γ-Aminobutyric acid (BioDeep_00000003003)
Secondary id: BioDeep_00000399980, BioDeep_00000402920
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C4H9NO2 (103.0633254)
中文名称: 4(gamma)-氨基丁酸(氨酪酸), 4-氨基丁酸, γ-氨基丁酸, 4-氨基丁酸(γ-氨基丁酸), 氨酪酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.05%
Last reviewed on 2024-09-13.
Cite this Page
γ-Aminobutyric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/γ-aminobutyric_acid (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000003003). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CC(=O)O)CN
InChI: InChI=1S/C4H9NO2/c5-3-1-2-4(6)7/h1-3,5H2,(H,6,7)
描述信息
gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter found in the nervous systems of widely divergent species, including humans. It is the chief inhibitory neurotransmitter in the vertebrate central nervous system. In vertebrates, GABA acts at inhibitory synapses in the brain. It acts by binding to specific transmembrane receptors in the plasma membrane of both pre- and postsynaptic neurons. This binding causes the opening of ion channels to allow either the flow of negatively-charged chloride ions into the cell or positively-charged potassium ions out of the cell. This will typically result in a negative change in the transmembrane potential, usually causing hyperpolarization. Three general classes of GABA receptor are known (PMID: 10561820). These include GABA-A and GABA-C ionotropic receptors, which are ion channels themselves, and GABA-B metabotropic receptors, which are G protein-coupled receptors that open ion channels via intermediaries known as G proteins (PMID: 10561820). Activation of the GABA-B receptor by GABA causes neuronal membrane hyperpolarization and a resultant inhibition of neurotransmitter release. In addition to binding sites for GABA, the GABA-A receptor has binding sites for benzodiazepines, barbiturates, and neurosteroids. GABA-A receptors are coupled to chloride ion channels. Therefore, activation of the GABA-A receptor induces increased inward chloride ion flux, resulting in membrane hyperpolarization and neuronal inhibition (PMID: 10561820). After release into the synapse, free GABA that does not bind to either the GABA-A or GABA-B receptor complexes can be taken up by neurons and glial cells. Four different GABA membrane transporter proteins (GAT-1, GAT-2, GAT-3, and BGT-1), which differ in their distribution in the CNS, are believed to mediate the uptake of synaptic GABA into neurons and glial cells. The GABA-A receptor subtype regulates neuronal excitability and rapid changes in fear arousal, such as anxiety, panic, and the acute stress response (PMID: 10561820). Drugs that stimulate GABA-A receptors, such as the benzodiazepines and barbiturates, have anxiolytic and anti-seizure effects via GABA-A-mediated reduction of neuronal excitability, which effectively raises the seizure threshold. GABA-A antagonists produce convulsions in animals and there is decreased GABA-A receptor binding in a positron emission tomography (PET) study of patients with panic disorder. Neurons that produce GABA as their output are called GABAergic neurons and have chiefly inhibitory action at receptors in the vertebrate. Medium spiny neurons (MSNs) are a typical example of inhibitory CNS GABAergic cells. GABA has been shown to have excitatory roles in the vertebrate, most notably in the developing cortex. Organisms synthesize GABA from glutamate using the enzyme L-glutamic acid decarboxylase and pyridoxal phosphate as a cofactor (PMID: 12467378). It is worth noting that this involves converting the principal excitatory neurotransmitter (glutamate) into the principal inhibitory one (GABA). Drugs that act as agonists of GABA receptors (known as GABA analogs or GABAergic drugs), or increase the available amount of GABA typically have relaxing, anti-anxiety, and anti-convulsive effects. GABA is found to be deficient in cerebrospinal fluid and the brain in many studies of experimental and human epilepsy. Benzodiazepines (such as Valium) are useful in status epilepticus because they act on GABA receptors. GABA increases in the brain after administration of many seizure medications. Hence, GABA is clearly an antiepileptic nutrient. Inhibitors of GAM metabolism can also produce convulsions. Spasticity and involuntary movement syndromes, such as Parkinsons, Friedreichs ataxia, tardive dyskinesia, and Huntingtons chorea, are all marked by low GABA when amino acid levels are studied. Trials of 2 to 3 g of GABA given orally have been effective in various epilepsy and spasticity syndromes. Agents that elevate GABA are als...
Gamma-aminobutyric acid, also known as gaba or 4-aminobutanoic acid, belongs to gamma amino acids and derivatives class of compounds. Those are amino acids having a (-NH2) group attached to the gamma carbon atom. Thus, gamma-aminobutyric acid is considered to be a fatty acid lipid molecule. Gamma-aminobutyric acid is soluble (in water) and a weakly acidic compound (based on its pKa). Gamma-aminobutyric acid can be synthesized from butyric acid. Gamma-aminobutyric acid is also a parent compound for other transformation products, including but not limited to, (1S,2S,5S)-2-(4-glutaridylbenzyl)-5-phenylcyclohexan-1-ol, 4-(methylamino)butyric acid, and pregabalin. Gamma-aminobutyric acid can be found in a number of food items such as watercress, sour cherry, peach, and cardoon, which makes gamma-aminobutyric acid a potential biomarker for the consumption of these food products. Gamma-aminobutyric acid can be found primarily in most biofluids, including urine, cerebrospinal fluid (CSF), blood, and feces, as well as throughout most human tissues. Gamma-aminobutyric acid exists in all living species, ranging from bacteria to humans. In humans, gamma-aminobutyric acid is involved in a couple of metabolic pathways, which include glutamate metabolism and homocarnosinosis. Gamma-aminobutyric acid is also involved in few metabolic disorders, which include 2-hydroxyglutric aciduria (D and L form), 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency, hyperinsulinism-hyperammonemia syndrome, and succinic semialdehyde dehydrogenase deficiency. Moreover, gamma-aminobutyric acid is found to be associated with alzheimers disease, hyper beta-alaninemia, tuberculous meningitis, and hepatic encephalopathy. Gamma-aminobutyric acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. gamma-Aminobutyric acid (γ-Aminobutyric acid) (GABA ) is the chief inhibitory neurotransmitter in the mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. In humans, GABA is also directly responsible for the regulation of muscle tone . Chronically high levels of GABA are associated with at least 5 inborn errors of metabolism including: D-2-Hydroxyglutaric Aciduria, 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency, GABA-Transaminase Deficiency, Homocarnosinosis and Succinic semialdehyde dehydrogenase deficiency (T3DB).
[Spectral] 4-Aminobutanoate (exact mass = 103.06333) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions.
