1742-4658.2008.06819.x. [PMID: 19120447]
  • Kouhei Yamamoto, Akemi Kinoshita, Akira Shibahara. Ricinoleic acid in common vegetable oils and oil seeds. Lipids. 2008 May; 43(5):457-60. doi: 10.1007/s11745-008-3154-9. [PMID: 18288512]
  • K M Hosamani, K S Katagi. Characterization and structure elucidation of 12-hydroxyoctadec-cis-9-enoic acid in Jatropha gossypifolia and Hevea brasiliensis seed oils: a rich source of hydroxy fatty acid. Chemistry and physics of lipids. 2008 Mar; 152(1):9-12. doi: 10.1016/j.chemphyslip.2007.11.003. [PMID: 18060875]
  • Pietro Roversi, Olga Lissina, Steven Johnson, Nurfilza Ahmat, Guido C Paesen, Kerstin Ploss, Wilhelm Boland, Miles A Nunn, Susan M Lea. The structure of OMCI, a novel lipocalin inhibitor of the complement system. Journal of molecular biology. 2007 Jun; 369(3):784-93. doi: 10.1016/j.jmb.2007.03.064. [PMID: 17445829]
  • Jean-François Rontani, Ian Jameson, Stéphane Christodoulou, John K Volkman. Free radical oxidation (autoxidation) of alkenones and other lipids in cells of Emiliania huxleyi. Phytochemistry. 2007 Mar; 68(6):913-24. doi: 10.1016/j.phytochem.2006.12.013. [PMID: 17258251]
  • Mitsuhiro Tomosugi, Ken'ichi Ichihara, Kazumi Saito. Polyamines are essential for the synthesis of 2-ricinoleoyl phosphatidic acid in developing seeds of castor. Planta. 2006 Jan; 223(2):349-58. doi: 10.1007/s00425-005-0083-1. [PMID: 16133210]
  • Sylvie Kandel, Marc Morant, Irène Benveniste, Elizabeth Blée, Danièle Werck-Reichhart, Franck Pinot. Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants. Induction by chemicals and methyl jasmonate. The Journal of biological chemistry. 2005 Oct; 280(43):35881-9. doi: 10.1074/jbc.m500918200. [PMID: 16120613]
  • Valérie Le Quéré, Emmanuelle Plée-Gautier, Philippe Potin, Stéphanie Madec, Jean-Pierre Salaün. Human CYP4F3s are the main catalysts in the oxidation of fatty acid epoxides. Journal of lipid research. 2004 Aug; 45(8):1446-58. doi: 10.1194/jlr.m300463-jlr200. [PMID: 15145985]
  • Joaquín Velasco, Susana Marmesat, Olivier Bordeaux, Gloria Márquez-Ruiz, Carmen Dobarganes. Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried-food outlets. Journal of agricultural and food chemistry. 2004 Jul; 52(14):4438-43. doi: 10.1021/jf030753f. [PMID: 15237949]
  • Dimitrios Tsikas, Anja Mitschke, Frank-Mathias Gutzki, Hartmut H Meyer, Jürgen C Frölich. Gas chromatography-mass spectrometry of cis-9,10-epoxyoctadecanoic acid (cis-EODA). II. Quantitative determination of cis-EODA in human plasma. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2004 May; 804(2):403-12. doi: 10.1016/j.jchromb.2004.01.055. [PMID: 15081936]
  • Isabelle Billault, Peter G Mantle, Richard J Robins. Deuterium NMR used to indicate a common mechanism for the biosynthesis of ricinoleic acid by Ricinus communis and Claviceps purpurea. Journal of the American Chemical Society. 2004 Mar; 126(10):3250-6. doi: 10.1021/ja038814d. [PMID: 15012155]
  • Laurence Moire, Enea Rezzonico, Simon Goepfert, Yves Poirier. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Plant physiology. 2004 Jan; 134(1):432-42. doi: 10.1104/pp.103.032938. [PMID: 14671017]
  • Mark A Smith, Hangsik Moon, Gangamma Chowrira, Ljerka Kunst. Heterologous expression of a fatty acid hydroxylase gene in developing seeds of Arabidopsis thaliana. Planta. 2003 Jul; 217(3):507-16. doi: 10.1007/s00425-003-1015-6. [PMID: 14520576]
  • Dimitrios Tsikas, Masayuki Sawa, Gorig Brunner, Frank Mathias Gutzki, Hartmut H Meyer, Jürgen C Frölich. Gas chromatography-mass spectrometry of cis-9,10-epoxyoctadecanoic acid (cis-EODA). I. Direct evidence for cis-EODA formation from oleic acid oxidation by liver microsomes and isolated hepatocytes. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2003 Feb; 784(2):351-65. doi: 10.1016/s1570-0232(02)00821-8. [PMID: 12505783]
  • Stephan Summerer, Abdulsamie Hanano, Shigeru Utsumi, Michael Arand, Francis Schuber, Elizabeth Blée. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases. The Biochemical journal. 2002 Sep; 366(Pt 2):471-80. doi: 10.1042/bj20011778. [PMID: 12020347]
