cis-3-Hexenyl acetate (BioDeep_00000014753)
Secondary id: BioDeep_00000021025, BioDeep_00000868738, BioDeep_00001868121, BioDeep_00001890559
human metabolite Volatile Flavor Compounds
代谢物信息卡片
化学式: C8H14O2 (142.09937440000002)
中文名称: 顺乙酸-3-己烯酯, 顺式-3-己烯乙酸酯, 乙酸叶醇酯
谱图信息:
最多检出来源 Homo sapiens(natural_products) 0.11%
分子结构信息
SMILES: C(C/C=C\CC)OC(=O)C
InChI: InChI=1S/C8H14O2/c1-3-4-5-6-7-10-8(2)9/h4-5H,3,6-7H2,1-2H3/b5-4-
描述信息
cis-3-Hexenyl acetate, also known as (Z)-3-hexenol acetic acid or acetate(3Z)-3-hexen-1-ol, is an acetate ester that results from the formal condensation of acetic acid with (Z)-hex-3-en-1-ol. It has a role as a metabolite. It is an acetate ester and an olefinic compound. It derives from a (Z)-hex-3-en-1-ol and an acetic acid. It belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). cis-3-Hexenyl acetate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. cis-3-Hexenyl acetate is a sweet, apple, and banana tasting compound. cis-3-Hexenyl acetate has been detected, but not quantified, in several different foods, such as tamarinds, sunburst squash (pattypan squash), carobs, pepper (Capsicum baccatum), and swedes.
Present in green tea and fruit volatiles. Flavouring component. cis-3-Hexenyl acetate is found in many foods, some of which are skunk currant, spirulina, dill, and green vegetables.
同义名列表
44 个代谢物同义名
Acetic acid cis-3-hexenyl ester; (3Z)-Hex-3-en-1-yl acetic acid; (Z)-3-Hexen-1-yl acetic acid; cis-3-Hexen-1-yl acetic acid; cis-3-Hexenyl ethanoic acid; (Z)-Hex-3-enyl acetic acid; (3Z)-Hex-3-en-1-yl acetate; 1-Acetate(3Z)-3-hexen-1-ol; cis-3-Hexenyl acetic acid; (3Z)-3-Hexen-1-yl acetate; (Z)-3-Hexen-1-yl, acetate; cis-3-Hexen-1-ol, acetate; cis-Hex-3-en-1-yl acetate; (Z)-3-Hexenyl acetic acid; (Z)-3-Hexenol acetic acid; (Z)-Hex-3-en-1-yl acetate; cis-3-Hexen-1-yl acetate; cis-3-Hexen-1-ol acetate; (Z)-3-Hexen-1-yl acetate; (Z)-3-Hexen-1-ol acetate; Acetate(3Z)-3-hexen-1-ol; (3Z)-Hexen-1-yl acetate; cis-3-Hexenyl-1-acetate; Z-Hex-3-en-1-yl acetate; Acetate(Z)-3-hexen-1-ol; cis-3-Hexenyl ethanoate; 3-Hexenol acetate, cis; (Z)-Hex-3-enyl acetate; cis-Hex-3-enyl acetate; 3Z-Hexenyl acetic acid; (3Z)-3-Hexenyl acetate; cis-3-Hexenol acetate; (Z)-3-Hexenyl acetate; Hex-3(Z)-enyl acetate; (Z)-3-Hexenol acetate; cis-3-Hexenyl acetate; 3Z-Hexen-1-ol acetate; 3(Z)-Hexenyl acetate; 3Z-Hexenyl acetate; 3-Hexenyl acetate; 3-Hexenylacetate; FEMA 3171; (Z)-3-Hexen-1-ol acetate; cis-3-Hexenyl acetate
数据库引用编号
16 个数据库交叉引用编号
- ChEBI: CHEBI:61316
- KEGG: C19757
- PubChem: 5363388
- HMDB: HMDB0040215
- Metlin: METLIN46180
- ChEMBL: CHEMBL2251454
- MetaCyc: CPD-12846
- KNApSAcK: C00048964
- foodb: FDB019927
- chemspider: 4515742
- CAS: 1708-82-3
- CAS: 3681-71-8
- PubChem: 135626224
- LipidMAPS: LMFA07010181
- LOTUS: LTS0086272
- wikidata: Q81984400
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
121 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(117)
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
9(S)-HPOTE ⟶ (2E,6Z)-non-2,6-dienal + 9-oxononanoate
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
COVID-19 Disease Map(0)
PharmGKB(0)
7 个相关的物种来源信息
- 260130 - Acca sellowiana:
- 1548133 - Bistorta manshuriensis: 10.1002/CBDV.201100326
- 9606 - Homo sapiens: -
- 105884 - Lonicera japonica: 10.1186/1471-2164-13-195
- 3879 - Medicago sativa: 10.1016/S0031-9422(97)00119-2
- 4146 - Olea europaea: 10.1016/S0031-9422(97)00730-9
- 97693 - Quercus agrifolia: 10.1016/S0031-9422(00)84047-9
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wei-Zhen Li, Wen-Juan Kang, Jing-Jiang Zhou, Su-Qin Shang, Shang-Li Shi. The antennal transcriptome analysis and characterizations of odorant-binding proteins in Megachile saussurei (Hymenoptera, Megachilidae).
