Kynurenic acid (BioDeep_00000001106)
Secondary id: BioDeep_00000398532, BioDeep_00000412666
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H7NO3 (189.0426)
中文名称: 1,4-二氢-4-氧喹啉-2-羧酸, 犬尿胺酸, 犬尿喹啉酸
谱图信息:
最多检出来源 Homo sapiens(feces) 19.97%
Last reviewed on 2024-06-28.
Cite this Page
Kynurenic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/kynurenic_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000001106). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C2C(=C1)C(=O)C=C(N2)C(=O)O
InChI: InChI=1S/C10H7NO3/c12-9-5-8(10(13)14)11-7-4-2-1-3-6(7)9/h1-5H,(H,11,12)(H,13,14)
描述信息
Kynurenic acid is a quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4. It has a role as a G-protein-coupled receptor agonist, a NMDA receptor antagonist, a nicotinic antagonist, a neuroprotective agent, a human metabolite and a Saccharomyces cerevisiae metabolite. It is a monohydroxyquinoline and a quinolinemonocarboxylic acid. It is a conjugate acid of a kynurenate.
Kynurenic Acid is under investigation in clinical trial NCT02340325 (FS2 Safety and Tolerability Study in Healthy Volunteers).
Kynurenic acid is a natural product found in Ephedra foeminea, Ephedra intermedia, and other organisms with data available.
Kynurenic acid is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (A3279, A3280)....
Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (PMID: 17062375 , 16088227). KYNA has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821).
Kynurenic acid (KYNA) is a well-known endogenous antagonist of the glutamate ionotropic excitatory amino acid receptors N-methyl-D-aspartate (NMDA), alphaamino-3-hydroxy-5-methylisoxazole-4-propionic acid and kainate receptors and of the nicotine cholinergic subtype alpha 7 receptors. KYNA neuroprotective and anticonvulsive activities have been demonstrated in animal models of neurodegenerative diseases. Because of KYNAs neuromodulatory character, its involvement has been speculatively linked to the pathogenesis of a number of neurological conditions including those in the ageing process. Different patterns of abnormalities in various stages of KYNA metabolism in the CNS have been reported in Alzheimers disease, Parkinsons disease and Huntingtons disease. In HIV-1-infected patients and in patients with Lyme neuroborreliosis a marked rise of KYNA metabolism was seen. In the ageing process KYNA metabolism in the CNS of rats shows a characteristic pattern of changes throughout the life span. A marked increase of the KYNA content in the CNS occurs before the birth, followed by a dramatic decline on the day of birth. A low activity was seen during ontogenesis, and a slow and progressive enhancement occurs during maturation and ageing. This remarkable profile of KYNA metabolism alterations in the mammalian brain has been suggested to result from the development of the organisation of neuronal connections and synaptic plasticity, development of receptor recognition sites, maturation and ageing. There is significant evidence that KYNA can improve cognition and memory, but it has also been demonstrated that it interferes with working memory. Impairment of cognitive function in various neurodegenerative disorders is accompanied by profound reduction and/or elevation of KYNA metabolism. The view that enhancement of CNS KYNA levels could underlie cognitive decline is supported by the increased KYNA metabolism in Alzheimers disease, by the increased KYNA metabolism in downs syndrome and the enhancement of KYNA function during the early stage of Huntingtons disease. Kynurenic acid is the only endogenous N-methyl-D-aspartate (NMDA) receptor antagonist identified up to now, that mediates glutamatergic hypofunction. Schizophrenia is a disorder of dopaminergic neurotransmission, but modulation of the dopaminergic system by glutamatergic neurotransmission seems to play a key role. Despite the NMDA receptor antagonism, kynurenic acid also blocks, in lower doses, the nicotinergic acetycholine receptor, i.e., increased kynurenic acid levels can explain psychotic symptoms and cognitive deterioration. Kynurenic acid levels are described to be higher in the cerebrospinal fluid (CSF) and in critical central nervous system (CNS) regions of schizophrenics as compared to controls. (PMID: 17062375, 16088227) [HMDB]
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists
A quinolinemonocarboxylic acid that is quinoline-2-carboxylic acid substituted by a hydroxy group at C-4.
[Raw Data] CBA11_Kynurenic-acid_pos_30eV_1-3_01_673.txt
[Raw Data] CBA11_Kynurenic-acid_pos_50eV_1-3_01_675.txt
[Raw Data] CBA11_Kynurenic-acid_pos_40eV_1-3_01_674.txt
[Raw Data] CBA11_Kynurenic-acid_neg_30eV_1-3_01_726.txt
[Raw Data] CBA11_Kynurenic-acid_pos_20eV_1-3_01_672.txt
[Raw Data] CBA11_Kynurenic-acid_pos_10eV_1-3_01_671.txt
[Raw Data] CBA11_Kynurenic-acid_neg_20eV_1-3_01_725.txt
[Raw Data] CBA11_Kynurenic-acid_neg_50eV_1-3_01_728.txt
[Raw Data] CBA11_Kynurenic-acid_neg_40eV_1-3_01_727.txt
[Raw Data] CBA11_Kynurenic-acid_neg_10eV_1-3_01_724.txt
Kynurenic acid, an endogenous tryptophan metabolite, is a broad-spectrum antagonist targeting NMDA, glutamate, α7 nicotinic acetylcholine receptor. Kynurenic acid is also an agonist of GPR35/CXCR8.