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
D018377 - Neurotransmitter Agents > D018682 - GABA Agents
KEIO_ID A002
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
γ-Aminobutyric acid (4-Aminobutyric acid) is a major inhibitory neurotransmitter in the adult mammalian brain, binding to the ionotropic GABA receptors (GABAA receptors) and metabotropic receptors (GABAB receptors. γ-Aminobutyric acid shows calming effect by blocking specific signals of central nervous system[1][2].
同义名列表
74 个代谢物同义名
gamma-Aminobutyric acid, calcium salt (2:1); gamma-Aminobutyric acid, monolithium salt; gamma Aminobutyric acid, monolithium salt; gamma-Aminobutyric acid, zinc salt (2:1); gamma-Aminobutyric acid, monosodium salt; gamma Aminobutyric acid, monosodium salt; gamma-Aminobutyric acid, hydrochloride; gamma Aminobutyric acid, hydrochloride; Acid, hydrochloride gamma-aminobutyric; Hydrochloride gamma-aminobutyric acid; gamma-Amino-N-butyric acid; gamma(amino)-butyric acid; γ-Aminobutryic acid; GAMMA-AMINO-butanoIC ACID; gamma-Aminobutanoic acid; gamma-Aminobutyric acid; gamma-Aminobuttersaeure; gamma Aminobutyric acid; Omega-aminobutyric acid; g-Amino-N-butyric acid; gamma-Amino-N-butyrate; Γ-amino-N-butyric acid; gamma-AMINO-butanoate; 4-amino-butanoic acid; Γ-amino-butanoic acid; g-AMINO-butanoic acid; 4-Aminobutanoic acid; gamma-Aminobutanoate; 3-Carboxypropylamine; Γ-aminobutanoic acid; g-Aminobutanoic acid; 4 Aminobutanoic acid; Γ-aminobuttersaeure; 4 Aminobutyric acid; Omega-aminobutyrate; W-Aminobutyric acid; g-Aminobutyric acid; Γ-aminobutyric acid; g-Aminobuttersaeure; gamma-Aminobutyrate; 4-Aminobutyric acid; gamma Aminobutyrate; g-Amino-N-butyrate; Γ-amino-N-butyrate; Γ-amino-butanoate; 4-Amino-butanoate; g-AMINO-butanoate; Piperidinic acid; 4-Aminobutanoate; g-Aminobutanoate; Γ-aminobutanoate; g-Aminobutyrate; 4-Aminobutyrate; Γ-aminobutyrate; W-Aminobutyrate; Piperidic acid; GABA, lithium; Lithium gaba; Piperidinate; Piperidate; Mielomade; Gammalone; Aminalone; Aminalon; Gammasol; Mielogen; Gaballon; Gammalon; Gamarex; Gammar; GABA; 4Abu; Gamma-Aminobutyric acid; 4-Aminobutanoate
数据库引用编号
45 个数据库交叉引用编号
- ChEBI: CHEBI:16865
- KEGG: C00334
- KEGGdrug: D00058
- KEGGdrug: D70585
- PubChem: 119
- HMDB: HMDB0000112
- Metlin: METLIN279
- DrugBank: DB02530
- ChEMBL: CHEMBL96
- Wikipedia: Gamma-Aminobutyric_acid
- LipidMAPS: LMFA01100039
- MeSH: gamma-Aminobutyric Acid
- MetaCyc: 4-AMINO-BUTYRATE
- KNApSAcK: C00001337
- foodb: FDB030489
- chemspider: 116
- CAS: 56-12-2
- MoNA: KNA00006
- MoNA: KNA00005
- MoNA: KO002031
- MoNA: PS038901
- MoNA: KO002028
- MoNA: KNA00007
- MoNA: KO002032
- MoNA: KO002030
- MoNA: PR100220
- MoNA: PS038905
- MoNA: PS038902
- MoNA: KNA00316
- MoNA: KO002029
- MoNA: KO000001
- MoNA: KO000003
- MoNA: KNA00317
- MoNA: KO000002
- PMhub: MS000007678
- PubChem: 3628
- PDB-CCD: ABU
- 3DMET: B00090
- NIKKAJI: J1.375G
- RefMet: gamma-Aminobutyric acid
- medchemexpress: HY-N0067
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-330
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-767
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-21
- KNApSAcK: 16865
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
41 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- GABA degradation:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
- putrescine degradation I:
2-oxoglutarate + putrescine ⟶ 4-aminobutanal + L-glutamate
- putrescine degradation III:
N-acetyl-4-aminobutyrate + H2O ⟶ 4-aminobutyrate + acetate
- polyamine degradation (N-acetyl pathway):
N-acetyl-4-aminobutyrate + H2O ⟶ 4-aminobutyrate + acetate
- glutamate degradation to succinate:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
Plant Reactome(0)
INOH(3)
- 2-Oxo-glutaric acid + 4-Amino-butanoic acid = L-Glutamic acid + Succinate semialdehyde ( Glutamic acid and Glutamine metabolism ):
2-Oxo-glutaric acid + 4-Amino-butanoic acid ⟶ L-Glutamic acid + Succinate semialdehyde
- Arginine and Proline metabolism ( Arginine and Proline metabolism ):
ATP + Creatine ⟶ ADP + N-Phospho-creatine
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(32)
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Putrescine Degradation II:
-glutamyl-L-putrescine + Hydrogen Ion + Oxygen ⟶ -Glutamyl- -butyraldehyde + Ammonium + Hydrogen peroxide
- 4-Aminobutanoate Degradation I:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- 4-Aminobutanoate Degradation:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamic Acid Metabolism:
-Aminobutyric acid + Pyruvic acid ⟶ L-Alanine + Succinic acid semialdehyde
- Butanoate Metabolism:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Ornithine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Putrescine Degradation II:
-glutamyl-L-putrescine + Hydrogen Ion + Oxygen ⟶ -Glutamyl- -butyraldehyde + Ammonium + Hydrogen peroxide
- 4-Aminobutanoate Degradation I:
-Aminobutyric acid + Oxoglutaric acid ⟶ L-Glutamic acid + Succinic acid semialdehyde
PharmGKB(0)
5 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yuchen Bao, Hailun Zhou, Yue Fu, Chao Wang, Qinwan Huang. Zhumian Granules improves PCPA-induced insomnia by regulating the expression level of neurotransmitters and reducing neuronal apoptosis.
Journal of ethnopharmacology.
