Indolepyruvate (BioDeep_00000001355)

 

Secondary id: BioDeep_00000400004

human metabolite PANOMIX_OTCML-2023


代谢物信息卡片


3-(1H-Indol-3-yl)-2-oxopropionic acid

化学式: C11H9NO3 (203.0582404)
中文名称: 吲哚-3-丙酮酸
谱图信息: 最多检出来源 Macaca mulatta(otcml) 0.08%

Reviewed

Last reviewed on 2024-08-26.

Cite this Page

Indolepyruvate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/indolepyruvate (retrieved 2024-09-17) (BioDeep RN: BioDeep_00000001355). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C1=CC=C2C(=C1)C(=CN2)CC(=O)C(=O)O
InChI: InChI=1S/C11H9NO3/c13-10(11(14)15)5-7-6-12-9-4-2-1-3-8(7)9/h1-4,6,12H,5H2,(H,14,15)

描述信息

The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide. (PMID:15835904)  In addition, the enzyme was compared with the phenylpyruvate decarboxylase from Azospirillum brasilense and the indolepyruvate decarboxylase from Enterobacter cloacae. (PMID:21501384) Indole-3-pyruvate is a microbial metabolite, urinary indole-3-pyruvate is produced by Clostridium sporogenes (PMID:29168502) and Trypanasoma brucei (PMID:27856732).
Indolepyruvate, also known as indolepyruvic acid or (indol-3-yl)pyruvate, belongs to indolyl carboxylic acids and derivatives class of compounds. Those are compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an indole ring. Indolepyruvate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Indolepyruvate can be found in a number of food items such as spelt, strawberry, gram bean, and oregon yampah, which makes indolepyruvate a potential biomarker for the consumption of these food products. Indolepyruvate exists in all eukaryotes, ranging from yeast to humans.
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents
D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
D000975 - Antioxidants > D016166 - Free Radical Scavengers
D020011 - Protective Agents > D000975 - Antioxidants
KEIO_ID I002

同义名列表

30 个代谢物同义名

3-(1H-Indol-3-yl)-2-oxopropionic acid; 3-(1H-Indol-3-yl)-2-oxopropanoic acid; alpha-Oxo-1H-indole-3-propionic acid; alpha-Oxo-1H-indole-3-propanoic acid; 3-(3-Indolyl)-2-oxopropanoic acid; 3-(3-Indolyl)-2-oxopropionic acid; α-Oxo-1H-indole-3-propionic acid; α-Oxo-1H-indole-3-propanoic acid; 3-(indol-3-yl)Pyruvic acid; 3-(3-Indolyl)pyruvic acid; 3-Indolylpyroracemic acid; 1H-Indole-3-pyruvic acid; 3-Indole-2-oxopropanoate; (indol-3-yl)Pyruvic acid; beta-Indolylpyruvic acid; 3-Indole-2-oxopropionate; Indol-3-yl pyruvic acid; beta-Indolepyruvic acid; 3-(indol-3-yl)Pyruvate; 3-Indolylpyruvic acid; Indole-3-pyruvic acid; β-Indolylpyruvic acid; β-Indolepyruvic acid; (indol-3-yl)Pyruvate; Indolyl-3-pyruvate; Indolepyruvic acid; Indole-3-pyrubate; Indole-3-pyruvate; Indolepyruvate; IPA



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(6)

BioCyc(0)

PlantCyc(0)

代谢反应

333 个相关的代谢反应过程信息。

Reactome(96)

BioCyc(1)

WikiPathways(2)

