Sinapaldehyde (BioDeep_00000000830)

   

natural product PANOMIX_OTCML-2023


代谢物信息卡片


2-Propenal, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (2E)-

化学式: C11H12O4 (208.0736)
中文名称: 芥子醛, TRANS-3,5-二甲氧基-4-羟基肉桂醛, 反式-3,5-二甲氧-4-羟基肉桂醛
谱图信息: 最多检出来源 Viridiplantae(plant) 18.95%

分子结构信息

SMILES: COC1=CC(=CC(=C1O)OC)C=CC=O
InChI: InChI=1S/C11H12O4/c1-14-9-6-8(4-3-5-12)7-10(15-2)11(9)13/h3-7,13H,1-2H3

描述信息

(E)-sinapaldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a dimethoxybenzene and a member of phenols. It is functionally related to an (E)-cinnamaldehyde.
Sinapaldehyde is a natural product found in Stereospermum colais, Aralia bipinnata, and other organisms with data available.
A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5.
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D000893 - Anti-Inflammatory Agents
D004791 - Enzyme Inhibitors
Sinapaldehyde, also known as (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-propenal or (E)-sinapoyl aldehyde, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapaldehyde is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sinapaldehyde can be synthesized from cinnamaldehyde. Sinapaldehyde can also be synthesized into 4-acetoxy-3,5-dimethoxy-trans-cinnamaldehyde. Sinapaldehyde can be found in a number of food items such as angelica, saskatoon berry, rubus (blackberry, raspberry), and lemon verbena, which makes sinapaldehyde a potential biomarker for the consumption of these food products. In Arabidopsis thaliana, this compound is part of the lignin biosynthesis pathway. The enzyme dihydroflavonol 4-reductase uses sinapaldehyde and NADPH to produce sinapyl alcohol and NADP+ .
Annotation level-2
Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1].
Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1].

同义名列表

43 个代谢物同义名

2-Propenal, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (2E)-; 2-Propenal, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (E)-; (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)acrylaldehyde; (E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)acrylaldehyde; (2E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenal; (2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enal; trans-3,5-Dimethoxy-4-hydroxycinnamaldehyde, 98\\%; (E)-3-(4-hydroxy-3,5-dimethoxy-phenyl)prop-2-enal; (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enal; (E)-3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenal; (E)-3,5-Dimethoxy-4-hydroxyphenylpropenaldehyde; Trans-3,5-Dimethoxy-4-Hydroxy Cinnamaldehyde; 3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenal; 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enal; trans-3,5-Dimethoxy-4-hydroxycinnamaldehyde; 3,5-Dimethoxy-4-hydroxycinnamaldehyde (E); Cinnamaldehyde, 4-hydroxy-3,5-dimethoxy-; 3,5 Dimethoxy-4-hydroxycinnamaldehyde; 3,5-Dimethoxy-4-hydroxycinnamaldehyde; 3,4-dimethoxy-4-hydroxycinnamaldehyde; CDICDSOGTRCHMG-ONEGZZNKSA-N; (E)-sinapoyl aldehyde; trans-Sinapaldehyde; (E)-sinapoaldehyde; (E)-sinapaldehyde; Sinapoyl aldehyde; Sinapic aldehyde; Sinapyl aldehyde; UNII-4VB87UV6WG; Sinapinaldehyde; MEGxp0_001085; Sinapaldehyde; ACon1_001103; 4VB87UV6WG; SNY; (E)-3-(4-hydroxy-3,5-dimethoxy-phenyl)acrolein; 3-(4-hydroxy-3,5-dimethoxy-phenyl)prop-2-enal; 3-(4-hydroxy-3,5-dimethoxy-phenyl)acrolein; 382159_ALDRICH; CHEBI:27949; 4206-58-0; C05610; Sinapoyl aldehyde



数据库引用编号

31 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(2)

PlantCyc(2)

代谢反应

423 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(6)

WikiPathways(0)

Plant Reactome(225)

INOH(0)