同义名列表
61 个代谢物同义名
InChI=1/C10H7NO3/c12-9-5-8(10(13)14)11-7-4-2-1-3-6(7)9/h1-5H,(H,11,12)(H,13,14); 4-Oxo-1,4-dihydro-quinoline-2-carboxylic acid; 1,4-Dihydro-4-oxoquinoline-2-carboxylic acid; 4-oxo-1,4-dihydroquinoline-2-carboxylic acid; 1,4-DIHYDRO-4-OXOQUINOLINE-2-CARBOXYLICACID; 4-oxo-1,4-dihydroquinoline-2-carboxylicacid; 2-Quinolinecarboxylic acid, 4-hydroxy-; 4-Hydroxy-quinoline-2-carboxylic acid; 6F535706-B297-4930-A3FC-7A2823830118; 4-oxo-1H-quinoline-2-carboxylic acid; 4-Hydroxy-2-quinolinecarboxylic acid; 4-Hydroxyquinoline-2-carboxylic acid; 4-Hydroxy-2-quinolincarboxylic acid; 4-Hydroxyquinoline-2-carboxylicacid; 4-hydroxyquinolinium-2-carboxylate; 4-hydroxyquinoline-2-carboxylate; 4-Hydroxy-2-chinolincarbonsaeure; 4-Hydroxy-2-quinolinecarboxylate; 2-Carboxy-4-hydroxyquinoline; Quinaldic acid, 4-hydroxy-; HCZHHEIFKROPDY-UHFFFAOYSA-; Quinurenic acid|Kynurenate; 4-Hydroxyquinaldinic acid; 4-hydroxy-Quinaldic acid; 4-Hydroxyquinaldic acid; Kynurenic acid, >=98\\%; 4-Hydroxyquinaldinate; 4-hydroxy-Quinaldate; 4-Hydroxyquinaldate; KYNURENIC ACID [MI]; Spectrum5_001318; Spectrum3_001390; Spectrum4_000814; Spectrum2_001342; Acid, Kynurenic; Quinurenic acid; Kynurenic acid; Kynuronic acid; Kinurenic acid; kynurenic-acid; Lopac0_000716; BPBio1_001350; DivK1c_000309; Oprea1_032085; Kynurensaeure; PDSP2_000131; KBio2_004164; Tox21_500716; KBio3_002200; KBio2_006732; PDSP1_000132; KBio1_000309; KBio2_001596; SMP1_000172; Transtorine; IDI1_000309; Kynurenate; KYNA; KYA; 4-Hydroxy-2-quinolinecarboxylic acid; Kynurenate
数据库引用编号
47 个数据库交叉引用编号
- ChEBI: CHEBI:18344
- KEGG: C01717
- PubChem: 3845
- HMDB: HMDB0000715
- Metlin: METLIN5683
- DrugBank: DB11937
- ChEMBL: CHEMBL299155
- Wikipedia: Kynurenic_acid
- MeSH: Kynurenic Acid
- ChemIDplus: 0000492273
- MetaCyc: KYNURENATE
- KNApSAcK: C00026453
- foodb: FDB022200
- chemspider: 3712
- CAS: 492-27-3
- MoNA: PR100864
- MoNA: PS102001
- MoNA: FIO00650
- MoNA: FIO00644
- MoNA: PS102002
- MoNA: FIO00645
- MoNA: PS102003
- MoNA: FIO00651
- MoNA: FIO00649
- MoNA: FIO00648
- MoNA: PS102005
- MoNA: FIO00643
- MoNA: FIO00646
- MoNA: FIO00647
- MoNA: PS102006
- MoNA: PS102004
- MoNA: FIO00652
- MoNA: PR100406
- medchemexpress: HY-W110662
- PMhub: MS000000392
- MetaboLights: MTBLC18344
- PDB-CCD: KYA
- 3DMET: B00336
- NIKKAJI: J6.059C
- RefMet: Kynurenic acid
- medchemexpress: HY-100806
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-396
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-886
- PubChem: 4854
- KNApSAcK: 18344
- LOTUS: LTS0137555
- wikidata: Q642217
分类词条
相关代谢途径
Reactome(8)
BioCyc(0)
PlantCyc(0)
代谢反应
55 个相关的代谢反应过程信息。
Reactome(48)
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
BioCyc(0)
WikiPathways(2)
- Kynurenine pathway and links to cell senescence:
N-Formylkynurenine ⟶ Kynurenine
- Tryptophan metabolism:
IA ⟶ Indolyl acryloyl glycine
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(5)
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
- Tryptophan Metabolism:
L-Tryptophan + Oxygen ⟶ N'-Formylkynurenine
PharmGKB(0)
20 个相关的物种来源信息
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3391 - Ephedra altissima: 10.2307/3558330
- 191304 - Ephedra aphylla: 10.2307/3558330
- 191305 - Ephedra aspera: 10.2307/3558330
- 3389 - Ephedra distachya: 10.2307/3558330
- 191308 - Ephedra fasciculata: 10.2307/3558330
- 157595 - Ephedra foeminea: 10.2307/3558330
- 50295 - Ephedra fragilis: 10.2307/3558330
- 288826 - Ephedra funerea: 10.2307/3558330
- 173278 - Ephedra intermedia: 10.2307/3558330
- 34344 - Ephedra major: 10.2307/3558330
- 191310 - Ephedra nevadensis: 10.2307/3558330
- 289842 - Ephedra pachyclada:
- 288824 - Ephedra transitoria: 10.1021/NP9702998
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens:
- 9606 - Homo sapiens: -
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Magdalena Wróbel-Kwiatkowska, Waldemar Turski, Grażyna Silska, Magdalena Rakicka-Pustułka, Lucyna Dymińska, Waldemar Rymowicz. Determination of Bioactive Compound Kynurenic Acid in Linum usitatissimum L.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081702
. [PMID: 38675522] - Ádám Juhász, Ditta Ungor, Norbert Varga, Gábor Katona, György T Balogh, Edit Csapó. Lipid-Based Nanocarriers for Delivery of Neuroprotective Kynurenic Acid: Preparation, Characterization, and BBB Transport.
International journal of molecular sciences.
2023 Sep; 24(18):. doi:
10.3390/ijms241814251
. [PMID: 37762551] - Xiaoli Qi, Keyi Fu, Mingyuan Yue, Na Shou, Xuefeng Yuan, Xi Chen, Chunyu He, Yunfeng Yang, Zunji Shi. Kynurenic acid mediates bacteria-algae consortium in resisting environmental cadmium toxicity.
Journal of hazardous materials.
2023 02; 444(Pt A):130397. doi:
10.1016/j.jhazmat.2022.130397
. [PMID: 36403444] - Magdalena Matusiewicz, Magdalena Wróbel-Kwiatkowska, Tomasz Niemiec, Wiesław Świderek, Iwona Kosieradzka, Aleksandra Rosińska, Anna Niwińska, Magdalena Rakicka-Pustułka, Tomasz Kocki, Waldemar Rymowicz, Waldemar A Turski. Effect of Yarrowia lipolytica yeast biomass with increased kynurenic acid content on selected metabolic indicators in mice.
PeerJ.
2023; 11(?):e15833. doi:
10.7717/peerj.15833
. [PMID: 37780388] - Yanpo Si, Wenjun Wei, Xiaohui Chen, Xiaolong Xie, Tao Guo, Yohei Sasaki, Youbo Zhang, Lili Wang, Fei Zhang, Shuying Feng. A comprehensive study on the relieving effect of Lilium brownii on the intestinal flora and metabolic disorder in p-chlorphenylalanine induced insomnia rats.
Pharmaceutical biology.
2022 Dec; 60(1):131-143. doi:
10.1080/13880209.2021.2019283
. [PMID: 34978949] - Yanmei Chen, Jiahui Zhang, Yueying Yang, Ke Xiang, Hua Li, Dejuan Sun, Lixia Chen. Kynurenine-3-monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression.
Journal of cellular physiology.
2022 12; 237(12):4339-4355. doi:
10.1002/jcp.30876
. [PMID: 36088660] - Liying Cheng, Liming Wang, Biying Chen, Chenxi Wang, Mengxi Wang, Jie Li, Xiumei Gao, Zhu Zhang, Lifeng Han. A multiple-metabolites model to predict preliminary renal injury induced by iodixanol based on UHPLC/Q-Orbitrap-MS and 1H-NMR.
Metabolomics : Official journal of the Metabolomic Society.
2022 10; 18(11):85. doi:
10.1007/s11306-022-01942-3
. [PMID: 36307737] - Wenhua Ding, Fengchun Wu, Sumiao Zhou, Hehua Li, Runhua Wang, Yuping Ning. Increased plasma level of kynurenic acid in drug-free patients with first-episode schizophrenia compared to patients with chronic schizophrenia and healthy controls: preliminary data.
Nordic journal of psychiatry.