Plant Reactome(234)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

7 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Akiko Sato, Kazuo Soeno, Rie Kikuchi, Megumi Narukawa-Nara, Chiaki Yamazaki, Yusuke Kakei, Ayako Nakamura, Yukihisa Shimada. Indole-3-pyruvic acid regulates TAA1 activity, which plays a key role in coordinating the two steps of auxin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America. 2022 06; 119(25):e2203633119. doi: 10.1073/pnas.2203633119. [PMID: 35696560]
  • Minyoung Choi, Sangkee Rhee. Structural and biochemical basis for the substrate specificity of Pad-1, an indole-3-pyruvic acid aminotransferase in auxin homeostasis. Journal of structural biology. 2022 06; 214(2):107857. doi: 10.1016/j.jsb.2022.107857. [PMID: 35395410]
  • Jiahui Shao, Yucong Li, Zunfeng Li, Zhihui Xu, Weibing Xun, Nan Zhang, Haichao Feng, Youzhi Miao, Qirong Shen, Ruifu Zhang. Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. Journal of basic microbiology. 2021 Jun; 61(6):569-575. doi: 10.1002/jobm.202100098. [PMID: 33914927]
  • Joseph H Lynch, Yichun Qian, Longyun Guo, Itay Maoz, Xing-Qi Huang, Alekzander S Garcia, Gordon Louie, Marianne E Bowman, Joseph P Noel, John A Morgan, Natalia Dudareva. Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway. Nature chemical biology. 2020 08; 16(8):850-856. doi: 10.1038/s41589-020-0519-8. [PMID: 32284603]
  • Lu Chen, Xu-Xu Huang, Shu-Man Zhao, Dong-Wang Xiao, Lang-Tao Xiao, Jian-Hua Tong, Wen-Shuai Wang, Yan-Jie Li, Zhaojun Ding, Bing-Kai Hou. IPyA glucosylation mediates light and temperature signaling to regulate auxin-dependent hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2020 03; 117(12):6910-6917. doi: 10.1073/pnas.2000172117. [PMID: 32152121]
  • Masaru Miyagi, Rachel Wilson, Daisuke Saigusa, Keiko Umeda, Reina Saijo, Christopher L Hager, Yuejin Li, Thomas McCormick, Mahmoud A Ghannoum. Indole-3-acetic acid synthesized through the indole-3-pyruvate pathway promotes Candida tropicalis biofilm formation. PloS one. 2020; 15(12):e0244246. doi: 10.1371/journal.pone.0244246. [PMID: 33332404]
  • Ying Zhu, Hong-Jiang Li, Qi Su, Jing Wen, Yuefan Wang, Wen Song, Yinpeng Xie, Wenrong He, Zhen Yang, Kai Jiang, Hongwei Guo. A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis. The Journal of biological chemistry. 2019 12; 294(52):19923-19933. doi: 10.1074/jbc.ra119.010480. [PMID: 31732559]
  • Huei-Ru Lin, Hung-Yu Shu, Guang-Huey Lin. Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological research. 2018 Nov; 216(?):30-39. doi: 10.1016/j.micres.2018.08.004. [PMID: 30269854]
  • Miho Tatsuki, Kazuo Soeno, Yukihisa Shimada, Yutaka Sawamura, Yuko Suesada, Hideaki Yaegaki, Akiko Sato, Yusuke Kakei, Ayako Nakamura, Songling Bai, Takaya Moriguchi, Naoko Nakajima. Insertion of a transposon-like sequence in the 5'-flanking region of the YUCCA gene causes the stony hard phenotype. The Plant journal : for cell and molecular biology. 2018 11; 96(4):815-827. doi: 10.1111/tpj.14070. [PMID: 30118567]
  • Mengsha Li, Rui Guo, Fei Yu, Xu Chen, Haiyan Zhao, Huixin Li, Jun Wu. Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. International journal of molecular sciences. 2018 Feb; 19(2):. doi: 10.3390/ijms19020443. [PMID: 29389906]
  • Puspendu Sardar, Frank Kempken. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. PloS one. 2018; 13(2):e0192293. doi: 10.1371/journal.pone.0192293. [PMID: 29420579]