2024 Jun; 327(?):118048. doi:
10.1016/j.jep.2024.118048
. [PMID: 38484955] - Minghui Liu, Bili Cao, Jin-Wei Wei, Biao Gong. Redesigning a S-nitrosylated pyruvate-dependent GABA transaminase 1 to generate high-malate and saline-alkali-tolerant tomato.
The New phytologist.
2024 Jun; 242(5):2148-2162. doi:
10.1111/nph.19693
. [PMID: 38501546] - Xinying Fu, Siyang Yan, Zongren Hu, Wen Sheng, Wanyu Li, Shida Kuang, Xue Feng, Lumei Liu, Wei Zhang, Qinghu He. Guhan Yangsheng Jing mitigates hippocampal neuronal pyroptotic injury and manifies learning and memory capabilities in sleep deprived mice via the NLRP3/Caspase1/GSDMD signaling pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117972. doi:
10.1016/j.jep.2024.117972
. [PMID: 38403005] - Subhan Danish, Ghulam Sabir Hussain, Muhammad Baqir Hussain, Abdallah M Elgorban, Rahul Datta. Unveiling the potential of A. fabrum and γ-aminobutyric acid for mitigation of nickel toxicity in fenugreek.
Scientific reports.
2024 05; 14(1):11042. doi:
10.1038/s41598-024-61894-7
. [PMID: 38745058] - Haowen Luo, Qianqian Zhang, Rifang Lai, Simin Zhang, Wentao Yi, Xiangru Tang. Regulation of 2-Acetyl-1-pyrroline Content in Fragrant Rice under Different Temperatures at the Grain-Filling Stage.
Journal of agricultural and food chemistry.
2024 May; 72(18):10521-10530. doi:
10.1021/acs.jafc.3c08637
. [PMID: 38656141] - Yao Wang, Dongwei Wang, Kai Wang, Shaoquan Weng, Rongbo Zheng, Xuwei Liu, Lei Zhao, Chuyuan Li, Zhuoyan Hu. Litchi pulp-derived gamma-aminobutyric acid (GABA) extract counteracts liver inflammation induced by litchi thaumatin-like protein.
Food & function.
2024 May; 15(9):4818-4831. doi:
10.1039/d3fo05463b
. [PMID: 38606579] - Zhao Qian, Liu Lu, Wei Zihan, Bai Qianyue, Zhao Chungang, Zhang Shuheng, Pan Jiali, Yu Jiaxin, Zhang Shuang, Wei Jian. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle.
BMC plant biology.
2024 May; 24(1):365. doi:
10.1186/s12870-024-05023-6
. [PMID: 38706002] - Juyeong Cho, Eun-Bin Hong, Young-Sik Kim, Jungbin Song, Yeon Ha Ju, Hyunjin Kim, Hyowon Lee, Hocheol Kim, Min-Ho Nam. Baicalin and baicalein from Scutellaria baicalensis Georgi alleviate aberrant neuronal suppression mediated by GABA from reactive astrocytes.
CNS neuroscience & therapeutics.
2024 05; 30(5):e14740. doi:
10.1111/cns.14740
. [PMID: 38715318] - Julia V Bukanova, Elena I Solntseva, Vladimir G Skrebitsky. Factors promoting the release of picrotoxin from the trap in the GABA(A) receptor pore.
Neurochemistry international.
2024 May; 175(?):105703. doi:
10.1016/j.neuint.2024.105703
. [PMID: 38395151] - Shengqi Tan, Ying Zhu, Yaqiong Wang, Sijin Wu, Chong Xie, Xin Rui, Pei Wang, Runqiang Yang. Refrigerated storage stimulates isoflavone and γ-aminobutyric acid accumulation in germinated soybeans.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108667. doi:
10.1016/j.plaphy.2024.108667
. [PMID: 38678946] - Lusha Ye, Yanan Gao, Simon Wing Fai Mok, Wucan Liao, Yazhou Wang, Changjiang Chen, Lijun Yang, Junfeng Zhang, Liyun Shi. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia.
Journal of nanobiotechnology.
2024 Apr; 22(1):190. doi:
10.1186/s12951-024-02473-w
. [PMID: 38637808] - Ravindar Chinapaka, Dokku Sivaramakrishna, Suman Kumar Choudhury, Konga Manasa, Sudheer K Cheppali, Musti J Swamy. Structure, Self-Assembly, and Phase Behavior of Neuroactive N-Acyl GABAs: Doxorubicin Encapsulation in NPGABA/DPPC Liposomes and Release Studies.
Langmuir : the ACS journal of surfaces and colloids.
2024 Apr; 40(15):7883-7895. doi:
10.1021/acs.langmuir.3c03615
. [PMID: 38587263] - Jinpeng Li, Xingbei Liu, Shumin Chang, Wei Chu, Jingchen Lin, Hui Zhou, Zhuoran Hu, Mancang Zhang, Mingming Xin, Yingyin Yao, Weilong Guo, Xiaodong Xie, Huiru Peng, Zhongfu Ni, Qixin Sun, Yu Long, Zhaorong Hu. The potassium transporter TaNHX2 interacts with TaGAD1 to promote drought tolerance via modulating stomatal aperture in wheat.
Science advances.
2024 Apr; 10(15):eadk4027. doi:
10.1126/sciadv.adk4027
. [PMID: 38608020] - Ke-Xin Hao, Chun-Yan Shen, Jian-Guo Jiang. Sedative and hypnotic effects of Polygala tenuifolia willd. saponins on insomnia mice and their targets.
Journal of ethnopharmacology.
2024 Apr; 323(?):117618. doi:
10.1016/j.jep.2023.117618
. [PMID: 38141791] - Wei Wei Chuah, Joo Shun Tan, Siti Nur Hazwani Oslan, Pandian Bothi Raja. Enhancing food preservation with postbiotic metabolites γ-aminobutyric acid (GABA) and bacteriocin-like inhibitory substances (BLIS) produced by Lactobacillus brevis C23 co-cultures in plant-based medium.
Preparative biochemistry & biotechnology.
2024 Apr; 54(4):514-525. doi:
10.1080/10826068.2023.2252047
. [PMID: 37694843] - Ana M Marileo, César O Lara, Anggelo Sazo, Omayra V Contreras, Gabriel González, Patricio A Castro, Luis G Aguayo, Gustavo Moraga-Cid, Jorge Fuentealba, Carlos F Burgos, Gonzalo E Yévenes. Molecular Pharmacology of Gelsemium Alkaloids on Inhibitory Receptors.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063390
. [PMID: 38542362] - Guangzhao Shu, Yang He, Jin Suo, Chunhui Wu, Xudong Gong, Yangyang Xiang, Wenjiao Yang, Jiaxin Cheng, Yu Wang, Weiming Chen, Jingshan Shen. Cannabidiol exhibits anxiolytic-like effects and antipsychotic-like effects in mice models.