2022 Aug; 76(6):451-456. doi:
10.1080/08039488.2021.1992647
. [PMID: 34928781] - Petra Majerova, Dominika Olesova, Greta Golisova, Martina Buralova, Alena Michalicova, Jozef Vegh, Juraj Piestansky, Mangesh Bhide, Jozef Hanes, Andrej Kovac. Analog of kynurenic acid decreases tau pathology by modulating astrogliosis in rat model for tauopathy.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Aug; 152(?):113257. doi:
10.1016/j.biopha.2022.113257
. [PMID: 35714514] - Melike Kucukkarapinar, Aysegul Yay-Pence, Yesim Yildiz, Merve Buyukkoruk, Gizem Yaz-Aydin, Tuba S Deveci-Bulut, Ozlem Gulbahar, Esin Senol, Selcuk Candansayar. Psychological outcomes of COVID-19 survivors at sixth months after diagnose: the role of kynurenine pathway metabolites in depression, anxiety, and stress.
Journal of neural transmission (Vienna, Austria : 1996).
2022 08; 129(8):1077-1089. doi:
10.1007/s00702-022-02525-1
. [PMID: 35796878] - Huan Wang, Jian Li, Zheng Wang, Yanfeng Tian, Chunlei Li, Feng Jin, Jia Li, Lanfeng Wang. Perivascular brown adipocytes-derived kynurenic acid relaxes blood vessel via endothelium PI3K-Akt-eNOS pathway.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jun; 150(?):113040. doi:
10.1016/j.biopha.2022.113040
. [PMID: 35658210] - Duygu Eryavuz Onmaz, Dilek Tezcan, Sedat Abusoglu, Abdullah Sivrikaya, Menekse Kuzu, Fatma Humeyra Yerlikaya, Sema Yilmaz, Ali Unlu. Elevated serum levels of kynurenine pathway metabolites in patients with Behçet disease.
Amino acids.
2022 Jun; 54(6):877-887. doi:
10.1007/s00726-022-03170-4
. [PMID: 35604497] - Johann Steiner, Henrik Dobrowolny, Paul C Guest, Hans-Gert Bernstein, Dietmar Fuchs, Julien Roeser, Paul Summergrad, Gregory Oxenkrug. Gender-specific elevation of plasma anthranilic acid in schizophrenia: Protection against glutamatergic hypofunction?.
Schizophrenia research.
2022 05; 243(?):483-485. doi:
10.1016/j.schres.2022.01.048
. [PMID: 35151533] - Ebru Nur Ay, Şeyda Demirkol, Mehmet Tolgahan Hakan, Cem Horozoğlu, Soykan Arıkan, Mehmet Baki Doğan, Filiz Akyüz, Ceylan Özsoy Hepokur, İlhan Yaylım. Investigation of possible associations between tryptophan/kynurenine status and FOXP3 expression in colorectal cancer.
Scandinavian journal of clinical and laboratory investigation.
2022 05; 82(3):185-191. doi:
10.1080/00365513.2022.2040050
. [PMID: 35452343] - Qiufen Li, Hua Zhou, Jingxin Ouyang, Shuaipeng Guo, Jun Zheng, Guanhong Li. Effects of dietary tryptophan supplementation on body temperature, hormone, and cytokine levels in broilers exposed to acute heat stress.
Tropical animal health and production.
2022 Apr; 54(3):164. doi:
10.1007/s11250-022-03161-3
. [PMID: 35435494] - Fabiana Russo, Francesco Tolomeo, Maria Angela Vandelli, Giuseppe Biagini, Roberta Paris, Flavia Fulvio, Aldo Laganà, Anna Laura Capriotti, Luigi Carbone, Giuseppe Gigli, Giuseppe Cannazza, Cinzia Citti. Kynurenine and kynurenic acid: Two human neuromodulators found in Cannabis sativa L.
Journal of pharmaceutical and biomedical analysis.
2022 Mar; 211(?):114636. doi:
10.1016/j.jpba.2022.114636
. [PMID: 35124451] - Elisabeth R Paul, Lilly Schwieler, Sophie Erhardt, Sandra Boda, Ada Trepci, Robin Kämpe, Anna Asratian, Lovisa Holm, Adam Yngve, Robert Dantzer, Markus Heilig, J Paul Hamilton, Martin Samuelsson. Peripheral and central kynurenine pathway abnormalities in major depression.
Brain, behavior, and immunity.
2022 03; 101(?):136-145. doi:
10.1016/j.bbi.2022.01.002
. [PMID: 34999196] - Murat Cihan, Özlem Doğan, Ceyhan Ceran Serdar, Arzu Altunçekiç Yıldırım, Celali Kurt, Muhittin A Serdar. Kynurenine pathway in Coronavirus disease (COVID-19): Potential role in prognosis.
Journal of clinical laboratory analysis.
2022 Mar; 36(3):e24257. doi:
10.1002/jcla.24257
. [PMID: 35092710] - Mary Kimmel, Wanting Jin, Kai Xia, Kun Lun, Andrea Azcarate-Peril, Anna Plantinga, Michael Wu, Shirin Ataei, Hannah Rackers, Ian Carroll, Samantha Meltzer-Brody, Emma Fransson, Rebecca Knickmeyer. Metabolite trajectories across the perinatal period and mental health: A preliminary study of tryptophan-related metabolites, bile acids and microbial composition.
Behavioural brain research.
2022 02; 418(?):113635. doi:
10.1016/j.bbr.2021.113635
. [PMID: 34755640] - Zhuowei Shen, Haihong Hu, Jie Pan, Mingcheng Xu, Fengting Ou, Kaifeng He, Kui Zeng, Jianbiao Yao, Ruwei Wang, Yan Lou, Su Zeng. Pharmacokinetics and brain distribution studies of 6-hydroxykynurenic acid and its structural modified compounds.
The Journal of pharmacy and pharmacology.
2022 Jan; 74(1):22-31. doi:
10.1093/jpp/rgab132
. [PMID: 34586411] - Mary I Butler, Caitriona Long-Smith, Gerard M Moloney, Sabrina Morkl, Siobhain M O'Mahony, John F Cryan, Gerard Clarke, Timothy G Dinan. The immune-kynurenine pathway in social anxiety disorder.
Brain, behavior, and immunity.
2022 01; 99(?):317-326. doi:
10.1016/j.bbi.2021.10.020
. [PMID: 34758380] - Kaat Hebbrecht, Manuel Morrens, Erik J Giltay, Alexander L N van Nuijs, Bernard Sabbe, Seline van den Ameele. The Role of Kynurenines in Cognitive Dysfunction in Bipolar Disorder.
Neuropsychobiology.
2022; 81(3):184-191. doi:
10.1159/000520152
. [PMID: 34883494] - Siyu Wang, Liangshan Mu, Chunmei Zhang, Xiaoyu Long, Yurong Zhang, Rong Li, Yue Zhao, Jie Qiao. Abnormal Activation of Tryptophan-Kynurenine Pathway in Women With Polycystic Ovary Syndrome.
Frontiers in endocrinology.