PlantCyc(192)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

95 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ACE2, AIMP2, CAT, MAPK8, MMP3, MTOR, PTGS2, RPS6KA4, SNAI1, TLR4
Peripheral membrane protein 3 MTOR, PRTN3, PTGS2
Endosome membrane 2 CD14, TLR4
Endoplasmic reticulum membrane 3 HMOX1, MTOR, PTGS2
Nucleus 10 AIMP2, GABPA, HMOX1, MAPK8, MMP3, MTOR, MYB, RPS6KA4, SNAI1, SPI1
autophagosome 1 MAP1LC3A
cytosol 12 AIMP2, CAT, COMT, HMOX1, MAP1LC3A, MAPK8, MMP3, MTOR, MYB, PRTN3, RPS6KA4, SNAI1
dendrite 2 COMT, MTOR
phagocytic vesicle 1 MTOR
nucleoplasm 8 GABPA, HMOX1, MAPK8, MTOR, MYB, RPS6KA4, SNAI1, SPI1
RNA polymerase II transcription regulator complex 1 MYB
Cell membrane 6 ACE2, CD14, COMT, PRTN3, TLR4, TNF
Lipid-anchor 1 MAP1LC3A
Cytoplasmic side 2 HMOX1, MTOR
Cytoplasmic granule 1 PRTN3
Golgi apparatus membrane 1 MTOR
Synapse 3 COMT, MAPK8, RPS6KA4
cell surface 3 ACE2, TLR4, TNF
glutamatergic synapse 1 MAP1LC3A
Golgi apparatus 1 CD14
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 TNF
Cytoplasm, cytosol 1 AIMP2
Lysosome 1 MTOR
plasma membrane 6 ACE2, CD14, COMT, PRTN3, TLR4, TNF
Membrane 9 ACE2, AIMP2, CAT, COMT, HMOX1, MTOR, MYB, SPI1, TLR4
apical plasma membrane 1 ACE2
axon 2 COMT, MAPK8
caveola 1 PTGS2
extracellular exosome 6 ACE2, ALDH2, CAT, CD14, COMT, PRTN3
Lysosome membrane 1 MTOR
endoplasmic reticulum 2 HMOX1, PTGS2
extracellular space 6 ACE2, CD14, HMOX1, MMP3, PRTN3, TNF
perinuclear region of cytoplasm 2 HMOX1, TLR4
mitochondrion 3 ALDH2, CAT, MMP3
protein-containing complex 2 CAT, PTGS2
intracellular membrane-bounded organelle 5 CAT, COMT, MAP1LC3A, PRTN3, SNAI1
Microsome membrane 2 MTOR, PTGS2
pericentric heterochromatin 1 SNAI1
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 ACE2, TLR4
Secreted 4 ACE2, CD14, MMP3, PRTN3
extracellular region 6 ACE2, CAT, CD14, MMP3, PRTN3, TNF
Mitochondrion outer membrane 1 MTOR
mitochondrial outer membrane 2 HMOX1, MTOR
Mitochondrion matrix 1 ALDH2
mitochondrial matrix 2 ALDH2, CAT
Extracellular side 2 COMT, PRTN3
transcription regulator complex 1 SPI1
Cell projection, cilium 1 ACE2
external side of plasma membrane 3 CD14, TLR4, TNF
Early endosome 1 TLR4
recycling endosome 1 TNF
Single-pass type II membrane protein 2 COMT, TNF
Apical cell membrane 1 ACE2
Membrane raft 4 ACE2, CD14, PRTN3, TNF
Cytoplasm, cytoskeleton 1 MAP1LC3A
focal adhesion 1 CAT
microtubule 1 MAP1LC3A
extracellular matrix 1 MMP3
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
Late endosome 1 MAP1LC3A
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 1 PTGS2
cilium 1 ACE2
chromatin 2 GABPA, SPI1
Cytoplasmic vesicle, autophagosome membrane 1 MAP1LC3A
autophagosome membrane 1 MAP1LC3A
phagocytic cup 2 TLR4, TNF
brush border membrane 1 ACE2
Lipid-anchor, GPI-anchor 1 CD14
organelle membrane 1 MAP1LC3A
fibrillar center 1 SNAI1
nuclear envelope 1 MTOR
Endomembrane system 2 MAP1LC3A, MTOR
side of membrane 1 CD14
lipopolysaccharide receptor complex 2 CD14, TLR4
plasma membrane raft 1 PRTN3
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
secretory granule membrane 1 CD14
endoplasmic reticulum lumen 2 ACE2, PTGS2
nuclear matrix 1 MYB
endocytic vesicle membrane 1 ACE2
azurophil granule lumen 1 PRTN3
Single-pass type IV membrane protein 1 HMOX1
basal dendrite 1 MAPK8
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
Cytoplasmic vesicle, phagosome 1 MTOR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 MAP1LC3A
catalase complex 1 CAT
[Isoform Soluble]: Cytoplasm 1 COMT
[Isoform Membrane-bound]: Cell membrane 1 COMT
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Processed angiotensin-converting enzyme 2]: Secreted 1 ACE2
[Isoform 2]: Apical cell membrane 1 ACE2