  • Hua Qin, Zhijin Zhang, Juan Wang, Xinbing Chen, Pengcheng Wei, Rongfeng Huang. The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS genetics. 2017 Aug; 13(8):e1006955. doi: 10.1371/journal.pgen.1006955. [PMID: 28829777]
  • Shin Takato, Yusuke Kakei, Marie Mitsui, Yosuke Ishida, Masashi Suzuki, Chiaki Yamazaki, Ken-Ichiro Hayashi, Takahiro Ishii, Ayako Nakamura, Kazuo Soeno, Yukihisa Shimada. Auxin signaling through SCFTIR1/AFBs mediates feedback regulation of IAA biosynthesis. Bioscience, biotechnology, and biochemistry. 2017 Jul; 81(7):1320-1326. doi: 10.1080/09168451.2017.1313694. [PMID: 28406060]
  • Eddie Luidy Imada, Amanda Alves de Paiva Rolla Dos Santos, André Luiz Martinez de Oliveira, Mariangela Hungria, Elisete Pains Rodrigues. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Research in microbiology. 2017 Apr; 168(3):283-292. doi: 10.1016/j.resmic.2016.10.010. [PMID: 27845247]
  • Yusuke Kakei, Ayako Nakamura, Mitsuhiro Yamamoto, Yosuke Ishida, Chiaki Yamazaki, Akiko Sato, Megumi Narukawa-Nara, Kazuo Soeno, Yukihisa Shimada. Biochemical and Chemical Biology Study of Rice OsTAR1 Revealed that Tryptophan Aminotransferase is Involved in Auxin Biosynthesis: Identification of a Potent OsTAR1 Inhibitor, Pyruvamine2031. Plant & cell physiology. 2017 Mar; 58(3):598-606. doi: 10.1093/pcp/pcx007. [PMID: 28138057]
  • Wenchao Qu, Christelle A M Robert, Matthias Erb, Bruce E Hibbard, Maxim Paven, Tassilo Gleede, Barbara Riehl, Lena Kersting, Aylin S Cankaya, Anna T Kunert, Youwen Xu, Michael J Schueller, Colleen Shea, David Alexoff, So Jeong Lee, Joanna S Fowler, Richard A Ferrieri. Dynamic Precision Phenotyping Reveals Mechanism of Crop Tolerance to Root Herbivory. Plant physiology. 2016 10; 172(2):776-788. doi: 10.1104/pp.16.00735. [PMID: 27406166]
  • Sam D Cook, David S Nichols, Jason Smith, Prem S Chourey, Erin L McAdam, Laura Quittenden, John J Ross. Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?. Plant physiology. 2016 06; 171(2):1230-41. doi: 10.1104/pp.16.00454. [PMID: 27208245]
  • Yusuke Kakei, Chiaki Yamazaki, Masashi Suzuki, Ayako Nakamura, Akiko Sato, Yosuke Ishida, Rie Kikuchi, Shouichi Higashi, Yumiko Kokudo, Takahiro Ishii, Kazuo Soeno, Yukihisa Shimada. Small-molecule auxin inhibitors that target YUCCA are powerful tools for studying auxin function. The Plant journal : for cell and molecular biology. 2015 Nov; 84(4):827-37. doi: 10.1111/tpj.13032. [PMID: 26402640]
  • Verena Kriechbaumer, Hyesu Seo, Woong June Park, Chris Hawes. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes. Journal of experimental botany. 2015 Sep; 66(19):6009-20. doi: 10.1093/jxb/erv314. [PMID: 26139824]
  • Masashi Suzuki, Chiaki Yamazaki, Marie Mitsui, Yusuke Kakei, Yuka Mitani, Ayako Nakamura, Takahiro Ishii, Kazuo Soeno, Yukihisa Shimada. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis. Plant cell reports. 2015 Aug; 34(8):1343-52. doi: 10.1007/s00299-015-1791-z. [PMID: 25903543]
  • D Magnus Eklund, Kimitsune Ishizaki, Eduardo Flores-Sandoval, Saya Kikuchi, Yumiko Takebayashi, Shigeyuki Tsukamoto, Yuki Hirakawa, Maiko Nonomura, Hirotaka Kato, Masaru Kouno, Rishikesh P Bhalerao, Ulf Lagercrantz, Hiroyuki Kasahara, Takayuki Kohchi, John L Bowman. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha. The Plant cell. 2015 Jun; 27(6):1650-69. doi: 10.1105/tpc.15.00065. [PMID: 26036256]