2022; 13(?):877807. doi:
10.3389/fendo.2022.877807
. [PMID: 35721725] - Katinka Nordheim Alme, Arve Ulvik, Torunn Askim, Jörg Assmus, Tom Eirik Mollnes, Mala Naik, Halvor Næss, Ingvild Saltvedt, Per-Magne Ueland, Anne-Brita Knapskog. Neopterin and kynurenic acid as predictors of stroke recurrence and mortality: a multicentre prospective cohort study on biomarkers of inflammation measured three months after ischemic stroke.
BMC neurology.
2021 Dec; 21(1):476. doi:
10.1186/s12883-021-02498-w
. [PMID: 34879833] - Jennifer Tang, Hong Shen, Xiaofeng Zhao, Vinay K Holenarsipur, T Thanga Mariappan, Yueping Zhang, Erika Panfen, Jim Zheng, W Griffith Humphreys, Yurong Lai. Endogenous Plasma Kynurenic Acid in Human: A Newly Discovered Biomarker for Drug-Drug Interactions Involving Organic Anion Transporter 1 and 3 Inhibition.
Drug metabolism and disposition: the biological fate of chemicals.
2021 12; 49(12):1063-1069. doi:
10.1124/dmd.121.000486
. [PMID: 34599018] - Deborah Benevenuto, Kirti Saxena, Gabriel R Fries, Samira S Valvassori, Ramandeep Kahlon, Johanna Saxena, Sherin Kurian, Cristian P Zeni, Iram F Kazimi, Giselli Scaini, Jair C Soares, João Quevedo. Alterations in plasma kynurenine pathway metabolites in children and adolescents with bipolar disorder and unaffected offspring of bipolar parents: A preliminary study.
Bipolar disorders.
2021 11; 23(7):689-696. doi:
10.1111/bdi.13027
. [PMID: 33098737] - W Kędzierski, I Sadok, S Kowalik, I Janczarek, M Staniszewska. Does the type of exercise affect tryptophan catabolism in horses?.
Animal : an international journal of animal bioscience.
2021 Nov; 15(11):100377. doi:
10.1016/j.animal.2021.100377
. [PMID: 34624767] - Jiankai Fang, Chao Feng, Wangwang Chen, Pengbo Hou, Zhanhong Liu, Muqiu Zuo, Yuyi Han, Chenchang Xu, Gerry Melino, Alexei Verkhratsky, Ying Wang, Changshun Shao, Yufang Shi. Redressing the interactions between stem cells and immune system in tissue regeneration.
Biology direct.
2021 10; 16(1):18. doi:
10.1186/s13062-021-00306-6
. [PMID: 34670590] - Yuri Milaneschi, Kelly A Allers, Aartjan T F Beekman, Erik J Giltay, Sascha Keller, Robert A Schoevers, Sigurd D Süssmuth, Heiko G Niessen, Brenda W J H Penninx. The association between plasma tryptophan catabolites and depression: The role of symptom profiles and inflammation.
Brain, behavior, and immunity.
2021 10; 97(?):167-175. doi:
10.1016/j.bbi.2021.07.007
. [PMID: 34252568] - Halina Baran, Markus Draxler, Carina Kronsteiner, Berthold Kepplinger. Increase of Kynurenic Acid after Encephalomyocarditis Virus Infection and Its Significances.
Neuro-Signals.
2021 09; 29(1):24-34. doi:
10.33594/000000434
. [PMID: 34590795] - Francesca M Notarangelo, Robert Schwarcz. A single prenatal lipopolysaccharide injection has acute, but not long-lasting, effects on cerebral kynurenine pathway metabolism in mice.
The European journal of neuroscience.
2021 09; 54(6):5968-5981. doi:
10.1111/ejn.15416
. [PMID: 34363411] - Antonio Molina-Carballo, Isabel Cubero-Millán, Luisa Fernández-López, Ana Checa-Ros, Irene Machado-Casas, Antonio Jerez-Calero, Enrique Blanca-Jover, Antonio-Manuel Cantarero-Malagón, José Uberos, Antonio Muñoz-Hoyos. Methylphenidate ameliorates the homeostatic balance between levels of kynurenines in ADHD children.
Psychiatry research.
2021 09; 303(?):114060. doi:
10.1016/j.psychres.2021.114060
. [PMID: 34175711] - Yenan Mo, Xina Jie, Lixin Wang, Chunlan Ji, Yueyu Gu, Zhaoyu Lu, Xusheng Liu. Bupi Yishen formula attenuates kidney injury in 5/6 nephrectomized rats via the tryptophan-kynurenic acid-aryl hydrocarbon receptor pathway.
BMC complementary medicine and therapies.
2021 Aug; 21(1):207. doi:
10.1186/s12906-021-03376-1
. [PMID: 34376166] - Juncai Pu, Yiyun Liu, Hanping Zhang, Lu Tian, Siwen Gui, Yue Yu, Xiang Chen, Yue Chen, Lining Yang, Yanqin Ran, Xiaogang Zhong, Shaohua Xu, Xuemian Song, Lanxiang Liu, Peng Zheng, Haiyang Wang, Peng Xie. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder.
Molecular psychiatry.
2021 08; 26(8):4265-4276. doi:
10.1038/s41380-020-0645-4
. [PMID: 31959849] - Bashkim Kadriu, Cristan A Farmer, Peixiong Yuan, Lawrence T Park, Zhi-De Deng, Ruin Moaddel, Ioline D Henter, Bridget Shovestul, Elizabeth D Ballard, Cristoph Kraus, Philip W Gold, Rodrigo Machado-Vieira, Carlos A Zarate. The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response.
Molecular psychiatry.
2021 08; 26(8):4085-4095. doi:
10.1038/s41380-019-0589-8
. [PMID: 31732715] - Yan Chen, Leila R Zelnick, Matthew P Huber, Ke Wang, Nisha Bansal, Andrew N Hoofnagle, Rajan K Paranji, Susan R Heckbert, Noel S Weiss, Alan S Go, Chi-Yuan Hsu, Harold I Feldman, Sushrut S Waikar, Rupal C Mehta, Anand Srivastava, Stephen L Seliger, James P Lash, Anna C Porter, Dominic S Raj, Bryan R Kestenbaum. Association Between Kidney Clearance of Secretory Solutes and Cardiovascular Events: The Chronic Renal Insufficiency Cohort (CRIC) Study.
American journal of kidney diseases : the official journal of the National Kidney Foundation.
2021 08; 78(2):226-235.e1. doi:
10.1053/j.ajkd.2020.12.005
. [PMID: 33421453] - Yuping Cai, Daniel J Kim, Takehiro Takahashi, David I Broadhurst, Hong Yan, Shuangge Ma, Nicholas J W Rattray, Arnau Casanovas-Massana, Benjamin Israelow, Jon Klein, Carolina Lucas, Tianyang Mao, Adam J Moore, M Catherine Muenker, Ji Eun Oh, Julio Silva, Patrick Wong, Albert I Ko, Sajid A Khan, Akiko Iwasaki, Caroline H Johnson. Kynurenic acid may underlie sex-specific immune responses to COVID-19.
Science signaling.
2021 07; 14(690):. doi:
10.1126/scisignal.abf8483
. [PMID: 34230210] - Do Hyeon Pyun, Tae Jin Kim, Myeong Jun Kim, Soon Auck Hong, A M Abd El-Aty, Ji Hoon Jeong, Tae Woo Jung. Endogenous metabolite, kynurenic acid, attenuates nonalcoholic fatty liver disease via AMPK/autophagy- and AMPK/ORP150-mediated signaling.
