3-Dehydrosphinganine (BioDeep_00000005041)

 

Secondary id: BioDeep_00000634157, BioDeep_00001869010

human metabolite Endogenous


代谢物信息卡片


(+-)-Isomer OF ketodihydrosphingosine

化学式: C18H37NO2 (299.2824)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(otcml) 8.43%

分子结构信息

SMILES: CCCCCCCCCCCCCCCC(=O)C(CO)N
InChI: InChI=1S/C18H37NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-18(21)17(19)16-20/h17,20H,2-16,19H2,1H3

描述信息

3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2. [HMDB]. 3-Dehydrosphinganine is found in many foods, some of which are beech nut, muskmelon, broccoli, and groundcherry.
3-Dehydrosphinganine is an intermediate in the metabolism of Glycosphingolipids. It is a substrate for Serine palmitoyltransferase 1 and Serine palmitoyltransferase 2.

同义名列表

12 个代谢物同义名

(+-)-Isomer OF ketodihydrosphingosine; (2S)-2-Amino-1-hydroxyoctadecan-3-one; (S)-Isomer OF ketodihydrosphingosine; 1-Hydroxy-2-amino-3-oxo-octadecane; 2-amino-1-hydroxyoctadecan-3-one; 2-Amino-1-hydroxy-3-octadecanone; 3-Ketodihydrosphingosine; 3-Dehydro-D-sphinganine; Ketodihydrosphingosine; 3-dehydrosphinganine; 3-ketosphinganine; KDHS



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(1)

BioCyc(1)

PlantCyc(0)

代谢反应

298 个相关的代谢反应过程信息。

Reactome(15)

BioCyc(3)

WikiPathways(7)

Plant Reactome(246)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(27)

  • Sphingolipid Metabolism: Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
  • Gaucher Disease: Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
  • Globoid Cell Leukodystrophy: Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
  • Metachromatic Leukodystrophy (MLD): Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
  • Fabry Disease: Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
  • Krabbe Disease: Glucosylceramide (d18:1/18:0) + Water ⟶ Ceramide (d18:1/18:0) + D-Glucose
  • Biosynthesis of Unsaturated Fatty Acids: Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
  • Biosynthesis of Unsaturated Fatty Acids (Tetracosanoyl-CoA): Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
  • Biosynthesis of Unsaturated Fatty Acids (Docosanoyl-CoA): Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
  • Biosynthesis of Unsaturated Fatty Acids (Icosanoyl-CoA): Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
  • Biosynthesis of Unsaturated Fatty Acids (Stearoyl-CoA): Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
  • Sphingolipid Metabolism: L-Serine + Palmityl-CoA ⟶ 3-Dehydrosphinganine + Carbon dioxide
  • Sphingolipid Metabolism: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Gaucher Disease: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Globoid Cell Leukodystrophy: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Metachromatic Leukodystrophy (MLD): Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Fabry Disease: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Krabbe Disease: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Sphingolipid Metabolism: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Sphingolipid Metabolism: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Sphingolipid Metabolism: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Sphingolipid Metabolism: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Gaucher Disease: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Globoid Cell Leukodystrophy: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Metachromatic Leukodystrophy (MLD): Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Fabry Disease: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate
  • Krabbe Disease: Galactosylceramide (d18:1/16:0) + Phosphoadenosine phosphosulfate ⟶ 3-O-Sulfogalactosylceramide (d18:1/24:0) + Adenosine 3',5'-diphosphate