BMC genomics.
2023 Dec; 24(1):781. doi:
10.1186/s12864-023-09871-8
. [PMID: 38102559] - Willem Desmedt, Maarten Ameye, Osvaldo Filipe, Evelien De Waele, Filip Van Nieuwerburgh, Dieter Deforce, Lieven Van Meulebroek, Lynn Vanhaecke, Tina Kyndt, Monica Höfte, Kris Audenaert. Molecular analysis of broad-spectrum induced resistance in rice by the green leaf volatile Z-3-hexenyl acetate.
Journal of experimental botany.
2023 11; 74(21):6804-6819. doi:
10.1093/jxb/erad338
. [PMID: 37624920] - Shuangshuang Wang, Honglian Gu, Sizhou Chen, Yuchen Li, Jiazhi Shen, Yu Wang, Zhaotang Ding. Proteomics and phosphoproteomics reveal the different drought-responsive mechanisms of priming with (Z)-3-hexenyl acetate in two tea cultivars.
Journal of proteomics.
2023 10; 289(?):105010. doi:
10.1016/j.jprot.2023.105010
. [PMID: 37797878] - Natalie M Aguirre, John M Grunseich, Andreísa F Lima, Stephen D Davis, Anjel M Helms. Plant communication across different environmental contexts suggests a role for stomata in volatile perception.
Plant, cell & environment.
2023 07; 46(7):2017-2030. doi:
10.1111/pce.14601
. [PMID: 37165940] - Jiali Wang, Jiaqi Wei, Ting Yi, Ya-Ya Li, Tian Xu, Li Chen, Hanhong Xu. A green leaf volatile, (Z)-3-hexenyl-acetate, mediates differential oviposition by Spodoptera frugiperda on maize and rice.
BMC biology.
2023 06; 21(1):140. doi:
10.1186/s12915-023-01642-x
. [PMID: 37337192] - Lingjie Zhang, Kang Zhou, Maohao Wang, Rui Li, Xinlong Dai, Yajun Liu, Xiaolan Jiang, Tao Xia, Liping Gao. The Functional Characterization of Carboxylesterases Involved in the Degradation of Volatile Esters Produced in Strawberry Fruits.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010383
. [PMID: 36613824] - Abhinav K Maurya, Leila Pazouki, Christopher J Frost. Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth.
Journal of chemical ecology.
2022 Apr; 48(4):441-454. doi:
10.1007/s10886-022-01359-1
. [PMID: 35394556] - Saoussen Ben-Abdallah, Luis A Cáceres, Zhiling Wang, B Justin Renaud, Mokhtar Lachâal, Najoua Karray-Bouraoui, Abdelali Hannoufa, Ian M Scott. Host plant defenses of black (Solanum nigrum L.) and red nightshade ( Solanum villosum Mill.) against specialist Solanaceae herbivore Leptinotarsa decemlineata (Say).
Archives of insect biochemistry and physiology.