Neuroscience letters.
2024 Mar; 826(?):137723. doi:
10.1016/j.neulet.2024.137723
. [PMID: 38467272] - Tianzuo Wang, Xian Gu, Liyue Guo, Xinxin Zhang, Caihong Li. Integrated metabolomics and transcriptomics analysis reveals γ-aminobutyric acid enhances the ozone tolerance of wheat by accumulation of flavonoids.
Journal of hazardous materials.
2024 Mar; 465(?):133202. doi:
10.1016/j.jhazmat.2023.133202
. [PMID: 38091801] - Yueruxin Jin, Canying Li, Shuran Zhang, Jiaqi Liu, Miao Wang, Yan Guo, Hengping Xu, Yonghong Ge. Sucrose, cell wall, and polyamine metabolisms involve in preserving postharvest quality of 'Zaosu' pear fruit by L-glutamate treatment.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108455. doi:
10.1016/j.plaphy.2024.108455
. [PMID: 38428157] - Saif Ahmad, Qazi Fariduddin. 'Deciphering the enigmatic role of gamma-aminobutyric acid (GABA) in plants: Synthesis, transport, regulation, signaling, and biological roles in interaction with growth regulators and abiotic stresses.'.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108502. doi:
10.1016/j.plaphy.2024.108502
. [PMID: 38492486] - Manami Chakravorty, Krishna Kumar Jaiswal, Pooja Bhatnagar, Afreen Parveen, Shuchi Upadhyay, Mikhail S Vlaskin, Mohamed Fahad Alajmi, P K Chauhan, Manisha Nanda, Vinod Kumar. Exogenous GABA supplementation to facilitate Cr (III) tolerance and lipid biosynthesis in Chlorella sorokiniana.
Journal of environmental management.
2024 Mar; 355(?):120441. doi:
10.1016/j.jenvman.2024.120441
. [PMID: 38430879] - Chaofan Wan, Yucen Xia, Jinglan Yan, Weipeng Lin, Lin Yao, Meng Zhang, Inna Gaisler-Salomon, Lin Mei, Dong-Min Yin, Yongjun Chen. nNOS in Erbb4-positive neurons regulates GABAergic transmission in mouse hippocampus.
Cell death & disease.
2024 Feb; 15(2):167. doi:
10.1038/s41419-024-06557-1
. [PMID: 38396027] - Rujira Dolphen, Paitip Thiravetyan. Exogenous γ-aminobutyric acid and Bacillus pumilus reduce arsenic uptake and toxicity in rice.
Environmental science and pollution research international.
2024 Feb; 31(7):10609-10620. doi:
10.1007/s11356-024-31893-2
. [PMID: 38198091] - Huan Liu, Zhongda Wu, Yanting Du, Quan Zhou, Lianqing Chen, Shiwei Jin. Design, One-Step Highly Selective Synthesis and Enhancing Insecticidal Activity and Photo-Self-Degradation of Phenylpyrazole Esterified Derivatives as GABA and nACh Receptor Inhibitors.
Journal of agricultural and food chemistry.
2024 Jan; 72(4):2347-2361. doi:
10.1021/acs.jafc.3c04645
. [PMID: 38231789] - Heegu Jin, Hyein Han, Gunju Song, Hyun-Ji Oh, Boo-Yong Lee. Anti-Obesity Effects of GABA in C57BL/6J Mice with High-Fat Diet-Induced Obesity and 3T3-L1 Adipocytes.
International journal of molecular sciences.
2024 Jan; 25(2):. doi:
10.3390/ijms25020995
. [PMID: 38256069] - Saad Sulieman, Mohamed S Sheteiwy, Mostafa Abdelrahman, Lam-Son Phan Tran. γ-Aminobutyric acid (GABA) in N2-fixing-legume symbiosis: Metabolic flux and carbon/nitrogen homeostasis in responses to abiotic constraints.
Plant physiology and biochemistry : PPB.
2024 Jan; 207(?):108362. doi:
10.1016/j.plaphy.2024.108362
. [PMID: 38266561] - Surpreet Kaur, Sucheta Sharma, Prabhjot Singla. Selenium treatment alters the accumulation of osmolytes in arsenic-stressed rice (Oryza sativa L.).
Environmental science and pollution research international.
2024 Jan; ?(?):. doi:
10.1007/s11356-024-31890-5
. [PMID: 38198089] - Ryan Sprissler, Michael Hammer, David Labiner, Neil Joshi, Albert Alan, Martin Weinand. Leukocyte differential gene expression prognostic value for high versus low seizure frequency in temporal lobe epilepsy.
BMC neurology.
2024 Jan; 24(1):16. doi:
10.1186/s12883-023-03459-1
. [PMID: 38166692] - Elena Tafi, Simona Sagona, Valentina Meucci, Laura Bortolotti, Marta Galloni, Gherardo Bogo, Domenico Gatta, Lucia Casini, Marta Barberis, Massimo Nepi, Antonio Felicioli. Effect of amino acid enriched diets on hemolymph amino acid composition in honey bees.
Archives of insect biochemistry and physiology.
2024 Jan; 115(1):e22085. doi:
10.1002/arch.22085
. [PMID: 38288497] - Tatsuya Nishiyama, Noriko Wada, Hitoshi Kusakabe, Kenji Ueda. An Enzyme Assay Kit for GABA Quantification in Plant Tissues.
Methods in molecular biology (Clifton, N.J.).
2024; 2798(?):195-203. doi:
10.1007/978-1-0716-3826-2_13
. [PMID: 38587744] - Nisreen A Al-Quraan, Nezar H Samarah, Ayah A Tanash. Effect of drought stress on wheat (Triticum durum) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression.
Functional plant biology : FPB.
2024 01; 51(1):NULL. doi:
10.1071/fp22177
. [PMID: 36346967] - Pingping Dong, Hong Wang, Yanan Li, Jiayi Yu, Xin Liu, Yinglei Wang, Long Dai, Shaoping Wang. Active peptides from Eupolyphaga sinensis walker attenuates experimental hyperlipidemia by regulating the gut microbiota and biomarkers in rats with dyslipidemia.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Jan; 170(?):116064. doi:
10.1016/j.biopha.2023.116064
. [PMID: 38154268] - Yiying Lv, Yongteng Zhao, Yuansheng He, Jiming Wang, Yuanxian Zheng, Xiaolong Chen, Feiyan Huang, Jiani Liu, Lei Yu. Synergistic effects of gamma-aminobutyric acid and melatonin on seed germination and cadmium tolerance in tomato.