  • T M Kuo, H Kim, C T Hou. Production of a novel compound, 7,10,12-trihydroxy-8(E)-octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3. Current microbiology. 2001 Sep; 43(3):198-203. doi: 10.1007/s002840010287. [PMID: 11400070]
  • C Vieira, S Fetzer, S K Sauer, S Evangelista, B Averbeck, M Kress, P W Reeh, R Cirillo, A Lippi, C A Maggi, S Manzini. Pro- and anti-inflammatory actions of ricinoleic acid: similarities and differences with capsaicin. Naunyn-Schmiedeberg's archives of pharmacology. 2001 Aug; 364(2):87-95. doi: 10.1007/s002100100427. [PMID: 11534859]
  • T A McKeon, G Q Chen, J T Lin. Biochemical aspects of castor oil biosynthesis. Biochemical Society transactions. 2000 Dec; 28(6):972-4. doi: 10.1042/bst0280972. [PMID: 11171276]
  • F Pinot, I Benveniste, J P Salaün, O Loreau, J P Noël, L Schreiber, F Durst. Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant-pathogen interactions: enantioselectivity studies. The Biochemical journal. 1999 Aug; 342 ( Pt 1)(?):27-32. doi: 10.1042/0264-6021:3420027. [PMID: 10432296]
  • P Broun, J Shanklin, E Whittle, C Somerville. Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science (New York, N.Y.). 1998 Nov; 282(5392):1315-7. doi: 10.1126/science.282.5392.1315. [PMID: 9812895]
  • E S Kaneshiro. Lipid metabolism of Pneumocystis: toward the definition of new molecular targets. FEMS immunology and medical microbiology. 1998 Sep; 22(1-2):135-43. doi: 10.1111/j.1574-695x.1998.tb01198.x. [PMID: 9792072]
  • D Howes, R Wilson, C T James. The fate of ingested glyceran esters of condensed castor oil fatty acids [polyglycerol polyricinoleate (PGPR)] in the rat. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1998 Sep; 36(9-10):719-38. doi: 10.1016/s0278-6915(98)00055-6. [PMID: 9737418]
  • R Wilson, B J Van Schie, D Howes. Overview of the preparation, use and biological studies on polyglycerol polyricinoleate (PGPR). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1998 Sep; 36(9-10):711-8. doi: 10.1016/s0278-6915(98)00057-x. [PMID: 9737417]
  • A Inoue, A Shoji, S Aso. Allergic lipstick cheilitis due to ester gum and ricinoleic acid. Contact dermatitis. 1998 Jul; 39(1):39. doi: 10.1111/j.1600-0536.1998.tb05818.x. [PMID: 9686985]
  • J T Lin, C L Woodruff, O J Lagouche, T A McKeon, A E Stafford, M Goodrich-Tanrikulu, J A Singleton, C A Haney. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase. Lipids. 1998 Jan; 33(1):59-69. doi: 10.1007/s11745-998-0180-3. [PMID: 9470174]
  • V Spitzer, W Tomberg, R Hartmann, R Aichholz. Analysis of the seed oil of Heisteria silvanii (Olacaceae)--a rich source of a novel C18 acetylenic fatty acid. Lipids. 1997 Nov; 32(11):1189-200. doi: 10.1007/s11745-997-0153-6. [PMID: 9397405]
  • P Mayser, P Haze, C Papavassilis, M Pickel, K Gruender, E Guého. Differentiation of Malassezia species: selectivity of cremophor EL, castor oil and ricinoleic acid for M. furfur. The British journal of dermatology. 1997 Aug; 137(2):208-13. doi: 10.1046/j.1365-2133.1997.18071890.x. [PMID: 9292068]
  • P Broun, C Somerville. Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant physiology. 1997 Mar; 113(3):933-42. doi: 10.1104/pp.113.3.933. [PMID: 9085577]
  • M Goodrich-Tanrikulu, A E Stafford, J T Lin, T A McKeon. Metabolism of ricinoleate by Neurospora crassa. Applied microbiology and biotechnology. 1996 Nov; 46(4):382-7. doi: 10.1007/bf00166233. [PMID: 8987727]
  • T Takatori. Investigations on the mechanism of adipocere formation and its relation to other biochemical reactions. Forensic science international. 1996 Jun; 80(1-2):49-61. doi: 10.1016/0379-0738(96)01927-5. [PMID: 8690322]
  • R De Caterina, H Tanaka, T Nakagawa, P J Hauptman, P Libby. The direct effect of injectable cyclosporine and its vehicle, cremophor, on endothelial vascular cell adhesion molecule-1 expression. Ricinoleic acid inhibits coronary artery endothelial activation. Transplantation. 1995 Aug; 60(3):270-5. doi: 10.1097/00007890-199508000-00011. [PMID: 7544037]