  • Takeshi Nishimura, Ken-Ichiro Hayashi, Hiromi Suzuki, Atsuko Gyohda, Chihiro Takaoka, Yusuke Sakaguchi, Sachiko Matsumoto, Hiroyuki Kasahara, Tatsuya Sakai, Jun-Ichi Kato, Yuji Kamiya, Tomokazu Koshiba. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. The Plant journal : for cell and molecular biology. 2014 Feb; 77(3):352-66. doi: 10.1111/tpj.12399. [PMID: 24299123]
  • David Pacheco-Villalobos, Martial Sankar, Karin Ljung, Christian S Hardtke. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots. PLoS genetics. 2013 Jun; 9(6):e1003564. doi: 10.1371/journal.pgen.1003564. [PMID: 23840182]
  • Richa Upadhyay, Kavindra Nath Tiwari, Karuna Singh. High frequency shoots regeneration for mass multiplication of Phyllanthus fraternus Webster--an important antiviral and hepatoprotective plant. Applied biochemistry and biotechnology. 2013 Apr; 169(8):2303-14. doi: 10.1007/s12010-013-0157-7. [PMID: 23446983]
  • Xinhua Dai, Kiyoshi Mashiguchi, Qingguo Chen, Hiroyuki Kasahara, Yuji Kamiya, Sunil Ojha, Jennifer DuBois, David Ballou, Yunde Zhao. The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase. The Journal of biological chemistry. 2013 Jan; 288(3):1448-57. doi: 10.1074/jbc.m112.424077. [PMID: 23188833]
  • John J Ross, Nathan D Tivendale, Sandra E Davidson, James B Reid, Noel W Davies, Laura J Quittenden, Jason A Smith. A mutation affecting the synthesis of 4-chloroindole-3-acetic acid. Plant signaling & behavior. 2012 Dec; 7(12):1533-6. doi: 10.4161/psb.22319. [PMID: 23073010]
  • Magdalena Hilbert, Lars M Voll, Yi Ding, Jörg Hofmann, Monica Sharma, Alga Zuccaro. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. The New phytologist. 2012 Oct; 196(2):520-534. doi: 10.1111/j.1469-8137.2012.04275.x. [PMID: 22924530]
  • Xing Liu, Adrian D Hegeman, Gary Gardner, Jerry D Cohen. Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant methods. 2012 Aug; 8(1):31. doi: 10.1186/1746-4811-8-31. [PMID: 22883136]
  • Nathan D Tivendale, Sandra E Davidson, Noel W Davies, Jason A Smith, Marion Dalmais, Abdelhafid I Bendahmane, Laura J Quittenden, Lily Sutton, Raj K Bala, Christine Le Signor, Richard Thompson, James Horne, James B Reid, John J Ross. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant physiology. 2012 Jul; 159(3):1055-63. doi: 10.1104/pp.112.198457. [PMID: 22573801]
  • Elisabeth Stes, Els Prinsen, Marcelle Holsters, Danny Vereecke. Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. The Plant journal : for cell and molecular biology. 2012 May; 70(3):513-27. doi: 10.1111/j.1365-313x.2011.04890.x. [PMID: 22181713]
  • Dimas M Ribeiro, Wagner L Araújo, Alisdair R Fernie, Jos H M Schippers, Bernd Mueller-Roeber. Translatome and metabolome effects triggered by gibberellins during rosette growth in Arabidopsis. Journal of experimental botany. 2012 Apr; 63(7):2769-86. doi: 10.1093/jxb/err463. [PMID: 22291129]
  • Jiaqiang Sun, Linlin Qi, Yanan Li, Jinfang Chu, Chuanyou Li. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS genetics. 2012; 8(3):e1002594. doi: 10.1371/journal.pgen.1002594. [PMID: 22479194]
  • Ilva Nakurte, Anete Keisa, Nils Rostoks. Development and Validation of a Reversed-Phase Liquid Chromatography Method for the Simultaneous Determination of Indole-3-Acetic Acid, Indole-3-Pyruvic Acid, and Abscisic Acid in Barley (Hordeum vulgare L.). Journal of analytical methods in chemistry. 2012; 2012(?):103575. doi: 10.1155/2012/103575. [PMID: 22567549]
  • Christine Böttcher, Eric G Dennis, Grant W Booker, Steven W Polyak, Paul K Boss, Christopher Davies. A novel tool for studying auxin-metabolism: the inhibition of grapevine indole-3-acetic acid-amido synthetases by a reaction intermediate analogue. PloS one. 2012; 7(5):e37632. doi: 10.1371/journal.pone.0037632. [PMID: 22649546]