Plant signaling & behavior.
2023 12; 18(1):2216001. doi:
10.1080/15592324.2023.2216001
. [PMID: 37302802] - Vipul Mishra, Priya Gahlowt, Samiksha Singh, Nawal Kishore Dubey, Surendra Pratap Singh, Durgesh Kumar Tripathi, Vijay Pratap Singh. GABA: a key player of abiotic stress regulation.
Plant signaling & behavior.
2023 12; 18(1):2163343. doi:
10.1080/15592324.2022.2163343
. [PMID: 36655720] - Alberto Carrión-Antolí, Fátima Badiche-El Hilali, José M Lorente-Mento, Huertas M Díaz-Mula, María Serrano, Daniel Valero. Antioxidant Systems and Quality in Sweet Cherries Are Improved by Preharvest GABA Treatments Leading to Delay Postharvest Senescence.
International journal of molecular sciences.
2023 Dec; 25(1):. doi:
10.3390/ijms25010260
. [PMID: 38203428] - Yanjiao Shi, Yuxing Li, Tanfang Liu, Chengyu Guo, Wei Liang, Fengwang Ma, Cuiying Li. γ-Aminobutyric acid enhances salt tolerance by sustaining ion homeostasis in apples.
Plant physiology and biochemistry : PPB.
2023 Dec; 206(?):108306. doi:
10.1016/j.plaphy.2023.108306
. [PMID: 38154298] - Kensuke Kawade, Hiromitsu Tabeta, Ali Ferjani, Masami Yokota Hirai. The Roles of Functional Amino Acids in Plant Growth and Development.
Plant & cell physiology.
2023 Dec; 64(12):1482-1493. doi:
10.1093/pcp/pcad071
. [PMID: 37489637] - Hirokazu Kusaka, Saika Nakasato, Kaori Sano, Kenji Kobata, Sho Ohno, Motoaki Doi, Yoshiyuki Tanaka. An evolutionary view of vanillylamine synthase pAMT, a key enzyme of capsaicinoid biosynthesis pathway in chili pepper.
The Plant journal : for cell and molecular biology.
2023 Dec; ?(?):. doi:
10.1111/tpj.16573
. [PMID: 38117481] - Mohsen Hosseini, Abbas Saidi, Reza Maali-Amiri, Fariba Khosravi-Nejad, Amin Abbasi. Low-temperature acclimation related with developmental regulations of polyamines and ethylene metabolism in wheat recombinant inbred lines.
Plant physiology and biochemistry : PPB.
2023 Dec; 205(?):108198. doi:
10.1016/j.plaphy.2023.108198
. [PMID: 38008007] - Zemin Wu, Zui Shen, Yingling Xu, Shaozong Chen, Siqi Xiao, Jiayu Ye, Haiyan Zhang, Xinyi Ma, Yichen Zhu, Xixiao Zhu, Yongliang Jiang, Junfan Fang, Boyi Liu, Xiaofen He, Shuzhong Gao, Xiaomei Shao, Jinggen Liu, Jianqiao Fang. A neural circuit associated with anxiety-like behaviors induced by chronic inflammatory pain and the anxiolytic effects of electroacupuncture.
CNS neuroscience & therapeutics.
2023 Nov; ?(?):. doi:
10.1111/cns.14520
. [PMID: 38018559] - Wanli You, Jinglin Zhang, Xueyin Ru, Feng Xu, Zhengguo Wu, Peng Jin, Yonghua Zheng, Shifeng Cao. CmCML11 interacts with CmCAMTA5 to enhance γ-aminobutyric acid (GABA) accumulation by regulating GABA shunt in fresh-cut cantaloupe.
Plant physiology and biochemistry : PPB.
2023 Nov; 206(?):108217. doi:
10.1016/j.plaphy.2023.108217
. [PMID: 38039581] - Alexey Rayevsky, Maksym Platonov, Oleksandr Maximyuk, Olena Iegorova, Vasyl Hurmach, Yuliia Holota, Bulgakov Elijah, Andrii Cherninskyi, Karpov Pavel, Sergey Ryabukhin, Oleg Krishtal, Dmitriy Volochnyuk. Integrated workflow for the identification of new GABA positive allosteric modulators based on the in silico screening with further in vitro validation. Case study using Enamine's stock chemical space.
Molecular informatics.
2023 Nov; ?(?):. doi:
10.1002/minf.202300156
. [PMID: 37964718] - Vladislav V Yemelyanov, Roman K Puzanskiy, Maria F Shishova. Plant Life with and without Oxygen: A Metabolomics Approach.
International journal of molecular sciences.
2023 Nov; 24(22):. doi:
10.3390/ijms242216222
. [PMID: 38003412] - Pu Yang, Haiyan Chen, Tian Wang, Hong Su, Jing Li, Yujun He, Shengyong Su. Electroacupuncture promotes synaptic plasticity in rats with chronic inflammatory pain-related depression by upregulating BDNF/TrkB/CREB signaling pathway.
Brain and behavior.
2023 Nov; ?(?):e3310. doi:
10.1002/brb3.3310
. [PMID: 37948105] - Bo Xu, Xueying Feng, Adriane Piechatzek, Shuqun Zhang, Kai R Konrad, Johannes Kromdijk, Rainer Hedrich, Matthew Gilliham. The GABA shunt contributes to ROS homeostasis in guard cells of Arabidopsis.
The New phytologist.
2023 Nov; ?(?):. doi:
10.1111/nph.19390
. [PMID: 37936524] - Saeedeh Zarbakhsh, Ali Reza Shahsavar. Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses.
BMC plant biology.
2023 Nov; 23(1):543. doi:
10.1186/s12870-023-04568-2
. [PMID: 37926819] - Yueyue Xu, Zhongda Wu, Zilou Wan, Yanting Du, Quan Zhou, Lianqing Chen, Shiwei Jin. Design and One-Pot Ultrasound Synthesis of Inorganic Base-Promoted Fluorescent Ligand-Gated Ion Channel Fused Arylpyrazole Sulfonamide Skeletons to Enhance Phloem Mobility and Insecticidal Activity as GABA and nACh Receptors Inhibitors.
Journal of agricultural and food chemistry.