Journal of cellular physiology.
2021 07; 236(7):4902-4912. doi:
10.1002/jcp.30199
. [PMID: 33283879] - Bernadett Tuka, Aliz Nyári, Edina Katalin Cseh, Tamás Körtési, Dániel Veréb, Ferenc Tömösi, Gábor Kecskeméti, Tamás Janáky, János Tajti, László Vécsei. Clinical relevance of depressed kynurenine pathway in episodic migraine patients: potential prognostic markers in the peripheral plasma during the interictal period.
The journal of headache and pain.
2021 Jun; 22(1):60. doi:
10.1186/s10194-021-01239-1
. [PMID: 34171996] - Chen-Chen Li, Long Gan, Yue Tan, Ming-Zhu Yan, Xin-Min Liu, Qi Chang, Rui-Le Pan. Chronic restraint stress induced changes in colonic homeostasis-related indexes and tryptophan-kynurenine metabolism in rats.
Journal of proteomics.
2021 05; 240(?):104190. doi:
10.1016/j.jprot.2021.104190
. [PMID: 33766670] - Tomasz Saran, Monika Turska, Tomasz Kocki, Magdalena Zawadka, Grzegorz Zieliński, Waldemar A Turski, Piotr Gawda. Effect of 4-week physical exercises on tryptophan, kynurenine and kynurenic acid content in human sweat.
Scientific reports.
2021 05; 11(1):11092. doi:
10.1038/s41598-021-90616-6
. [PMID: 34045580] - Hui Li, Lanchong Cui, Guolei Zhang, Mengmeng Zhang, Lili Jiao, Wei Wu. [Quantitative analysis of tryptophan and its metabolites in urine by ultra performance liquid chromatography-tandem mass spectrometry].
Se pu = Chinese journal of chromatography.
2021 May; 39(5):518-525. doi:
10.3724/sp.j.1123.2020.06022
. [PMID: 34227336] - Jadera Talap, Zhuowei Shen, Jing Nie, Jie Pan, Mingcheng Xu, Kui Zeng, Kaifeng He, Fengting Ou, Houhong He, Jianbiao Yao, Ruwei Wang, Lushan Yu, Su Zeng. The characterisation of the in vitro metabolism and transport of 6-hydroxykynurenic acid, an important constituent of Ginkgo biloba extracts.
Xenobiotica; the fate of foreign compounds in biological systems.
2021 May; 51(5):513-521. doi:
10.1080/00498254.2021.1881654
. [PMID: 33512253] - Viktória Kovács, Gábor Remzső, Tímea Körmöczi, Róbert Berkecz, Valéria Tóth-Szűki, Andrea Pénzes, László Vécsei, Ferenc Domoki. The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity after Asphyxia but Is Not Neuroprotective in a Translational Model of Neonatal Hypoxic Ischemic Encephalopathy.
International journal of molecular sciences.
2021 May; 22(9):. doi:
10.3390/ijms22094822
. [PMID: 34062911] - Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome.
Cell reports.
2021 04; 35(4):109040. doi:
10.1016/j.celrep.2021.109040
. [PMID: 33910017] - Junchao Huang, Jinghui Tong, Ping Zhang, Yanfang Zhou, Yimin Cui, Shuping Tan, Zhiren Wang, Fude Yang, Peter Kochunov, Joshua Chiappelli, Baopeng Tian, Li Tian, Yunlong Tan, L Elliot Hong. Effects of neuroactive metabolites of the tryptophan pathway on working memory and cortical thickness in schizophrenia.
Translational psychiatry.
2021 04; 11(1):198. doi:
10.1038/s41398-021-01311-z
. [PMID: 33795641] - Bing Cao, Yan Chen, Zhongyu Ren, Zihang Pan, Roger S McIntyre, Dongfang Wang. Dysregulation of kynurenine pathway and potential dynamic changes of kynurenine in schizophrenia: A systematic review and meta-analysis.
Neuroscience and biobehavioral reviews.
2021 04; 123(?):203-214. doi:
10.1016/j.neubiorev.2021.01.018
. [PMID: 33513412] - Masum Öztürk, Şermin Yalın Sapmaz, Hasan Kandemir, Fatma Taneli, Ömer Aydemir. The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder.
International journal of clinical practice.
2021 Apr; 75(4):e13739. doi:
10.1111/ijcp.13739
. [PMID: 32997876] - Handan Noyan, Ece Erdağ, Erdem Tüzün, İlhan Yaylım, Özlem Küçükhüseyin, Mehmet Tolgahan Hakan, Sinan Gülöksüz, Bart P F Rutten, Meram Can Saka, Cem Atbaşoğlu, Köksal Alptekin, Jim van Os, Alp Üçok. Association of the kynurenine pathway metabolites with clinical, cognitive features and IL-1β levels in patients with schizophrenia spectrum disorder and their siblings.
Schizophrenia research.
2021 03; 229(?):27-37. doi:
10.1016/j.schres.2021.01.014
. [PMID: 33609988] - Ewa Dudzińska, Kinga Szymona, Renata Kloc, Tomasz Kocki, Paulina Gil-Kulik, Jacek Bogucki, Janusz Kocki, Roman Paduch, Ewa M Urbańska. Fractalkine, sICAM-1 and Kynurenine Pathway in Restrictive Anorexia Nervosa-Exploratory Study.
Nutrients.
2021 Jan; 13(2):. doi:
10.3390/nu13020339
. [PMID: 33498837] - Michal Fiedorowicz, Tomasz Choragiewicz, Waldemar A Turski, Tomasz Kocki, Dominika Nowakowska, Kamila Wertejuk, Agnieszka Kamińska, Teresio Avitabile, Marlena Wełniak-Kaminska, Pawel Grieb, Sandrine Zweifel, Robert Rejdak, Mario Damiano Toro. Tryptophan Pathway Abnormalities in a Murine Model of Hereditary Glaucoma.
International journal of molecular sciences.
2021 Jan; 22(3):. doi:
10.3390/ijms22031039
. [PMID: 33494373] - Jose Marrugo-Ramírez, Montserrat Rodríguez-Núñez, M-Pilar Marco, Mónica Mir, Josep Samitier. Kynurenic Acid Electrochemical Immunosensor: Blood-Based Diagnosis of Alzheimer's Disease.
Biosensors.
2021 Jan; 11(1):. doi:
10.3390/bios11010020
. [PMID: 33445512] - Jian Li, Yaqi Zhang, Shen Yang, Zhenhua Lu, Guiling Li, Shangyi Wu, Da-Ren Wu, Jingwen Liu, Bo Zhou, Hui-Min David Wang, Shi-Ying Huang. The Beneficial Effects of Edible Kynurenic Acid from Marine Horseshoe Crab (Tachypleus tridentatus) on Obesity, Hyperlipidemia, and Gut Microbiota in High-Fat Diet-Fed Mice.
Oxidative medicine and cellular longevity.