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ATF4, CTNNB1, DNALI1, HSD17B1, KSR1, PIWIL1, TSC1, TSC2, VDR, VEGFA
Peripheral membrane protein 5 CLTB, HSD17B6, KSR1, TSC1, TSC2
Endoplasmic reticulum membrane 7 DEGS2, HSP90B1, KDSR, KSR1, SPTLC1, SPTLC2, SPTSSA
Nucleus 9 ATF4, CTNNB1, DNMT3B, HSP90B1, PIWIL1, TSC1, TSC2, VDR, VEGFA
cytosol 9 ATF4, CLTB, CTNNB1, HSD17B1, HSP90B1, KSR1, TSC1, TSC2, VDR
trans-Golgi network 1 CLTB
centrosome 2 ATF4, CTNNB1
nucleoplasm 4 ATF4, CTNNB1, DNMT3B, VDR
RNA polymerase II transcription regulator complex 2 ATF4, VDR
Cell membrane 4 ATF4, C5AR1, CTNNB1, KSR1
Cytoplasmic side 1 CLTB
lamellipodium 2 CTNNB1, TSC1
ruffle membrane 1 KSR1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 4 C5AR1, DEGS2, KDSR, SPTSSA
Synapse 1 CTNNB1
cell cortex 2 CTNNB1, TSC1
cell junction 1 CTNNB1
cell surface 1 VEGFA
glutamatergic synapse 1 CTNNB1
Golgi apparatus 2 TSC2, VEGFA
lysosomal membrane 2 TSC1, TSC2
presynaptic membrane 1 CTNNB1
smooth endoplasmic reticulum 1 HSP90B1
Cytoplasm, cytosol 2 TSC1, TSC2
Lysosome 1 TSC2
plasma membrane 4 C5AR1, CLTB, CTNNB1, TSC1
synaptic vesicle membrane 1 CLTB
Membrane 9 CTNNB1, HSP90B1, KDSR, KSR1, SPTLC1, SPTLC2, TSC1, TSC2, VEGFA
basolateral plasma membrane 2 C5AR1, CTNNB1
extracellular exosome 2 CTNNB1, HSP90B1
Lysosome membrane 2 TSC1, TSC2
Lumenal side 1 HSD17B6
endoplasmic reticulum 7 HSD17B6, HSP90B1, KDSR, KSR1, SPTLC1, SPTSSA, VEGFA
extracellular space 2 KDSR, VEGFA
perinuclear region of cytoplasm 4 CTNNB1, HSP90B1, TSC1, TSC2
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 2 CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
protein-containing complex 5 ATF4, CTNNB1, HSP90B1, KSR1, TSC1
intracellular membrane-bounded organelle 3 CLTB, HSD17B6, KSR1
Microsome membrane 1 HSD17B6
filopodium 1 DNALI1
postsynaptic density 2 TSC1, TSC2
Secreted 1 VEGFA
extracellular region 2 HSP90B1, VEGFA
Single-pass membrane protein 2 SPTLC1, SPTLC2
transcription regulator complex 1 CTNNB1
Cell projection, cilium 1 DNALI1
ciliary membrane 1 CLTB
motile cilium 1 DNALI1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 ATF4
Secreted, extracellular space, extracellular matrix 1 VEGFA
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
cytoplasmic vesicle 1 C5AR1
Wnt signalosome 1 CTNNB1
midbody 1 HSP90B1
apical part of cell 2 C5AR1, CTNNB1
cell-cell junction 1 CTNNB1
postsynaptic membrane 1 CTNNB1
Cell projection, ruffle membrane 1 KSR1
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 2 CTNNB1, HSP90B1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
collagen-containing extracellular matrix 1 HSP90B1
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
axoneme 1 DNALI1
nuclear speck 1 ATF4
receptor complex 1 VDR
neuron projection 1 ATF4
cilium 1 DNALI1
chromatin 2 ATF4, VDR
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
spindle pole 1 CTNNB1
Cell projection, cilium, flagellum 1 DNALI1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
sperm flagellum 1 DNALI1
Endomembrane system 1 CTNNB1
Lipid droplet 1 TSC1
Cytoplasmic vesicle membrane 1 CLTB
Melanosome 1 HSP90B1
Nucleus speckle 1 ATF4
euchromatin 1 CTNNB1
sperm plasma membrane 1 HSP90B1
secretory granule membrane 1 C5AR1
endoplasmic reticulum lumen 1 HSP90B1
platelet alpha granule lumen 1 VEGFA
chromatoid body 1 PIWIL1
beta-catenin-TCF complex 1 CTNNB1
P granule 1 PIWIL1
clathrin-coated endocytic vesicle 1 CLTB
Dynein axonemal particle 1 DNALI1
9+2 motile cilium 1 DNALI1
dynein complex 1 DNALI1
presynaptic active zone cytoplasmic component 1 CTNNB1
Sarcoplasmic reticulum lumen 1 HSP90B1
protein folding chaperone complex 1 TSC1
serine palmitoyltransferase complex 3 SPTLC1, SPTLC2, SPTSSA
protein-DNA complex 1 CTNNB1
clathrin coat of coated pit 1 CLTB
dendrite membrane 1 ATF4
Membrane, coated pit 1 CLTB
catenin complex 1 CTNNB1
nuclear periphery 1 ATF4
clathrin vesicle coat 1 CLTB
clathrin coat of trans-Golgi network vesicle 1 CLTB
endocytic vesicle lumen 1 HSP90B1
catalytic complex 1 DNMT3B
endoplasmic reticulum chaperone complex 1 HSP90B1
clathrin coat 1 CLTB
postsynaptic endocytic zone cytoplasmic component 1 CLTB
presynaptic endocytic zone membrane 1 CLTB
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
ATF4-CREB1 transcription factor complex 1 ATF4
ATF1-ATF4 transcription factor complex 1 ATF4
CHOP-ATF4 complex 1 ATF4
Lewy body core 1 ATF4
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
TSC1-TSC2 complex 2 TSC1, TSC2
dense body 1 PIWIL1