2019 Jun; 101(2):e21550. doi:
10.1002/arch.21550
. [PMID: 30945781] - Laila Gasmi, María Martínez-Solís, Ada Frattini, Meng Ye, María Carmen Collado, Ted C J Turlings, Matthias Erb, Salvador Herrero. Can Herbivore-Induced Volatiles Protect Plants by Increasing the Herbivores' Susceptibility to Natural Pathogens?.
Applied and environmental microbiology.
2019 01; 85(1):. doi:
10.1128/aem.01468-18
. [PMID: 30366995] - Amanda St Onge, Héctor A Cárcamo, Maya L Evenden. Evaluation of Semiochemical-Baited Traps for Monitoring the Pea Leaf Weevil, Sitona lineatus (Coleoptera: Curculionidae) in Field Pea Crops.
Environmental entomology.
2018 02; 47(1):93-106. doi:
10.1093/ee/nvx180
. [PMID: 29186376] - Adriano Lima, José Alberto Pereira, Ilton Baraldi, Ricardo Malheiro. Cooking impact in color, pigments and volatile composition of grapevine leaves (Vitis vinifera L. var. Malvasia Fina and Touriga Franca).
Food chemistry.
2017 Apr; 221(?):1197-1205. doi:
10.1016/j.foodchem.2016.11.039
. [PMID: 27979078] - Z-J Xin, X-W Li, L Bian, X-L Sun. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.
Bulletin of entomological research.
2017 Feb; 107(1):77-84. doi:
10.1017/s000748531600064x
. [PMID: 27444230] - Song Cao, Yang Liu, Mengbo Guo, Guirong Wang. A Conserved Odorant Receptor Tuned to Floral Volatiles in Three Heliothinae Species.
PloS one.
2016; 11(5):e0155029. doi:
10.1371/journal.pone.0155029
. [PMID: 27163122] - Shu-Wei Yan, Jin Zhang, Yang Liu, Guo-Qing Li, Gui-Rong Wang. An olfactory receptor from Apolygus lucorum (Meyer-Dur) mainly tuned to volatiles from flowering host plants.
Journal of insect physiology.
2015 Aug; 79(?):36-41. doi:
10.1016/j.jinsphys.2015.06.002
. [PMID: 26050917] - Salvatore Cozzolino, Silvia Fineschi, Maria Litto, Giovanni Scopece, Judith Trunschke, Florian P Schiestl. Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles?.
Journal of chemical ecology.
2015 Jul; 41(7):622-30. doi:
10.1007/s10886-015-0597-3
. [PMID: 26085479] - Maarten Ameye, Kris Audenaert, Nathalie De Zutter, Kathy Steppe, Lieven Van Meulebroek, Lynn Vanhaecke, David De Vleesschauwer, Geert Haesaert, Guy Smagghe. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production.
Plant physiology.
2015 Apr; 167(4):1671-84. doi:
10.1104/pp.15.00107
. [PMID: 25713338] - Nicole K Richards-Henderson, Andrew T Pham, Benjamin B Kirk, Cort Anastasio. Secondary organic aerosol from aqueous reactions of green leaf volatiles with organic triplet excited states and singlet molecular oxygen.
Environmental science & technology.
2015 Jan; 49(1):268-76. doi:
10.1021/es503656m
. [PMID: 25426693] - Boshra Azadi, Yousef Sohrabi. Chemical composition of Silene morganae Freyn volatile oil.
Natural product research.
2015; 29(9):791-4. doi:
10.1080/14786419.2014.980251
. [PMID: 25422069] - József Vuts, Lorenzo Furlan, Éva Bálintné Csonka, Christine M Woodcock, John C Caulfield, Patrick Mayon, John A Pickett, Michael A Birkett, Miklós Tóth. Development of a female attractant for the click beetle pest Agriotes brevis.
Pest management science.
2014 Apr; 70(4):610-4. doi:
10.1002/ps.3589
. [PMID: 23749439] - Zhang Sufang, Wei Jianing, Zhang Zhen, Kang Le. Rhythms of volatiles release from healthy and insect-damaged Phaseolus vulgaris.
Plant signaling & behavior.