2023 Nov; 71(43):16331-16351. doi:
10.1021/acs.jafc.3c04861
. [PMID: 37871250] - Hao Zhang, Mingqi Qiao, Dongmei Gao, Jieqiong Wang, Chunyan Sun, Ya Sun, Yang Zhang, Huayuan Liu, Zhen Zhang, Mingzhou Gao. Shuyu capsule alleviates premenstrual depression via allopregnanolone metabolic pathway targeting GABA (A) receptors δ subunit in the hippocampus.
Asian journal of psychiatry.
2023 Oct; 90(?):103800. doi:
10.1016/j.ajp.2023.103800
. [PMID: 37898099] - Xinye Li, Chao He, Min Shen, Mingyun Wang, Jingwen Zhou, Dongying Chen, Tong Zhang, Yiqiong Pu. Effects of aqueous extracts and volatile oils prepared from Huaxiang Anshen decoction on p-chlorophenylalanine-induced insomnia mice.
Journal of ethnopharmacology.
2023 Oct; 319(Pt 3):117331. doi:
10.1016/j.jep.2023.117331
. [PMID: 37858748] - Jiarun Han, Xilian Zhao, Xin Zhao, Qi Wang, Ping Li, Qing Gu. Microbial-Derived γ-Aminobutyric Acid: Synthesis, Purification, Physiological Function, and Applications.
Journal of agricultural and food chemistry.
2023 Oct; 71(41):14931-14946. doi:
10.1021/acs.jafc.3c05269
. [PMID: 37792666] - Kirsten H Benidickson, Lee Marie Raytek, Gordon J Hoover, Edward J Flaherty, Barry J Shelp, Wayne A Snedden, William C Plaxton. Glutamate decarboxylase-1 is essential for efficient acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation.
The New phytologist.
2023 Oct; ?(?):. doi:
10.1111/nph.19300
. [PMID: 37837235] - Yuhan Ma, Ping Huang, Shoucheng Huang, Uzma Younis, Ghulam Sabir Hussain, Shah Fahad, Subhan Danish, Mohamed Soliman Elshikh, Humaira Rizwana. γ-Aminobutyric acid (GABA) and ectoine (ECT) impacts with and without AMF on antioxidants, gas exchange attributes and nutrients of cotton cultivated in salt affected soil.
BMC plant biology.
2023 Oct; 23(1):476. doi:
10.1186/s12870-023-04486-3
. [PMID: 37807063] - Aurelien Fossueh Foutsop, Gilbert Ateufack, Blesdel Maxwell Adassi, Francis Bray Yassi, Tatiana Diebo Kom, Chretien Mbeugangkeng Noungoua, Adolph Petsou, Gwladys Temkou Ngoupaye. The Aqueous Lyophilisate of Alchemilla Kiwuensis Engl. (Rosaceae) Displays Antiepileptogenic and Antiepileptic Effects on PTZ-induced Kindling in rats: Evidence of Modulation of Glutamatergic and GABAergic Pathways Coupled to Antioxidant Properties.
Neurochemical research.
2023 Oct; 48(10):3228-3248. doi:
10.1007/s11064-023-03982-0
. [PMID: 37436614] - Hao Gao, Qian Zhao, Jian-Gang Song, Guo-Xia Hu, Wei-Feng Yu, Ying-Fu Jiao, Jin-Chao Song. Bilirubin potentiates etomidate-induced sedation by enhancing GABA-induced currents after bile duct ligation.
BMC pharmacology & toxicology.
2023 09; 24(1):46. doi:
10.1186/s40360-023-00675-w
. [PMID: 37740245] - Zhiyu Sun, Chunming Bai, Yifei Liu, Mingzhu Ma, Siwei Zhang, Huan Liu, Rui Bai, Xiaori Han, Jean Wan Hong Yong. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis.
Ecotoxicology and environmental safety.
2023 Sep; 263(?):115388. doi:
10.1016/j.ecoenv.2023.115388
. [PMID: 37611478] - Yun-Long Chen, Hao-Nan Nie, Hui Dong, Qi Gao, Xue Peng, Ning Wang, Xueling Chen, Qing-Zheng Liu, Jiang-Kuo Li, Xiang-Bin Xu, You-Lin Xue. Revealing the mechanism underlying the effects of γ-aminobutyric acid-dioscorin interactions on dioscorin structure and emulsifying properties by molecular dynamic simulations.
Food research international (Ottawa, Ont.).
2023 09; 171(?):112982. doi:
10.1016/j.foodres.2023.112982
. [PMID: 37330840] - Hongxiu Song, Xue Lu, Demin Du, Yaqin Peng, Weichao Pan, Xing Xu, Yu Fan, Xin Yang, Feifei Ge, Xiaowei Guan. Gegen-Qinlian decoction-A traditional Chinese medicine formula-Alleviates methamphetamine withdrawal induced anxiety by targeting GABAergic interneuron-pyramidal neuron pathway in mPFC.
Addiction biology.
2023 Sep; 28(9):e13314. doi:
10.1111/adb.13314
. [PMID: 37644891] - Qiang Xia, Yuanrong Zheng, Libin Wang, Xiaojia Chen. Proposing Signaling Molecules as Key Optimization Targets for Intensifying the Phytochemical Biosynthesis Induced by Emerging Nonthermal Stress Pretreatments of Plant-Based Foods: A Focus on γ-Aminobutyric Acid.
Journal of agricultural and food chemistry.
2023 Aug; 71(34):12622-12644. doi:
10.1021/acs.jafc.3c04413
. [PMID: 37599447] - Pinghui Wei, Guoge Han, Meiqin He, Yan Wang. Retinal Neurotransmitter Alteration in Response to Dopamine D2 Receptor Antagonist from Myopic Guinea Pigs.
ACS chemical neuroscience.
2023 Aug; ?(?):. doi:
10.1021/acschemneuro.3c00099
. [PMID: 37647579] - John Cowgill, Chen Fan, Nandan Haloi, Victor Tobiasson, Yuxuan Zhuang, Rebecca J Howard, Erik Lindahl. Structure and dynamics of differential ligand binding in the human ρ-type GABAA receptor.
Neuron.