文献列表

  • Rebecca Van Acker, Annabelle Déjardin, Sandrien Desmet, Lennart Hoengenaert, Ruben Vanholme, Kris Morreel, Françoise Laurans, Hoon Kim, Nicholas Santoro, Cliff Foster, Geert Goeminne, Frédéric Légée, Catherine Lapierre, Gilles Pilate, John Ralph, Wout Boerjan. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant physiology. 2017 Nov; 175(3):1018-1039. doi: 10.1104/pp.17.00834. [PMID: 28878036]
  • Rong-Rong You, Xue-Qing Chen, Dan-Dan He, Chang-Gao Huang, Yang Jin, Shi-Hui Qian, Jian-Ming Ju, Jun-Ting Fan. [Chemical constituents from petroleum ether fraction of Swertia chirayita and their activities in vitro]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2017 Oct; 42(19):3764-3769. doi: 10.19540/j.cnki.cjcmm.20170807.003. [PMID: 29235293]
  • Qiao Zhao, Yuki Tobimatsu, Rui Zhou, Sivakumar Pattathil, Lina Gallego-Giraldo, Chunxiang Fu, Lisa A Jackson, Michael G Hahn, Hoon Kim, Fang Chen, John Ralph, Richard A Dixon. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America. 2013 Aug; 110(33):13660-5. doi: 10.1073/pnas.1312234110. [PMID: 23901113]
  • Sheikh Shreaz, Rimple Bhatia, Neelofar Khan, Sumathi Muralidhar, Nikhat Manzoor, Luqman Ahmad Khan. Influences of cinnamic aldehydes on H⁺ extrusion activity and ultrastructure of Candida. Journal of medical microbiology. 2013 Feb; 62(Pt 2):232-240. doi: 10.1099/jmm.0.036145-0. [PMID: 22034160]
  • Xing Li, Dongming Ma, Jianlin Chen, Gaobin Pu, Yunpeng Ji, Caiyan Lei, Zhigao Du, Benye Liu, Hechun Ye, Hong Wang. Biochemical characterization and identification of a cinnamyl alcohol dehydrogenase from Artemisia annua. Plant science : an international journal of experimental plant biology. 2012 Sep; 193-194(?):85-95. doi: 10.1016/j.plantsci.2012.05.011. [PMID: 22794921]
  • Harleen Kaur, Kamel Shaker, Nicolas Heinzel, John Ralph, Ivan Gális, Ian T Baldwin. Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies. Plant physiology. 2012 Aug; 159(4):1545-70. doi: 10.1104/pp.112.196717. [PMID: 22645069]
  • Rocío Santiago, Borja Alarcón, Roberto de Armas, Carlos Vicente, María Estrella Legaz. Changes in cinnamyl alcohol dehydrogenase activities from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Physiologia plantarum. 2012 Jun; 145(2):245-59. doi: 10.1111/j.1399-3054.2012.01577.x. [PMID: 22248248]
  • Bruce C Campbell, Kathleen L Chan, Jong H Kim. Chemosensitization as a means to augment commercial antifungal agents. Frontiers in microbiology. 2012; 3(?):79. doi: 10.3389/fmicb.2012.00079. [PMID: 22393330]
  • Hari Prasad Devkota, Masato Watanabe, Takashi Watanabe, Shoji Yahara. Phenolic compounds from the aerial parts of Diplomorpha canescens. Chemical & pharmaceutical bulletin. 2012; 60(4):554-6. doi: 10.1248/cpb.60.554. [PMID: 22466741]
  • Abdellah Barakate, Jennifer Stephens, Alison Goldie, William N Hunter, David Marshall, Robert D Hancock, Catherine Lapierre, Kris Morreel, Wout Boerjan, Claire Halpin. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco. The Plant cell. 2011 Dec; 23(12):4492-506. doi: 10.1105/tpc.111.089037. [PMID: 22158465]