2013 Oct; 8(10):doi: 10.4161/psb.25759. doi:
10.4161/psb.25759
. [PMID: 23887493] - J Zhang, C C Liu, S W Yan, Y Liu, M B Guo, S L Dong, G R Wang. An odorant receptor from the common cutworm (Spodoptera litura) exclusively tuned to the important plant volatile cis-3-hexenyl acetate.
Insect molecular biology.
2013 Aug; 22(4):424-32. doi:
10.1111/imb.12033
. [PMID: 23679893] - Silke Allmann, Anna Späthe, Sonja Bisch-Knaden, Mario Kallenbach, Andreas Reinecke, Silke Sachse, Ian T Baldwin, Bill S Hansson. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition.
eLife.
2013 May; 2(?):e00421. doi:
10.7554/elife.00421
. [PMID: 23682312] - Daihua Hu, Juntao Feng, Zhihui Wang, Hua Wu, Xing Zhang. Effect of nine plant volatiles in the field on the sex pheromones of Leguminivora glycinivorella.
Natural product communications.
2013 Mar; 8(3):393-6. doi:
"
. [PMID: 23678819] - Simon A Zebelo, Kenji Matsui, Rika Ozawa, Massimo E Maffei. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.
Plant science : an international journal of experimental plant biology.
2012 Nov; 196(?):93-100. doi:
10.1016/j.plantsci.2012.08.006
. [PMID: 23017903] - D M Suckling, A M Twidle, A R Gibb, L M Manning, V J Mitchell, T E S Sullivan, S L Wee, A M El-Sayed. Volatiles from apple trees infested with light brown apple moth larvae attract the parasitoid Dolichogenidia tasmanica.
Journal of agricultural and food chemistry.
2012 Sep; 60(38):9562-6. doi:
10.1021/jf302874g
. [PMID: 22950817] - Mahabaleshwar Hegde, Janser N Oliveira, Joao G da Costa, Elisa Loza-Reyes, Ervino Bleicher, Antonio E G Santana, John C Caulfield, Patrick Mayon, Sarah Y Dewhirst, Toby J A Bruce, John A Pickett, Michael A Birkett. Aphid antixenosis in cotton is activated by the natural plant defence elicitor cis-jasmone.
Phytochemistry.
2012 Jun; 78(?):81-8. doi:
10.1016/j.phytochem.2012.03.004
. [PMID: 22516741] - J Daniel Hare, Jia J Sun. Production of induced volatiles by Datura wrightii in response to damage by insects: effect of herbivore species and time.
Journal of chemical ecology.
2011 Jul; 37(7):751-64. doi:
10.1007/s10886-011-9985-5
. [PMID: 21691808] - Zsofia Szendrei, Anne Averill, Hans Alborn, Cesar Rodriguez-Saona. Identification and field evaluation of attractants for the cranberry weevil, Anthonomus musculus Say.
Journal of chemical ecology.
2011 Apr; 37(4):387-97. doi:
10.1007/s10886-011-9938-z
. [PMID: 21445566] - Mirian Fernandes Furtado Michereff, Raúl Alberto Laumann, Miguel Borges, Miguel Michereff-Filho, Ivone Rezende Diniz, Austeclínio Lopes Farias Neto, Maria Carolina Blassioli Moraes. Volatiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars.
Journal of chemical ecology.
2011 Mar; 37(3):273-85. doi:
10.1007/s10886-011-9917-4
. [PMID: 21318397] - Nasser Said Mandour, Yooichi Kainoh, Rika Ozawa, Masayoshi Uefune, Junji Takabayashi. Effects of time after last herbivory on the attraction of corn plants infested with common arymworms to a parasitic wasp Cotesia kariyai.
Journal of chemical ecology.
2011 Mar; 37(3):267-72. doi:
10.1007/s10886-011-9915-6
. [PMID: 21331570] - Xia Wang, Jing Xu, You-Lian Shen, Feng-Ying Liu, Yong-Jun Du. [Electroantennogram responses of Maruca testulalis (Lepidoptera: Pyralidae) to plant volatiles and sex pheromone].
Ying yong sheng tai xue bao = The journal of applied ecology.
2009 Aug; 20(8):1973-9. doi:
. [PMID: 19947220]
- Anna Fontana, Michael Reichelt, Stefan Hempel, Jonathan Gershenzon, Sybille B Unsicker. The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L.