  • Wenrong He, Javier Brumos, Hongjiang Li, Yusi Ji, Meng Ke, Xinqi Gong, Qinglong Zeng, Wenyang Li, Xinyan Zhang, Fengying An, Xing Wen, Pengpeng Li, Jinfang Chu, Xiaohong Sun, Cunyu Yan, Nieng Yan, De-Yu Xie, Natasha Raikhel, Zhenbiao Yang, Anna N Stepanova, Jose M Alonso, Hongwei Guo. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. The Plant cell. 2011 Nov; 23(11):3944-60. doi: 10.1105/tpc.111.089029. [PMID: 22108404]
  • Nancy R Hofmann. YUC and TAA1/TAR proteins function in the same pathway for auxin biosynthesis. The Plant cell. 2011 Nov; 23(11):3869. doi: 10.1105/tpc.111.231112. [PMID: 22108405]
  • Anna N Stepanova, Jeonga Yun, Linda M Robles, Ondrej Novak, Wenrong He, Hongwei Guo, Karin Ljung, Jose M Alonso. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. The Plant cell. 2011 Nov; 23(11):3961-73. doi: 10.1105/tpc.111.088047. [PMID: 22108406]
  • Fernando H Sant'Anna, Luiz G P Almeida, Ricardo Cecagno, Luciano A Reolon, Franciele M Siqueira, Maicon R S Machado, Ana T R Vasconcelos, Irene S Schrank. Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense. BMC genomics. 2011 Aug; 12(?):409. doi: 10.1186/1471-2164-12-409. [PMID: 21838888]
  • Ying-Hua Su, Yu-Bo Liu, Xian-Sheng Zhang. Auxin-cytokinin interaction regulates meristem development. Molecular plant. 2011 Jul; 4(4):616-25. doi: 10.1093/mp/ssr007. [PMID: 21357646]
  • Jeong Im Kim, Angus S Murphy, Dongwon Baek, Shin-Woo Lee, Dae-Jin Yun, Ray A Bressan, Meena L Narasimhan. YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of experimental botany. 2011 Jul; 62(11):3981-92. doi: 10.1093/jxb/err094. [PMID: 21511905]
  • Zhao-Yang Zhou, Chun-Guang Zhang, Lei Wu, Cai-Guo Zhang, Juan Chai, Ming Wang, Ajay Jha, Peng-Fei Jia, Su-Juan Cui, Ming Yang, Rujin Chen, Guang-Qin Guo. Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. The Plant journal : for cell and molecular biology. 2011 May; 66(3):516-27. doi: 10.1111/j.1365-313x.2011.04509.x. [PMID: 21255165]
  • Sandra Van Puyvelde, Lore Cloots, Kristof Engelen, Frederik Das, Kathleen Marchal, Jos Vanderleyden, Stijn Spaepen. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microbial ecology. 2011 May; 61(4):723-8. doi: 10.1007/s00248-011-9819-6. [PMID: 21340736]
  • Benjamin Cole, Steve A Kay, Joanne Chory. Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. The Plant journal : for cell and molecular biology. 2011 Mar; 65(6):991-1000. doi: 10.1111/j.1365-313x.2010.04476.x. [PMID: 21288269]
  • Kimberly A Phillips, Andrea L Skirpan, Xing Liu, Ashley Christensen, Thomas L Slewinski, Christopher Hudson, Solmaz Barazesh, Jerry D Cohen, Simon Malcomber, Paula McSteen. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. The Plant cell. 2011 Feb; 23(2):550-66. doi: 10.1105/tpc.110.075267. [PMID: 21335375]
  • Anastasia Venieraki, Maria Dimou, Panagiotis Pergalis, Io Kefalogianni, Iordanis Chatzipavlidis, Panagiotis Katinakis. The genetic diversity of culturable nitrogen-fixing bacteria in the rhizosphere of wheat. Microbial ecology. 2011 Feb; 61(2):277-85. doi: 10.1007/s00248-010-9747-x. [PMID: 20857096]
  • Jing Fu, Shiping Wang. Insights into auxin signaling in plant-pathogen interactions. Frontiers in plant science. 2011; 2(?):74. doi: 10.3389/fpls.2011.00074. [PMID: 22639609]