  • Huang-Hui Chen, Wenchang Chiang, Jang-Yang Chang, Ya-Lin Chien, Ching-Kuo Lee, Ko-Jiunn Liu, Yen-Ting Cheng, Ting-Fang Chen, Yueh-Hsiung Kuo, Ching-Chuan Kuo. Antimutagenic constituents of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) with potential cancer chemopreventive activity. Journal of agricultural and food chemistry. 2011 Jun; 59(12):6444-52. doi: 10.1021/jf200539r. [PMID: 21561091]
  • Hongling Wang, Hao Chen, Chang'an Geng, Xuemei Zhang, Yunbao Ma, Zhiyong Jiang, Jijun Chen. [Chemical constituents of Halenia elliptica]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Jun; 36(11):1454-7. doi: . [PMID: 22779176]
  • Jong H Kim, Kathleen L Chan, Noreen Mahoney, Bruce C Campbell. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation. Annals of clinical microbiology and antimicrobials. 2011 May; 10(?):23. doi: 10.1186/1476-0711-10-23. [PMID: 21627838]
  • Yun Lee, Fang Chen, Lina Gallego-Giraldo, Richard A Dixon, Eberhard O Voit. Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis. PLoS computational biology. 2011 May; 7(5):e1002047. doi: 10.1371/journal.pcbi.1002047. [PMID: 21625579]
  • Ying Zhang, Yi Yuan, Baosong Cui, Shuai Li. [Study on chemical constituents from ethyl acetate extract of Myricaria bracteata]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Apr; 36(8):1019-23. doi: . [PMID: 21809576]
  • Johanne Thévenin, Brigitte Pollet, Bruno Letarnec, Luc Saulnier, Lionel Gissot, Alessandra Maia-Grondard, Catherine Lapierre, Lise Jouanin. The simultaneous repression of CCR and CAD, two enzymes of the lignin biosynthetic pathway, results in sterility and dwarfism in Arabidopsis thaliana. Molecular plant. 2011 Jan; 4(1):70-82. doi: 10.1093/mp/ssq045. [PMID: 20829305]
  • Rajib Saha, Patrick F Suthers, Costas D Maranas. Zea mays iRS1563: a comprehensive genome-scale metabolic reconstruction of maize metabolism. PloS one. 2011; 6(7):e21784. doi: 10.1371/journal.pone.0021784. [PMID: 21755001]
  • Gordon V Louie, Marianne E Bowman, Yi Tu, Aidyn Mouradov, German Spangenberg, Joseph P Noel. Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. The Plant cell. 2010 Dec; 22(12):4114-27. doi: 10.1105/tpc.110.077578. [PMID: 21177481]
  • Hongling Wang, Changan Geng, Xuemei Zhang, Yunbao Ma, Zhiyong Jiang, Jijun Chen. [Chemical constituents of Swertia macrosperma]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Dec; 35(23):3161-4. doi: . [PMID: 21355239]
  • Carmen Gayoso, Federico Pomar, Esther Novo-Uzal, Fuencisla Merino, Oskar Martínez de Ilárduya. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC plant biology. 2010 Oct; 10(?):232. doi: 10.1186/1471-2229-10-232. [PMID: 20977727]
  • Peter Kitin, Steven L Voelker, Frederick C Meinzer, Hans Beeckman, Steven H Strauss, Barbara Lachenbruch. Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy. Plant physiology. 2010 Oct; 154(2):887-98. doi: 10.1104/pp.110.156224. [PMID: 20639405]
  • Steven L Voelker, Barbara Lachenbruch, Frederick C Meinzer, Michael Jourdes, Chanyoung Ki, Ann M Patten, Laurence B Davin, Norman G Lewis, Gerald A Tuskan, Lee Gunter, Stephen R Decker, Michael J Selig, Robert Sykes, Michael E Himmel, Peter Kitin, Olga Shevchenko, Steven H Strauss. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant physiology. 2010 Oct; 154(2):874-86. doi: 10.1104/pp.110.159269. [PMID: 20729393]