Journal of chemical ecology.
2009 Jul; 35(7):833-43. doi:
10.1007/s10886-009-9654-0
. [PMID: 19568812] - Gen-ichiro Arimura, Sabrina Köpke, Maritta Kunert, Veronica Volpe, Anja David, Peter Brand, Paulina Dabrowska, Massimo E Maffei, Wilhelm Boland. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission.
Plant physiology.
2008 Mar; 146(3):965-73. doi:
10.1104/pp.107.111088
. [PMID: 18165324] - Christopher J Frost, Mark C Mescher, Christopher Dervinis, John M Davis, John E Carlson, Consuelo M De Moraes. Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate.
The New phytologist.
2008; 180(3):722-734. doi:
10.1111/j.1469-8137.2008.02599.x
. [PMID: 18721163] - S Ulland, E Ian, R Mozuraitis, A-K Borg-Karlson, R Meadow, H Mustaparta. Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae).
Chemical senses.
2008 Jan; 33(1):35-46. doi:
10.1093/chemse/bjm061
. [PMID: 17846100] - L Chen, H Y Fadamiro. Differential electroantennogram response of females and males of two parasitoid species to host-related green leaf volatiles and inducible compounds.
Bulletin of entomological research.
2007 Oct; 97(5):515-22. doi:
10.1017/s0007485307005172
. [PMID: 17916269] - Francisco T Arroyo, Javier Moreno, Paula Daza, Lidiya Boianova, Fernando Romero. Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum.
Journal of agricultural and food chemistry.
2007 Jul; 55(14):5701-7. doi:
10.1021/jf0703957
. [PMID: 17567029] - Jürgen Engelberth, Irmgard Seidl-Adams, Jack C Schultz, James H Tumlinson. Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays.
Molecular plant-microbe interactions : MPMI.
2007 Jun; 20(6):707-16. doi:
10.1094/mpmi-20-6-0707
. [PMID: 17555278] - Takeshi Shimoda, Rika Ozawa, Kota Sano, Eizi Yano, Junji Takabayashi. The involvement of volatile infochemicals from spider mites and from food-plants in prey location of the generalist predatory mite Neoseiulus californicus.
Journal of chemical ecology.
2005 Sep; 31(9):2019-32. doi:
10.1007/s10886-005-6075-6
. [PMID: 16132210] - Carolina E Reisenman, Thomas A Christensen, John G Hildebrand. Chemosensory selectivity of output neurons innervating an identified, sexually isomorphic olfactory glomerulus.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2005 Aug; 25(35):8017-26. doi:
10.1523/jneurosci.1314-05.2005
. [PMID: 16135759] - Jian-Yu Deng, Hong-Yi Wei, Yong-Ping Huang, Jia-Wei Du. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants.
Journal of chemical ecology.
2004 Oct; 30(10):2037-45. doi:
10.1023/b:joec.0000045593.62422.73
. [PMID: 15609835] - Alexander Alexeevich Nikonov, Guihong Peng, Galina Tsurupa, Walter Soares Leal. Unisex pheromone detectors and pheromone-binding proteins in scarab beetles.
Chemical senses.
2002 Jul; 27(6):495-504. doi:
10.1093/chemse/27.6.495
. [PMID: 12142325] - J Horiuchi, G Arimura, R Ozawa, T Shimoda, J Takabayashi, T Nishioka. Exogenous ACC enhances volatiles production mediated by jasmonic acid in lima bean leaves.
FEBS letters.
2001 Dec; 509(2):332-6. doi:
10.1016/s0014-5793(01)03194-5
. [PMID: 11741612] - A A Nikonov, J T Valiyaveettil, W S Leal. A photoaffinity-labeled green leaf volatile compound 'tricks' highly selective and sensitive insect olfactory receptor neurons.
Chemical senses.
2001 Jan; 26(1):49-54. doi:
10.1093/chemse/26.1.49
. [PMID: 11124215] - G V Reddy, A Guerrero. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata.
Journal of agricultural and food chemistry.
2000 Dec; 48(12):6025-9. doi:
10.1021/jf0008689
. [PMID: 11312775]