  • Candida Nibau, Verónica S Di Stilio, Hen-Ming Wu, Alice Y Cheung. Arabidopsis and Tobacco superman regulate hormone signalling and mediate cell proliferation and differentiation. Journal of experimental botany. 2011 Jan; 62(3):949-61. doi: 10.1093/jxb/erq325. [PMID: 20980362]
  • April N Wynn, Elizabeth E Rueschhoff, Robert G Franks. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PloS one. 2011; 6(10):e26231. doi: 10.1371/journal.pone.0026231. [PMID: 22031826]
  • Nathan D Tivendale, Noel W Davies, Peter P Molesworth, Sandra E Davidson, Jason A Smith, Edwin K Lowe, James B Reid, John J Ross. Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant physiology. 2010 Dec; 154(4):1957-65. doi: 10.1104/pp.110.165803. [PMID: 20974893]
  • Pratibha Vyas, Robin Joshi, K C Sharma, Praveen Rahi, Ashu Gulati, Arvind Gulati. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. Journal of microbiology and biotechnology. 2010 Dec; 20(12):1724-34. doi: . [PMID: 21193830]
  • Prem S Chourey, Qin-Bao Li, Dibyendu Kumar. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Molecular plant. 2010 Nov; 3(6):1026-36. doi: 10.1093/mp/ssq057. [PMID: 20924026]
  • Sherry LeCLere, Eric A Schmelz, Prem S Chourey. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant physiology. 2010 May; 153(1):306-18. doi: 10.1104/pp.110.155226. [PMID: 20237017]
  • Kazuo Soeno, Hideki Goda, Takahiro Ishii, Takehiko Ogura, Tomoe Tachikawa, Eriko Sasaki, Shigeo Yoshida, Shozo Fujioka, Tadao Asami, Yukihisa Shimada. Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant & cell physiology. 2010 Apr; 51(4):524-36. doi: 10.1093/pcp/pcq032. [PMID: 20234049]
  • Takakazu Kaneko, Kiwamu Minamisawa, Tsuyoshi Isawa, Hiroki Nakatsukasa, Hisayuki Mitsui, Yasuyuki Kawaharada, Yasukazu Nakamura, Akiko Watanabe, Kumiko Kawashima, Akiko Ono, Yoshimi Shimizu, Chika Takahashi, Chiharu Minami, Tsunakazu Fujishiro, Mitsuyo Kohara, Midori Katoh, Naomi Nakazaki, Shinobu Nakayama, Manabu Yamada, Satoshi Tabata, Shusei Sato. Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA research : an international journal for rapid publication of reports on genes and genomes. 2010 Feb; 17(1):37-50. doi: 10.1093/dnares/dsp026. [PMID: 20047946]
  • Abdulla A-B Badawy, Christopher J Morgan. Rapid Isocratic Liquid Chromatographic Separation and Quantification of Tryptophan and Six kynurenine Metabolites in Biological Samples with Ultraviolet and Fluorimetric Detection. International journal of tryptophan research : IJTR. 2010; 3(?):175-86. doi: 10.4137/ijtr.s6225. [PMID: 22084598]
  • Marcelo Bertalan, Rodolpho Albano, Vânia de Pádua, Luc Rouws, Cristian Rojas, Adriana Hemerly, Kátia Teixeira, Stefan Schwab, Jean Araujo, André Oliveira, Leonardo França, Viviane Magalhães, Sylvia Alquéres, Alexander Cardoso, Wellington Almeida, Marcio Martins Loureiro, Eduardo Nogueira, Daniela Cidade, Denise Oliveira, Tatiana Simão, Jacyara Macedo, Ana Valadão, Marcela Dreschsel, Flávia Freitas, Marcia Vidal, Helma Guedes, Elisete Rodrigues, Carlos Meneses, Paulo Brioso, Luciana Pozzer, Daniel Figueiredo, Helena Montano, Jadier Junior, Gonçalo de Souza Filho, Victor Martin Quintana Flores, Beatriz Ferreira, Alan Branco, Paula Gonzalez, Heloisa Guillobel, Melissa Lemos, Luiz Seibel, José Macedo, Marcio Alves-Ferreira, Gilberto Sachetto-Martins, Ana Coelho, Eidy Santos, Gilda Amaral, Anna Neves, Ana Beatriz Pacheco, Daniela Carvalho, Letícia Lery, Paulo Bisch, Shaila C Rössle, Turán Urményi, Alessandra Rael Pereira, Rosane Silva, Edson Rondinelli, Wanda von Krüger, Orlando Martins, José Ivo Baldani, Paulo C G Ferreira. Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC genomics. 2009 Sep; 10(?):450. doi: 10.1186/1471-2164-10-450. [PMID: 19775431]