  • Jifeng Liu, Xuemei Zhang, Yao Shi, Zhiyong Jiang, Yunbao Ma, Jijun Chen. [Chemical constituents from rhizomes of Illicium henryi]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Sep; 35(17):2281-4. doi: ". [PMID: 21137338]
  • Young-Hwa Kim, Jung Myung Bae, Gyung-Hye Huh. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweet potato in response to plant developmental stage and environmental stress. Plant cell reports. 2010 Jul; 29(7):779-91. doi: 10.1007/s00299-010-0864-2. [PMID: 20454964]
  • Sadaf Khan, Scott C Rowe, Frank G Harmon. Coordination of the maize transcriptome by a conserved circadian clock. BMC plant biology. 2010 Jun; 10(?):126. doi: 10.1186/1471-2229-10-126. [PMID: 20576144]
  • Biao Yang, Guangying Chen, Xiaoping Song, Zhong Chen, Xinming Song, Jing Wang. Chemical constituents and antimicrobial activities of Canthium horridum. Natural product communications. 2010 Jun; 5(6):913-4. doi: . [PMID: 20614823]
  • Qing-Hu Ma. Functional analysis of a cinnamyl alcohol dehydrogenase involved in lignin biosynthesis in wheat. Journal of experimental botany. 2010 Jun; 61(10):2735-44. doi: 10.1093/jxb/erq107. [PMID: 20400532]
  • Elisabetta Aracri, Josep F Colom, Teresa Vidal. Application of laccase-natural mediator systems to sisal pulp: an effective approach to biobleaching or functionalizing pulp fibres?. Bioresource technology. 2009 Dec; 100(23):5911-6. doi: 10.1016/j.biortech.2009.06.016. [PMID: 19574042]
  • Abdelali Barakat, Agnieszka Bagniewska-Zadworna, Alex Choi, Urmila Plakkat, Denis S DiLoreto, Priyadarshini Yellanki, John E Carlson. The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and expression. BMC plant biology. 2009 Mar; 9(?):26. doi: 10.1186/1471-2229-9-26. [PMID: 19267902]
  • Zhi-jing Ma, Zhi-juan Zhao. [Studies on chemical constituents from stem barks of Fraxinus paxiana]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Aug; 33(16):1990-3. doi: ". [PMID: 19086636]
  • W D dos Santos, Maria de Lourdes Lucio Ferrarese, O Ferrarese-Filho. High performance liquid chromatography method for the determination of cinnamyl alcohol dehydrogenase activity in soybean roots. Plant physiology and biochemistry : PPB. 2006 Jul; 44(7-9):511-5. doi: 10.1016/j.plaphy.2006.08.004. [PMID: 17023167]
  • Isabelle Damiani, Kris Morreel, Saïda Danoun, Geert Goeminne, Nabila Yahiaoui, Christiane Marque, Joachim Kopka, Eric Messens, Deborah Goffner, Wout Boerjan, Alain-Michel Boudet, Soizic Rochange. Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant molecular biology. 2005 Nov; 59(5):753-69. doi: 10.1007/s11103-005-0947-6. [PMID: 16270228]
  • Erin K Bomati, Joseph P Noel. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. The Plant cell. 2005 May; 17(5):1598-611. doi: 10.1105/tpc.104.029983. [PMID: 15829607]
  • Kris Morreel, John Ralph, Fachuang Lu, Geert Goeminne, Roger Busson, Piet Herdewijn, Jan L Goeman, Johan Van der Eycken, Wout Boerjan, Eric Messens. Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant physiology. 2004 Dec; 136(4):4023-36. doi: 10.1104/pp.104.049312. [PMID: 15563622]