2021; 2021(?):8874503. doi:
10.1155/2021/8874503
. [PMID: 34055199] - Marietta Z Poles, Anna Nászai, Levente Gulácsi, Bálint L Czakó, Krisztián G Gál, Romy J Glenz, Dishana Dookhun, Attila Rutai, Szabolcs P Tallósy, Andrea Szabó, Bálint Lőrinczi, István Szatmári, Ferenc Fülöp, László Vécsei, Mihály Boros, László Juhász, József Kaszaki. Kynurenic Acid and Its Synthetic Derivatives Protect Against Sepsis-Associated Neutrophil Activation and Brain Mitochondrial Dysfunction in Rats.
Frontiers in immunology.
2021; 12(?):717157. doi:
10.3389/fimmu.2021.717157
. [PMID: 34475875] - Muhammad Shoaib, Rishabh C Choudhary, Jaewoo Choi, Nancy Kim, Kei Hayashida, Tsukasa Yagi, Tai Yin, Mitsuaki Nishikimi, Jan F Stevens, Lance B Becker, Junhwan Kim. Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations.
Scientific reports.
2020 11; 10(1):19707. doi:
10.1038/s41598-020-76401-x
. [PMID: 33184308] - Fangcong Dong, Fuhua Hao, Iain A Murray, Philip B Smith, Imhoi Koo, Alyssa M Tindall, Penny M Kris-Etherton, Krishne Gowda, Shantu G Amin, Andrew D Patterson, Gary H Perdew. Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity.
Gut microbes.
2020 11; 12(1):1-24. doi:
10.1080/19490976.2020.1788899
. [PMID: 32783770] - Jochen Kindler, Chai K Lim, Cynthia Shannon Weickert, Danny Boerrigter, Cherrie Galletly, Dennis Liu, Kelly R Jacobs, Ryan Balzan, Jason Bruggemann, Maryanne O'Donnell, Rhoshel Lenroot, Gilles J Guillemin, Thomas W Weickert. Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia.
Molecular psychiatry.
2020 11; 25(11):2860-2872. doi:
10.1038/s41380-019-0401-9
. [PMID: 30940904] - Feng Zhu, Ruijin Guo, Wei Wang, Yanmei Ju, Qi Wang, Qingyan Ma, Qiang Sun, Yajuan Fan, Yuying Xie, Zai Yang, Zhuye Jie, Binbin Zhao, Liang Xiao, Lin Yang, Tao Zhang, Bing Liu, Liyang Guo, Xiaoyan He, Yunchun Chen, Ce Chen, Chengge Gao, Xun Xu, Huanming Yang, Jian Wang, Yonghui Dang, Lise Madsen, Susanne Brix, Karsten Kristiansen, Huijue Jia, Xiancang Ma. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice.
Molecular psychiatry.
2020 11; 25(11):2905-2918. doi:
10.1038/s41380-019-0475-4
. [PMID: 31391545] - Charlotte Hunt, Thiago Macedo E Cordeiro, Robert Suchting, Constanza de Dios, Valeria A Cuellar Leal, Jair C Soares, Robert Dantzer, Antonio L Teixeira, Sudhakar Selvaraj. Effect of immune activation on the kynurenine pathway and depression symptoms - A systematic review and meta-analysis.
Neuroscience and biobehavioral reviews.
2020 11; 118(?):514-523. doi:
10.1016/j.neubiorev.2020.08.010
. [PMID: 32853625] - Hisayuki Erabi, Go Okada, Chiyo Shibasaki, Daiki Setoyama, Dongchon Kang, Masahiro Takamura, Atsuo Yoshino, Manabu Fuchikami, Akiko Kurata, Takahiro A Kato, Shigeto Yamawaki, Yasumasa Okamoto. Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis.
Scientific reports.
2020 10; 10(1):16822. doi:
10.1038/s41598-020-73918-z
. [PMID: 33033336] - Paul Carrillo-Mora, Verónica Pérez-De la Cruz, Berenice Estrada-Cortés, Paola Toussaint-González, José Antonio Martínez-Cortéz, Marlene Rodríguez-Barragán, Jimena Quinzaños-Fresnedo, Fernanda Rangel-Caballero, Gabriela Gamboa-Coria, Itzel Sánchez-Vázquez, Karina Barajas-Martínez, Kenia Franyutti-Prado, Laura Sánchez-Chapul, Daniela Ramírez-Ortega, Lucio A Ramos-Chávez. Serum Kynurenines Correlate With Depressive Symptoms and Disability in Poststroke Patients: A Cross-sectional Study.
Neurorehabilitation and neural repair.
2020 10; 34(10):936-944. doi:
10.1177/1545968320953671
. [PMID: 32917127] - Ferenc Zádor, Gábor Nagy-Grócz, Szabolcs Dvorácskó, Zsuzsanna Bohár, Edina Katalin Cseh, Dénes Zádori, Árpád Párdutz, Edina Szűcs, Csaba Tömböly, Anna Borsodi, Sándor Benyhe, László Vécsei. Long-term systemic administration of kynurenic acid brain region specifically elevates the abundance of functional CB1 receptors in rats.
Neurochemistry international.
2020 09; 138(?):104752. doi:
10.1016/j.neuint.2020.104752
. [PMID: 32445659] - Rebeca Vidal, Nuria García-Marchena, Esther O'Shea, Nerea Requena-Ocaña, María Flores-López, Pedro Araos, Antonia Serrano, Juan Suárez, Gabriel Rubio, Fernando Rodríguez de Fonseca, María Isabel Colado, Francisco Javier Pavón. Plasma tryptophan and kynurenine pathway metabolites in abstinent patients with alcohol use disorder and high prevalence of psychiatric comorbidity.
Progress in neuro-psychopharmacology & biological psychiatry.
2020 08; 102(?):109958. doi:
10.1016/j.pnpbp.2020.109958
. [PMID: 32360814] - Yu Sun, Wayne Drevets, Gustavo Turecki, Qingqin S Li. The relationship between plasma serotonin and kynurenine pathway metabolite levels and the treatment response to escitalopram and desvenlafaxine.
Brain, behavior, and immunity.
2020 07; 87(?):404-412. doi:
10.1016/j.bbi.2020.01.011
. [PMID: 31978524] - Zhaohua Zhang, Minling Zhang, Yayan Luo, Xiaojia Ni, Haoyang Lu, Yuguan Wen, Ni Fan. Preliminary comparative analysis of kynurenine pathway metabolites in chronic ketamine users, schizophrenic patients, and healthy controls.
Human psychopharmacology.
2020 07; 35(4):e2738. doi:
10.1002/hup.2738
. [PMID: 32352599] - Pingping Li, Jimin Zheng, Yun Bai, Dingxin Wang, Zijin Cui, Yueqin Li, Jian Zhang, Yuzhen Wang. Characterization of kynurenine pathway in patients with diarrhea-predominant irritable bowel syndrome.
European journal of histochemistry : EJH.
2020 Jun; 64(s2):. doi:
10.4081/ejh.2020.3132
. [PMID: 32705857] - Ferenc Tömösi, Gábor Kecskeméti, Edina Katalin Cseh, Elza Szabó, Cecília Rajda, Róbert Kormány, Zoltán Szabó, László Vécsei, Tamás Janáky. A validated UHPLC-MS method for tryptophan metabolites: Application in the diagnosis of multiple sclerosis.