  • Masashi Yamada, Katie Greenham, Michael J Prigge, Philip J Jensen, Mark Estelle. The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant physiology. 2009 Sep; 151(1):168-79. doi: 10.1104/pp.109.138859. [PMID: 19625638]
  • Véronique Chagué, Rudy Maor, Amir Sharon. CgOpt1, a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity. BMC microbiology. 2009 Aug; 9(?):173. doi: 10.1186/1471-2180-9-173. [PMID: 19698103]
  • Laura Chalupowicz, Isaac Barash, Mary Panijel, Guido Sessa, Shulamit Manulis-Sasson. Regulatory interactions between quorum-sensing, auxin, cytokinin, and the Hrp regulon in relation to gall formation and epiphytic fitness of Pantoea agglomerans pv. gypsophilae. Molecular plant-microbe interactions : MPMI. 2009 Jul; 22(7):849-56. doi: 10.1094/mpmi-22-7-0849. [PMID: 19522567]
  • Rachel A Okrent, Matthew D Brooks, Mary C Wildermuth. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. The Journal of biological chemistry. 2009 Apr; 284(15):9742-54. doi: 10.1074/jbc.m806662200. [PMID: 19189963]
  • Jorge M C Mondego, Marcelo F Carazzolle, Gustavo G L Costa, Eduardo F Formighieri, Lucas P Parizzi, Johana Rincones, Carolina Cotomacci, Dirce M Carraro, Anderson F Cunha, Helaine Carrer, Ramon O Vidal, Raíssa C Estrela, Odalys García, Daniela P T Thomazella, Bruno V de Oliveira, Acássia Bl Pires, Maria Carolina S Rio, Marcos Renato R Araújo, Marcos H de Moraes, Luis A B Castro, Karina P Gramacho, Marilda S Gonçalves, José P Moura Neto, Aristóteles Góes Neto, Luciana V Barbosa, Mark J Guiltinan, Bryan A Bailey, Lyndel W Meinhardt, Julio Cm Cascardo, Gonçalo A G Pereira. A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao. BMC genomics. 2008 Nov; 9(?):548. doi: 10.1186/1471-2164-9-548. [PMID: 19019209]
  • Ko Hirano, Koichiro Aya, Tokunori Hobo, Hitoshi Sakakibara, Mikiko Kojima, Rosalyn Angeles Shim, Yasuko Hasegawa, Miyako Ueguchi-Tanaka, Makoto Matsuoka. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant & cell physiology. 2008 Oct; 49(10):1429-50. doi: 10.1093/pcp/pcn123. [PMID: 18718932]
  • Gavin Reineke, Bernadette Heinze, Jan Schirawski, Hermann Buettner, Regine Kahmann, Christoph W Basse. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular plant pathology. 2008 May; 9(3):339-55. doi: 10.1111/j.1364-3703.2008.00470.x. [PMID: 18705875]
  • Mandira Malhotra, Sheela Srivastava. An ipdC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion. Antonie van Leeuwenhoek. 2008 May; 93(4):425-33. doi: 10.1007/s10482-007-9207-x. [PMID: 17952626]
  • Anna N Stepanova, Joyce Robertson-Hoyt, Jeonga Yun, Larissa M Benavente, De-Yu Xie, Karel Dolezal, Alexandra Schlereth, Gerd Jürgens, Jose M Alonso. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008 Apr; 133(1):177-91. doi: 10.1016/j.cell.2008.01.047. [PMID: 18394997]
  • Klaus Palme, Ferenc Nagy. A new gene for auxin synthesis. Cell. 2008 Apr; 133(1):31-2. doi: 10.1016/j.cell.2008.03.014. [PMID: 18394986]
  • Britta Ehlert, Mark Aurel Schöttler, Gilbert Tischendorf, Jutta Ludwig-Müller, Ralph Bock. The paramutated SULFUREA locus of tomato is involved in auxin biosynthesis. Journal of experimental botany. 2008; 59(13):3635-47. doi: 10.1093/jxb/ern213. [PMID: 18757490]
  • S Pollmann, A Müller, E W Weiler. Many roads lead to 'auxin': of nitrilases, synthases, and amidases. Plant biology (Stuttgart, Germany). 2006 May; 8(3):326-33. doi: 10.1055/s-2006-924075. [PMID: 16807824]