  • Daniel R Cardoso, Luiz G Andrade-Sobrinho, Alexandre F Leite-Neto, Roni V Reche, William D Isique, Marcia M C Ferreira, Benedito S Lima-Neto, Douglas W Franco. Comparison between cachaça and rum using pattern recognition methods. Journal of agricultural and food chemistry. 2004 Jun; 52(11):3429-33. doi: 10.1021/jf035262+. [PMID: 15161210]
  • K Murugan, N S Arunkumar, C Mohankumar. Purification and characterization of cinnamyl alcohol-NADPH-dehydrogenase from the leaf tissues of a basin mangrove Lumnitzera racemosa Willd. Indian journal of biochemistry & biophysics. 2004 Apr; 41(2-3):96-101. doi: . [PMID: 22900336]
  • Ramesh B Nair, Kristen L Bastress, Max O Ruegger, Jeff W Denault, Clint Chapple. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. The Plant cell. 2004 Feb; 16(2):544-54. doi: 10.1105/tpc.017509. [PMID: 14729911]
  • Lei Chen, Chung-Kyoon Auh, Paul Dowling, Jeremey Bell, Fang Chen, Andrew Hopkins, Richard A Dixon, Zeng-Yu Wang. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant biotechnology journal. 2003 Nov; 1(6):437-49. doi: 10.1046/j.1467-7652.2003.00040.x. [PMID: 17134402]
  • Richard Sibout, Aymerick Eudes, Brigitte Pollet, Thomas Goujon, Isabelle Mila, Fabienne Granier, Armand Séguin, Catherine Lapierre, Lise Jouanin. Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant physiology. 2003 Jun; 132(2):848-60. doi: 10.1104/pp.103.021048. [PMID: 12805615]
  • Suvi P Pohjamo, Jarl E Hemming, Stefan M Willför, Markku H T Reunanen, Bjarne R Holmbom. Phenolic extractives in Salix caprea wood and knots. Phytochemistry. 2003 May; 63(2):165-9. doi: 10.1016/s0031-9422(03)00050-5. [PMID: 12711137]
  • Dianjing Guo, Fang Chen, Richard A Dixon. Monolignol biosynthesis in microsomal preparations from lignifying stems of alfalfa (Medicago sativa L.). Phytochemistry. 2002 Nov; 61(6):657-67. doi: 10.1016/s0031-9422(02)00375-8. [PMID: 12423886]
  • F Pomar, F Merino, A Ros Barceló. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma. 2002 Oct; 220(1-2):17-28. doi: 10.1007/s00709-002-0030-y. [PMID: 12417933]
  • Wilfred Vermerris, Karen J Thompson, Lauren M McIntyre, John D Axtell. Evidence for an evolutionarily conserved interaction between cell wall biosynthesis and flowering in maize and sorghum. BMC evolutionary biology. 2002; 2(?):2. doi: 10.1186/1471-2148-2-2. [PMID: 11835688]
  • T Sonoda, T Ona, H Yokoi, Y Ishida, H Ohtani, S Tsuge. Quantitative analysis of detailed lignin monomer composition by pyrolysis-gas chromatography combined with preliminary acetylation of the samples. Analytical chemistry. 2001 Nov; 73(22):5429-35. doi: 10.1021/ac010557c. [PMID: 11816569]
  • A R Barceló, F Pomar. Oxidation of cinnamyl alcohols and aldehydes by a basic peroxidase from lignifying Zinnia elegans hypocotyls. Phytochemistry. 2001 Aug; 57(7):1105-13. doi: 10.1016/s0031-9422(01)00050-4. [PMID: 11430983]
  • L Li, X F Cheng, J Leshkevich, T Umezawa, S A Harding, V L Chiang. The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. The Plant cell. 2001 Jul; 13(7):1567-86. doi: 10.1105/tpc.010111. [PMID: 11449052]
  • . . . . doi: . [PMID: 16443696]