  • G A Ulsaker, G Teien. Identification of 9,10-epoxyoctadecanoic acid in human urine using gas chromatography-mass spectrometry. Biomedical chromatography : BMC. 1995 Jul; 9(4):183-7. doi: 10.1002/bmc.1130090407. [PMID: 8520208]
  • G Eggink, P de Waard, G N Huijberts. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Canadian journal of microbiology. 1995; 41 Suppl 1(?):14-21. doi: 10.1139/m95-163. [PMID: 7606658]
  • S Xiu, D Lu, B Li, Z Wang, J Tao. [Antitumor effect of castor oil extract]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1992 Sep; 17(9):560-1, inside backcover. doi: ". [PMID: 1292501]
  • E Blée, F Schuber. Regio- and enantioselectivity of soybean fatty acid epoxide hydrolase. The Journal of biological chemistry. 1992 Jun; 267(17):11881-7. doi: . [PMID: 1601858]
  • M Bafor, M A Smith, L Jonsson, K Stobart, S Stymne. Ricinoleic acid biosynthesis and triacylglycerol assembly in microsomal preparations from developing castor-bean (Ricinus communis) endosperm. The Biochemical journal. 1991 Dec; 280 ( Pt 2)(?):507-14. doi: 10.1042/bj2800507. [PMID: 1747126]
  • R Sharma, S Gupta, S S Singhal, G A Ansari, Y C Awasthi. Glutathione S-transferase-catalyzed conjugation of 9,10-epoxystearic acid with glutathione. Journal of biochemical toxicology. 1991; 6(2):147-53. doi: 10.1002/jbt.2570060209. [PMID: 1941901]
  • R W Walenga, S Boone, M J Stuart. Analysis of blood HETE levels by selected ion monitoring with ricinoleic acid as the internal standard. Prostaglandins. 1987 Nov; 34(5):733-48. doi: 10.1016/0090-6980(87)90296-6. [PMID: 3432563]
  • K D Croft, L J Beilin, G L Ford. Differential inhibition of thromboxane B2 and leukotriene B4 biosynthesis by two naturally occurring acetylenic fatty acids. Biochimica et biophysica acta. 1987 Oct; 921(3):621-4. doi: 10.1016/0005-2760(87)90091-9. [PMID: 2822134]
  • L Hagenfeldt, L Blomquist, T Midtvedt. Epoxydicarboxylic aciduria resulting from the ingestion of castor oil. Clinica chimica acta; international journal of clinical chemistry. 1986 Dec; 161(2):157-63. doi: 10.1016/0009-8981(86)90209-3. [PMID: 3802527]
  • D Winne, H Görig. Appearance of 14C-polyethylene glycol 4000 in intestinal venous blood: influence of osmolarity and laxatives, effect on net water flux determination. Naunyn-Schmiedeberg's archives of pharmacology. 1982 Nov; 321(2):149-56. doi: 10.1007/bf00518484. [PMID: 7155194]
  • D H Lawson, D A Henry, J Lowe, P Reavey, J A Rennie, A Solomon. Acetylator phenotype in spontaneous SLE and rheumatoid arthritis. Annals of the rheumatic diseases. 1979 Apr; 38(2):171-3. doi: 10.1136/ard.38.2.171. [PMID: 443884]
  • I Polna, J Aleksandrowicz. Effect of adsorbents on IgM and IgG measles antibodies. Acta virologica. 1975 Nov; 19(6):449-56. doi: NULL. [PMID: 1989]
  • N Loreau, C Lepreux, R Ardaillou. Calcitonin-sensitive adenylate cyclase in rat renal tubular membranes. The Biochemical journal. 1975 Sep; 150(3):305-14. doi: 10.1042/bj1500305. [PMID: 2153]
  • A T JAMES, H C HADAWAY, J P WEBB. THE BIOSYNTHESIS OF RICINOLEIC ACID. The Biochemical journal. 1965 May; 95(?):448-52. doi: 10.1042/bj0950448. [PMID: 14340094]
  • S OKUI, M UCHIYAMA, R SATO, M MIZUGAKI. METABOLISM OF HYDROXY FATTY ACIDS. III. CHARACTERIZATION OF HYDROXY ACIDS IN DEPOT FAT AFTER FEEDING OF RICINOLEIC ACID. Journal of biochemistry. 1964 Jan; 55(?):81-6. doi: 10.1093/oxfordjournals.jbchem.a127845. [PMID: 14116625]
  • S OKUI, M UCHIYAMA, M MIZUGAKI. METABOLISM OF HYDROXY FATTY ACIDS. II. INTERMEDIATES OF THE OXIDATIVE BREAKDOWN OF RICINOLEIC ACID BY GENUS CANDIDA. Journal of biochemistry. 1963 Dec; 54(?):536-40. doi: 10.1093/oxfordjournals.jbchem.a127827. [PMID: 14099009]
  • A P TULLOCH, B M CRAIG, G A LEDINGHAM. The oil of wheat stem rust uredospores. II. The isolation of cis-9,10-epoxyoctadecanoic acid, and the fatty acid composition of the oil. Canadian journal of microbiology. 1959 Oct; 5(?):485-91. doi: 10.1139/m59-060. [PMID: 13839791]