文献列表

  • Jihui Ren, Justin Snider, Michael V Airola, Aaron Zhong, Nadia A Rana, Lina M Obeid, Yusuf A Hannun. Quantification of 3-ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast Saccharomyces cerevisiae. Journal of lipid research. 2018 01; 59(1):162-170. doi: 10.1194/jlr.d078535. [PMID: 29092960]
  • Christer S Ejsing, Mesut Bilgin, Andreu Fabregat. Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring. PloS one. 2015; 10(12):e0144817. doi: 10.1371/journal.pone.0144817. [PMID: 26660097]
  • Amin A Momin, Hyejung Park, Brent J Portz, Christopher A Haynes, Rebecca L Shaner, Samuel L Kelly, I King Jordan, Jr Alfred H Merrill. A method for visualization of 'omic' datasets for sphingolipid metabolism to predict potentially interesting differences. Journal of lipid research. 2011 Jun; 52(6):1073-1083. doi: 10.1194/jlr.m010454. [PMID: 21415121]
  • Agnieszka Błachnio-Zabielska, Piotr Zabielski, Marcin Baranowski, Jan Gorski. Aerobic training in rats increases skeletal muscle sphingomyelinase and serine palmitoyltransferase activity, while decreasing ceramidase activity. Lipids. 2011 Mar; 46(3):229-38. doi: 10.1007/s11745-010-3515-z. [PMID: 21181285]
  • Kathryn Bauerly, Calliandra Harris, Winyoo Chowanadisai, James Graham, Peter J Havel, Eskouhie Tchaparian, Mike Satre, Joel S Karliner, Robert B Rucker. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats. PloS one. 2011; 6(7):e21779. doi: 10.1371/journal.pone.0021779. [PMID: 21814553]
  • Leonardo Nimrichter, Marcio L Rodrigues. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Frontiers in microbiology. 2011; 2(?):212. doi: 10.3389/fmicb.2011.00212. [PMID: 22025918]
  • Kacee Sims, Christopher A Haynes, Samuel Kelly, Jeremy C Allegood, Elaine Wang, Amin Momin, Martina Leipelt, Donna Reichart, Christopher K Glass, M Cameron Sullards, Alfred H Merrill. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. The Journal of biological chemistry. 2010 Dec; 285(49):38568-79. doi: 10.1074/jbc.m110.170621. [PMID: 20876532]
  • Yanfeng Chen, Ying Liu, M Cameron Sullards, Alfred H Merrill. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromolecular medicine. 2010 Dec; 12(4):306-19. doi: 10.1007/s12017-010-8132-8. [PMID: 20680704]
  • Hyejung Park, Christopher A Haynes, Alison V Nairn, Michael Kulik, Stephen Dalton, Kelley Moremen, Alfred H Merrill. Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. Journal of lipid research. 2010 Mar; 51(3):480-9. doi: 10.1194/jlr.m000984. [PMID: 19786568]
  • Lide Arana, Patricia Gangoiti, Alberto Ouro, Miguel Trueba, Antonio Gómez-Muñoz. Ceramide and ceramide 1-phosphate in health and disease. Lipids in health and disease. 2010 Feb; 9(?):15. doi: 10.1186/1476-511x-9-15. [PMID: 20137073]
  • Anton Bahtiar, Takahiro Matsumoto, Takashi Nakamura, Motofusa Akiyama, Keiichiro Yogo, Norihiro Ishida-Kitagawa, Takuya Ogawa, Tatsuo Takeya. Identification of a novel L-serine analog that suppresses osteoclastogenesis in vitro and bone turnover in vivo. The Journal of biological chemistry. 2009 Dec; 284(49):34157-66. doi: 10.1074/jbc.m109.058933. [PMID: 19837662]
  • Sita D Gupta, Kenneth Gable, Gongshe Han, Anna Borovitskaya, Luke Selby, Teresa M Dunn, Jeffrey M Harmon. Tsc10p and FVT1: topologically distinct short-chain reductases required for long-chain base synthesis in yeast and mammals. Journal of lipid research. 2009 Aug; 50(8):1630-40. doi: 10.1194/jlr.m800580-jlr200. [PMID: 19141869]
  • Wen-Qiang Song, Yong-Mei Qin, Mihoko Saito, Tsuyoshi Shirai, François M Pujol, Alexander J Kastaniotis, J Kalervo Hiltunen, Yu-Xian Zhu. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif. Journal of experimental botany. 2009; 60(6):1839-48. doi: 10.1093/jxb/erp057. [PMID: 19286916]
  • Sarah T Pruett, Anatoliy Bushnev, Kerri Hagedorn, Madhura Adiga, Christopher A Haynes, M Cameron Sullards, Dennis C Liotta, Alfred H Merrill. Biodiversity of sphingoid bases ('sphingosines') and related amino alcohols. Journal of lipid research. 2008 Aug; 49(8):1621-39. doi: 10.1194/jlr.r800012-jlr200. [PMID: 18499644]
  • V Chigorno, E Negroni, M Nicolini, S Sonnino. Activity of 3-ketosphinganine synthase during differentiation and aging of neuronal cells in culture. Journal of lipid research. 1997 Jun; 38(6):1163-9. doi: . [PMID: 9215544]
  • N S Radin. Biosynthesis of the sphingoid bases: a provocation. Journal of lipid research. 1984 Dec; 25(13):1536-40. doi: ". [PMID: 6442338]
  • . . . . doi: . [PMID: 11726713]
  • . . . . doi: . [PMID: 21421810]