2023 Aug; ?(?):. doi:
10.1016/j.neuron.2023.08.006
. [PMID: 37659407] - Aleksandr P Kalinovskii, Anton P Pushkarev, Anastasia D Mikhailenko, Denis S Kudryavtsev, Olga A Belozerova, Vladimir I Shmygarev, Oleg N Yatskin, Yuliya V Korolkova, Sergey A Kozlov, Dmitry I Osmakov, Alexander Popov, Yaroslav A Andreev. Dual Modulator of ASIC Channels and GABAA Receptors from Thyme Alters Fear-Related Hippocampal Activity.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713148
. [PMID: 37685955] - Zhong Qiang Jia, Su Gui Zhang, Ying Wang, Jun Heng Pan, Fei Fan Liu, En Ling Zhan, Eman Atef Fouad, Ya Li Fu, Qi Rui Pan, Chun Qing Zhao. Physiological Function of RDL1 and RDL2 Subunits of the Ionotropic GABA Receptor in the Spodoptera litura with the CRISPR/Cas9 System In Vivo.
Journal of agricultural and food chemistry.
2023 Aug; 71(31):11875-11883. doi:
10.1021/acs.jafc.3c02811
. [PMID: 37490029] - Yu Sun, Qingwei Cao, Yuanyuan Huang, Tingting Lu, Haile Ma, Xiumin Chen. Mechanistic study on the inhibition of α-amylase and α-glucosidase using the extract of ultrasound-treated coffee leaves.
Journal of the science of food and agriculture.
2023 Jul; ?(?):. doi:
10.1002/jsfa.12890
. [PMID: 37515816] - Shujun Wang, Leilei Liu, Shuzhi Liang, Jinni Yang, Yan Zhang, Xijian Liu. Effects of BXSMD on ESR1 and ESR2 expression in CSD female mice.
Journal of ethnopharmacology.
2023 Jul; 318(Pt B):116973. doi:
10.1016/j.jep.2023.116973
. [PMID: 37517566] - Ya-Yue Yang, Li-Xia Du, Jian-Yu Zhu, Ting Yi, Ya-Chen Yang, Zheng Qiao, Qi-Liang Maoying, Yu-Xia Chu, Yan-Qing Wang, Wen-Li Mi. Antipruritic effects of geraniol on acute and chronic itch via modulating spinal GABA/GRPR signaling.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jul; 119(?):154969. doi:
10.1016/j.phymed.2023.154969
. [PMID: 37516088] - Evangelia Ralli, Apostolos Spyros. A Study of Greek Graviera Cheese by NMR-Based Metabolomics.
Molecules (Basel, Switzerland).
2023 Jul; 28(14):. doi:
10.3390/molecules28145488
. [PMID: 37513360] - Ankita Rajput, Palvi Sharma, Nitish Kumar, Hasandeep Singh, Tanveer Singh, Sharabjit Singh, Preet Mohinder Singh Bedi, Balbir Singh, Saroj Arora, Sarabjit Kaur. Anticonvulsant potential of Grewia tiliaefolia in pentylenetetrazole induced epilepsy: insights from in vivo and in silico studies.
Metabolic brain disease.
2023 Jul; ?(?):. doi:
10.1007/s11011-023-01252-0
. [PMID: 37436587] - Michael Sahagian, Alicia Mastrocco, Jennifer Prittie. Phenibut toxicosis in a dog.
Journal of veterinary emergency and critical care (San Antonio, Tex. : 2001).
2023 Jul; 33(4):472-476. doi:
10.1111/vec.13313
. [PMID: 37436877] - Balbine Kamleu Nkwingwa, Eglantine Keugong Wado, Harquin Simplice Foyet, Parfait Bouvourne, Vanessa Tita Jugha, Alain Hart Mann Youbi Mambou, Raymond Bess Bila, Germain Sotoing Taiwe. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Jun; 165(?):115093. doi:
10.1016/j.biopha.2023.115093
. [PMID: 37392651] - Yaron Caspi, Chrysoula K Pantazopoulou, Jeanine J Prompers, Corné M J Pieterse, Hilleke Hulshoff Pol, Kaisa Kajala. Why did glutamate, GABA, and melatonin become intercellular signalling molecules in plants?.
eLife.
2023 Jun; 12(?):. doi:
10.7554/elife.83361
. [PMID: 37338964] - Chun Woong Park, Ki-Bae Hong, Hyung Joo Suh, Yejin Ahn. Sleep-promoting activity of amylase-treated Ashwagandha (Withania somnifera L. Dunal) root extract via GABA receptors.
Journal of food and drug analysis.
2023 Jun; 31(2):278-288. doi:
10.38212/2224-6614.3456
. [PMID: 37335157] - Yanni Wu, Shudong He, Tiange Pan, Xinya Miao, Jie Xiang, Yongkang Ye, Xiaodong Cao, Hanju Sun. Enhancement of γ-aminobutyric acid and relevant metabolites in brown glutinous rice (Oryza sativa L.) through salt stress and low-frequency ultrasound treatments at pre-germination stage.
Food chemistry.
2023 Jun; 410(?):135362. doi:
10.1016/j.foodchem.2022.135362
. [PMID: 36608561] - Yuxing Li, Yinglian Cui, Boyang Liu, Ruixuan Xu, Yanjiao Shi, Lingling Lv, Hongtao Wang, Yueming Shang, Wei Liang, Fengwang Ma, Cuiying Li. γ-Aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples.
Molecular plant pathology.
2023 06; 24(6):588-601. doi:
10.1111/mpp.13325
. [PMID: 36932866] - Yejin Ahn, Hee Hwan Lee, Byung-Hak Kim, Sang Jae Park, Young Suk Kim, Hyung Joo Suh, Kyungae Jo. Heukharang lettuce (Lactuca sativa L.) leaf extract displays sleep-promoting effects through GABAA receptor.
Journal of ethnopharmacology.
2023 May; ?(?):116602. doi:
10.1016/j.jep.2023.116602
. [PMID: 37149068] - Byungjick Min, Yejin Ahn, Hyeok-Jun Cho, Woong-Kwon Kwak, Kyungae Jo, Hyung Joo Suh. Chemical compositions and sleep-promoting activities of hop (Humulus lupulus L.) varieties.
Journal of food science.
2023 May; 88(5):2217-2228. doi:
10.1111/1750-3841.16544
. [PMID: 37038885] - Xue-Jing Huang, Shao-Fen Jian, Si Wan, Jian-Hua Miao, Chu Zhong. Exogenous γ-aminobutyric acid (GABA) alleviates nitrogen deficiency by mediating nitrate uptake and assimilation in Andrographis paniculata seedlings.
Plant physiology and biochemistry : PPB.
2023 May; 198(?):107700. doi:
10.1016/j.plaphy.2023.107700
. [PMID: 37086691] - Hao Zhang, Zhan Gao, Ya Sun, Tian Lu, Zhenzhen Wang, Dongmei Gao, Jieqiong Wang, Mingqi Qiao, Mingzhou Gao. Profiling GABA(A) Receptor Subunit Expression in the Hippocampus of PMDD Rat Models Based on TCM Theories.