Journal of pharmaceutical and biomedical analysis.
2020 Jun; 185(?):113246. doi:
10.1016/j.jpba.2020.113246
. [PMID: 32182446] - Niklas Joisten, Moritz Schumann, Alexander Schenk, David Walzik, Nils Freitag, Andre Knoop, Mario Thevis, Wilhelm Bloch, Philipp Zimmer. Acute hypertrophic but not maximal strength loading transiently enhances the kynurenine pathway towards kynurenic acid.
European journal of applied physiology.
2020 Jun; 120(6):1429-1436. doi:
10.1007/s00421-020-04375-9
. [PMID: 32306154] - Cihan Yang, Chenghong Liao, Yingxia Zhang, Hailong Zhou, Xiaoping Diao, Qian Han, Guoshun Wang. Organ-differential responses to ethanol and kynurenic acid, a component of alcoholic beverages in gene transcription.
Gene.
2020 May; 737(?):144434. doi:
10.1016/j.gene.2020.144434
. [PMID: 32018015] - Ebrahim Haroon, James R Welle, Bobbi J Woolwine, David R Goldsmith, Wendy Baer, Trusharth Patel, Jennifer C Felger, Andrew H Miller. Associations among peripheral and central kynurenine pathway metabolites and inflammation in depression.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology.
2020 05; 45(6):998-1007. doi:
10.1038/s41386-020-0607-1
. [PMID: 31940661] - Edina K Cseh, Gábor Veres, Tamás Körtési, Helga Polyák, Nikolett Nánási, János Tajti, Árpád Párdutz, Péter Klivényi, László Vécsei, Dénes Zádori. Neurotransmitter and tryptophan metabolite concentration changes in the complete Freund's adjuvant model of orofacial pain.
The journal of headache and pain.
2020 Apr; 21(1):35. doi:
10.1186/s10194-020-01105-6
. [PMID: 32316909] - Bożena Bądzyńska, Izabela Zakrocka, Waldemar A Turski, Krzysztof H Olszyński, Janusz Sadowski, Elżbieta Kompanowska-Jezierska. Kynurenic acid selectively reduces heart rate in spontaneously hypertensive rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2020 04; 393(4):673-679. doi:
10.1007/s00210-019-01771-7
. [PMID: 31807837] - Edina Szűcs, Azzurra Stefanucci, Marilisa Pia Dimmito, Ferenc Zádor, Stefano Pieretti, Gokhan Zengin, László Vécsei, Sándor Benyhe, Marianna Nalli, Adriano Mollica. Discovery of Kynurenines Containing Oligopeptides as Potent Opioid Receptor Agonists.
Biomolecules.
2020 02; 10(2):. doi:
10.3390/biom10020284
. [PMID: 32059524] - Masashi Sakurai, Yasuko Yamamoto, Noriyo Kanayama, Masaya Hasegawa, Akihiro Mouri, Masao Takemura, Hidetoshi Matsunami, Tomoya Miyauchi, Tatsuya Tokura, Hiroyuki Kimura, Mikiko Ito, Eri Umemura, Aiji Sato Boku, Wataru Nagashima, Takashi Tonoike, Kenichi Kurita, Norio Ozaki, Toshitaka Nabeshima, Kuniaki Saito. Serum Metabolic Profiles of the Tryptophan-Kynurenine Pathway in the high risk subjects of major depressive disorder.
Scientific reports.
2020 02; 10(1):1961. doi:
10.1038/s41598-020-58806-w
. [PMID: 32029791] - Marco Gelpi, Per Magne Ueland, Marius Trøseid, Amanda Mocroft, Anne-Mette Lebech, Henrik Ullum, Øivind Midttun, Jens Lundgren, Susanne D Nielsen. Abdominal Adipose Tissue Is Associated With Alterations in Tryptophan-Kynurenine Metabolism and Markers of Systemic Inflammation in People With Human Immunodeficiency Virus.
The Journal of infectious diseases.
2020 01; 221(3):419-427. doi:
10.1093/infdis/jiz465
. [PMID: 31538186] - Niklas Joisten, Felix Kummerhoff, Christina Koliamitra, Alexander Schenk, David Walzik, Luca Hardt, Andre Knoop, Mario Thevis, David Kiesl, Alan J Metcalfe, Wilhelm Bloch, Philipp Zimmer. Exercise and the Kynurenine pathway: Current state of knowledge and results from a randomized cross-over study comparing acute effects of endurance and resistance training.
Exercise immunology review.
2020; 26(?):24-42. doi:
. [PMID: 32139353]
- Elisa Wirthgen, Anne K Leonard, Christian Scharf, Grazyna Domanska. The Immunomodulator 1-Methyltryptophan Drives Tryptophan Catabolism Toward the Kynurenic Acid Branch.
Frontiers in immunology.
2020; 11(?):313. doi:
10.3389/fimmu.2020.00313
. [PMID: 32180772] - Tomasz Zapolski, Anna Kamińska, Tomasz Kocki, Andrzej Wysokiński, Ewa M Urbanska. Aortic stiffness-Is kynurenic acid a novel marker? Cross-sectional study in patients with persistent atrial fibrillation.
PloS one.
2020; 15(7):e0236413. doi:
10.1371/journal.pone.0236413
. [PMID: 32735567] - Karen M Ryan, Kelly A Allers, Declan M McLoughlin, Andrew Harkin. Tryptophan metabolite concentrations in depressed patients before and after electroconvulsive therapy.
Brain, behavior, and immunity.
2020 01; 83(?):153-162. doi:
10.1016/j.bbi.2019.10.005
. [PMID: 31606477] - Pedro Araos, Rebeca Vidal, Esther O'Shea, María Pedraz, Nuria García-Marchena, Antonia Serrano, Juan Suárez, Estela Castilla-Ortega, Juan Jesús Ruiz, Rafael Campos-Cloute, Luis J Santín, Fernando Rodríguez de Fonseca, Francisco Javier Pavón, María Isabel Colado. Serotonin is the main tryptophan metabolite associated with psychiatric comorbidity in abstinent cocaine-addicted patients.
Scientific reports.
2019 11; 9(1):16842. doi:
10.1038/s41598-019-53312-0
. [PMID: 31727978] - Jennifer L Kruse, Joshua Hyong-Jin Cho, Richard Olmstead, Lin Hwang, Kym Faull, Naomi I Eisenberger, Michael R Irwin. Kynurenine metabolism and inflammation-induced depressed mood: A human experimental study.
Psychoneuroendocrinology.
2019 11; 109(?):104371. doi:
10.1016/j.psyneuen.2019.104371
. [PMID: 31325802] - Cemile Yılmaz, Vural Gökmen. Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae.
Food chemistry.
2019 Nov; 297(?):124975. doi:
10.1016/j.foodchem.2019.124975
. [PMID: 31253324] - Yun Chen, Hui Chen, Ganggang Shi, Min Yang, Fuchun Zheng, Zhijie Zheng, Shuyao Zhang, Shilong Zhong. Ultra-performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan metabolites in human plasma and its application to clinical study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2019 Oct; 1128(?):121745. doi:
10.1016/j.jchromb.2019.121745
. [PMID: 31586884] - Xue-Mei Han, Yan-Jie Qin, Ying Zhu, Xin-Lin Zhang, Nan-Xi Wang, Ying Rang, Xue-Jia Zhai, Yong-Ning Lu. Development of an underivatized LC-MS/MS method for quantitation of 14 neurotransmitters in rat hippocampus, plasma and urine: Application to CUMS induced depression rats.