  • Elena Fedorova, Francisco J Redondo, Tomokazu Koshiba, José J Pueyo, M Rosario de Felipe, M Mercedes Lucas. Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones. Molecular plant-microbe interactions : MPMI. 2005 May; 18(5):405-13. doi: 10.1094/mpmi-18-0405. [PMID: 15915639]
  • Wei Wang, Bin Qiu, Xueqin Xu, Lan Zhang, Guonan Chen. Separation and determination of L-tryptophan and its metabolites by capillary micellar electrokinetic chromatography with amperometric detection. Electrophoresis. 2005 Feb; 26(4-5):903-910. doi: 10.1002/elps.200406099. [PMID: 15714546]
  • Sherry LeClere, Rebekah A Rampey, Bonnie Bartel. IAR4, a gene required for auxin conjugate sensitivity in Arabidopsis, encodes a pyruvate dehydrogenase E1alpha homolog. Plant physiology. 2004 Jun; 135(2):989-99. doi: 10.1104/pp.104.040519. [PMID: 15173569]
  • Elena Sergeeva, Anton Liaimer, Birgitta Bergman. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 2002 Jun; 215(2):229-38. doi: 10.1007/s00425-002-0749-x. [PMID: 12029472]
  • K Yagi, T Chujo, H Nojiri, T Omori, M Nishiyama, H Yamane. Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum FS. Bioscience, biotechnology, and biochemistry. 2001 May; 65(5):1265-9. doi: 10.1271/bbb.65.1265. [PMID: 11440156]
  • J Normanly, B Bartel. Redundancy as a way of life - IAA metabolism. Current opinion in plant biology. 1999 Jun; 2(3):207-13. doi: 10.1016/s1369-5266(99)80037-5. [PMID: 10375566]
  • B Poeggeler, M A Pappolla, R Hardeland, A Rassoulpour, P S Hodgkins, P Guidetti, R Schwarcz. Indole-3-propionate: a potent hydroxyl radical scavenger in rat brain. Brain research. 1999 Jan; 815(2):382-8. doi: 10.1016/s0006-8993(98)01027-0. [PMID: 9878843]
  • A El Sawalhy, J R Seed, J E Hall, H El Attar. Increased excretion of aromatic amino acid catabolites in animals infected with Trypanosoma brucei evansi. The Journal of parasitology. 1998 Jun; 84(3):469-73. doi: . [PMID: 9645841]
  • Y Y Tam, J Normanly. Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. Journal of chromatography. A. 1998 Mar; 800(1):101-8. doi: 10.1016/s0021-9673(97)01051-0. [PMID: 9561757]
  • G Biagini, E M Pich, C Carani, P Marrama, J A Gustafsson, K Fuxe, L F Agnati. Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression. Biological psychiatry. 1993 May; 33(10):712-9. doi: 10.1016/0006-3223(93)90121-s. [PMID: 8353166]
  • J Koga, T Adachi, H Hidaka. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular & general genetics : MGG. 1991 Apr; 226(1-2):10-6. doi: 10.1007/bf00273581. [PMID: 2034209]
  • P Russi, V Carlà, F Moroni. Indolpyruvic acid administration increases the brain content of kynurenic acid. Is this a new avenue to modulate excitatory amino acid receptors in vivo?. Biochemical pharmacology. 1989 Aug; 38(15):2405-9. doi: 10.1016/0006-2952(89)90083-x. [PMID: 2547379]
  • J E Hall, J R Seed. Increased urinary excretion of aromatic amino acid catabolites by Microtus montanus chronically infected with Trypanosoma brucei gambiense. Comparative biochemistry and physiology. B, Comparative biochemistry. 1984; 77(4):755-60. doi: 10.1016/0305-0491(84)90309-2. [PMID: 6375946]
  • W Snedden, C S Mellor, J R Martin. Hypertryptophanemia and indoleketonuria in two mentally subnormal siblings. The New England journal of medicine. 1982 Nov; 307(22):1405. doi: 10.1056/nejm198211253072219. [PMID: 7133092]
  • . . . . doi: . [PMID: 22155950]
  • . . . . doi: . [PMID: 22447967]
  • . . . . doi: . [PMID: 18394996]