Journal of pharmaceutical and biomedical analysis.
2019 Sep; 174(?):683-695. doi:
10.1016/j.jpba.2019.06.043
. [PMID: 31288191] - Alexander J Prokopienko, Raymond E West, Jason R Stubbs, Thomas D Nolin. Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: An application in patients with kidney disease.
Journal of pharmaceutical and biomedical analysis.
2019 Sep; 174(?):618-624. doi:
10.1016/j.jpba.2019.06.033
. [PMID: 31276982] - Gregory Oxenkrug, Hans-Gert Bernstein, Paul C Guest, Marieke van der Hart, Julien Roeser, Paul Summergrad, Johann Steiner. Plasma xanthurenic acid in a context of insulin resistance and obesity in schizophrenia.
Schizophrenia research.
2019 09; 211(?):98-99. doi:
10.1016/j.schres.2019.07.038
. [PMID: 31383514] - Tomoaki Teshigawara, Akihiro Mouri, Hisako Kubo, Yukako Nakamura, Tomoko Shiino, Takashi Okada, Mako Morikawa, Toshitaka Nabeshima, Norio Ozaki, Yasuko Yamamoto, Kuniaki Saito. Changes in tryptophan metabolism during pregnancy and postpartum periods: Potential involvement in postpartum depressive symptoms.
Journal of affective disorders.
2019 08; 255(?):168-176. doi:
10.1016/j.jad.2019.05.028
. [PMID: 31158779] - Martina Curto, Luana Lionetto, Francesco Fazio, Valentina Corigliano, Anna Comparelli, Stefano Ferracuti, Maurizio Simmaco, Ferdinando Nicoletti, Ross J Baldessarini. Serum xanthurenic acid levels: Reduced in subjects at ultra high risk for psychosis.
Schizophrenia research.
2019 06; 208(?):465-466. doi:
10.1016/j.schres.2019.02.020
. [PMID: 30837204] - Zhuowei Shen, Kaifeng He, Mingcheng Xu, Kui Zeng, Jie Pan, Fengting Ou, Jianbiao Yao, Ruwei Wang, Su Zeng. Development and validation of a sensitive LC-MS/MS method for the determination of 6-hydroxykynurenic acid in rat plasma and its application to pharmacokinetics study.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2019 May; 1116(?):44-50. doi:
10.1016/j.jchromb.2019.03.033
. [PMID: 30981181] - Airi Sekine, Tsutomu Fukuwatari. Acute liver failure increases kynurenic acid production in rat brain via changes in tryptophan metabolism in the periphery.
Neuroscience letters.
2019 05; 701(?):14-19. doi:
10.1016/j.neulet.2019.02.004
. [PMID: 30738081] - Anita Herrstedt, Marie L Bay, Casper Simonsen, Anna Sundberg, Charlotte Egeland, Sarah Thorsen-Streit, Sissal S Djurhuus, Per Magne Ueland, Øivind Midttun, Bente K Pedersen, Lars Bo Svendsen, Pieter de Heer, Jesper F Christensen, Pernille Hojman. Exercise-mediated improvement of depression in patients with gastro-esophageal junction cancer is linked to kynurenine metabolism.
Acta oncologica (Stockholm, Sweden).
2019 May; 58(5):579-587. doi:
10.1080/0284186x.2018.1558371
. [PMID: 30696326] - Karl M Weigand, Tom J J Schirris, Megan Houweling, Jeroen J M W van den Heuvel, Jan B Koenderink, Anita C A Dankers, Frans G M Russel, Rick Greupink. Uremic solutes modulate hepatic bile acid handling and induce mitochondrial toxicity.
Toxicology in vitro : an international journal published in association with BIBRA.
2019 Apr; 56(?):52-61. doi:
10.1016/j.tiv.2019.01.003
. [PMID: 30639138] - Yanling Zhou, Wei Zheng, Weijian Liu, Chengyu Wang, Yanni Zhan, Hanqiu Li, Lijian Chen, Yuping Ning. Cross-sectional relationship between kynurenine pathway metabolites and cognitive function in major depressive disorder.
Psychoneuroendocrinology.
2019 03; 101(?):72-79. doi:
10.1016/j.psyneuen.2018.11.001
. [PMID: 30419374] - Izabela Zakrocka, Katarzyna M Targowska-Duda, Artur Wnorowski, Tomasz Kocki, Krzysztof Jóźwiak, Waldemar A Turski. Angiotensin II type 1 receptor blockers decrease kynurenic acid production in rat kidney in vitro.
Naunyn-Schmiedeberg's archives of pharmacology.
2019 02; 392(2):209-217. doi:
10.1007/s00210-018-1572-7
. [PMID: 30370429] - Carl M Sellgren, Jessica Gracias, Oscar Jungholm, Roy H Perlis, Göran Engberg, Lilly Schwieler, Mikael Landen, Sophie Erhardt. Peripheral and central levels of kynurenic acid in bipolar disorder subjects and healthy controls.
Translational psychiatry.
2019 01; 9(1):37. doi:
10.1038/s41398-019-0378-9
. [PMID: 30696814] - Iwona Chmiel-Perzyńska, Adam Perzyński, Bartosz Olajossy, Paulina Gil-Kulik, Janusz Kocki, Ewa M Urbańska. Losartan Reverses Hippocampal Increase of Kynurenic Acid in Type 1 Diabetic Rats: A Novel Procognitive Aspect of Sartan Action.
Journal of diabetes research.
2019; 2019(?):4957879. doi:
10.1155/2019/4957879
. [PMID: 31737685] - Livia De Picker, Erik Fransen, Violette Coppens, Maarten Timmers, Peter de Boer, Herbert Oberacher, Dietmar Fuchs, Robert Verkerk, Bernard Sabbe, Manuel Morrens. Immune and Neuroendocrine Trait and State Markers in Psychotic Illness: Decreased Kynurenines Marking Psychotic Exacerbations.
Frontiers in immunology.
2019; 10(?):2971. doi:
10.3389/fimmu.2019.02971
. [PMID: 32010121] - David Martín-Hernández, Hiram Tendilla-Beltrán, José L M Madrigal, Borja García-Bueno, Juan C Leza, Javier R Caso. Chronic Mild Stress Alters Kynurenine Pathways Changing the Glutamate Neurotransmission in Frontal Cortex of Rats.
Molecular neurobiology.
2019 Jan; 56(1):490-501. doi:
10.1007/s12035-018-1096-7
. [PMID: 29725904] - Monika Turska, Jakub Pelak, Michał P Turski, Tomasz Kocki, Piotr Dukowski, Tomasz Plech, Waldemar Turski. Fate and distribution of kynurenic acid administered as beverage.
Pharmacological reports : PR.
2018 Dec; 70(6):1089-1096. doi:
10.1016/j.pharep.2018.05.011
. [PMID: 30308459]