Molecular neurobiology.
2023 Apr; ?(?):. doi:
10.1007/s12035-023-03354-3
. [PMID: 37103685] - Jiang Shuochen, Zhang Lihe, Hu Fenqin, Tang Xiangru, Du Bin. Zinc supplementation and light intensity affect 2-acetyl-1-pyrroline (2AP) formation in fragrant rice.
BMC plant biology.
2023 Apr; 23(1):194. doi:
10.1186/s12870-022-03954-6
. [PMID: 37041465] - Karuna Sharma, Rupam Kapoor. Arbuscular mycorrhiza differentially adjusts central carbon metabolism in two contrasting genotypes of Vigna radiata (L.) Wilczek in response to salt stress.
Plant science : an international journal of experimental plant biology.
2023 Apr; 332(?):111706. doi:
10.1016/j.plantsci.2023.111706
. [PMID: 37054921] - Nezar H Samarah, Nisreen A Al-Quraan, Batool S Al-Wraikat. Ultrasonic treatment to enhance seed germination and vigour of wheat (Triticum durum) in association with γ-aminobutyric acid (GABA) shunt pathway.
Functional plant biology : FPB.
2023 04; 50(4):277-293. doi:
10.1071/fp22211
. [PMID: 36634915] - M V Kustova, I I Prokofiev, V N Perfilova, E A Muzyko, V E Zavadskaya, S V Varlamova, A S Kucheryavenko, I N Tyurenkov, O S Vasilyeva. The role of iNOS inhibition in the mechanism of the cardioprotective effect of new GABA and glutamic acid derivatives in the model of acute alcoholic myocardial injury in rats.
Biomeditsinskaia khimiia.
2023 Apr; 69(2):112-124. doi:
10.18097/pbmc20236902112
. [PMID: 37132493] - Qingli Liu, Xu Li, Shuwang Jin, Wanqi Dong, Yong Zhang, Wei Chen, Liyu Shi, Shifeng Cao, Zhenfeng Yang. γ-Aminobutyric acid treatment induced chilling tolerance in postharvest kiwifruit (Actinidia chinensis cv. Hongyang) via regulating ascorbic acid metabolism.
Food chemistry.
2023 Mar; 404(Pt B):134661. doi:
10.1016/j.foodchem.2022.134661
. [PMID: 36283321] - Hongli Zhou, Zhili Rao, Zuo Zhang, Jiyin Zhou. Function of the GABAergic System in Diabetic Encephalopathy.
Cellular and molecular neurobiology.
2023 Mar; 43(2):605-619. doi:
10.1007/s10571-022-01214-7
. [PMID: 35460435] - Qing-Qing Hou, Qiu-Tang Huang, Qi Xu, Cong Zhou, Yao-Yao Du, Yun-Fan Ji, Zhi-Ping Xu, Jia-Gao Cheng, Chun-Qing Zhao, Zhong Li, Xu-Sheng Shao. Synthesis and activity-detection of photoswitchable ligands with fipronil to insect.
Pest management science.
2023 Mar; 79(3):1086-1093. doi:
10.1002/ps.7279
. [PMID: 36334017] - Chenxuan Ji, Ming Wu, Jiaqi Zou, Jiayi Fu, Hongzhang Chen, Wenzhi Li, Xiaoyong Wu. Protection of γ-Amino Butyric Acid on Radiation Induced Intestinal Injury in Mice.
Molecular nutrition & food research.
2023 Feb; ?(?):e2200522. doi:
10.1002/mnfr.202200522
. [PMID: 36855784] - Robert S Cantor. Kinetic Model of Adsorption of Aqueous Solutes onto Lipid Bilayers: Modulation of the Activity of Membrane Proteins.
The journal of physical chemistry. B.
2023 02; 127(7):1598-1606. doi:
10.1021/acs.jpcb.2c08714
. [PMID: 36763041] - Peng Chen, Ning-Yu Huang, Bo Pang, Zeng-Jie Ye, Rui-Xi Luo, Chang Liu, Qian Gong, Chen Wang, Long Wang. Proteomic and metabolomic approaches elucidate the molecular mechanism of emodin against neuropathic pain through modulating the gamma-aminobutyric acid (GABA)-ergic pathway and PI3K/AKT/NF-κB pathway.
Phytotherapy research : PTR.
2023 Feb; ?(?):. doi:
10.1002/ptr.7704
. [PMID: 36723382] - Bao Gong, Can-Hong Wang, Yu-Lan Wu, Yang-Yang Liu, Jian-He Wei. [Anxiolytic and antidepressant effects of agarwood inhalation and its mechanism].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Feb; 48(4):1023-1031. doi:
10.19540/j.cnki.cjcmm.20221027.401
. [PMID: 36872273] - Weilin Liu, Xiaojun He, Huawei Lin, Minguang Yang, Yaling Dai, Lewen Chen, Chaohui Li, Shengxiang Liang, Jing Tao, Lidian Chen. Ischemic stroke rehabilitation through optogenetic modulation of parvalbumin neurons in the contralateral motor cortex.
Experimental neurology.
2023 02; 360(?):114289. doi:
10.1016/j.expneurol.2022.114289
. [PMID: 36471512] - Keman Mu, Jian Zhang, Xinqian Feng, Di Zhang, Kangning Li, Rui Li, Peng Yang, Shengjun Mao. Sedative-hypnotic effects of Boropinol-B on mice via activation of GABAA receptors.
The Journal of pharmacy and pharmacology.
2023 Jan; 75(1):57-65. doi:
10.1093/jpp/rgac077
. [PMID: 36385301] - Shana Wuken, Junjun Li, Xiaoli Gao, Shungang Jiao, Xiaojing Ma, Suyile Chen, Pengfei Tu, Luqi Huang, Xingyun Chai. Zerumbone, a major sesquiterpene from Syringa pinnatifolia Hemsl., exerts the sedative effect by regulating GABAergic nervous system.
Journal of ethnopharmacology.
2023 Jan; 301(?):115813. doi:
10.1016/j.jep.2022.115813
. [PMID: 36220513] - Taiwo G Olubodun-Obadun, Ismail O Ishola, Timisola P Adesokan, Blessing O Anih, Olufunmilayo O Adeyemi. Antidepressant- and anxiolytic-like actions of Cajanus cajan seed extract mediated through monoaminergic, nitric oxide-cyclic GMP and GABAergic pathways.
Journal of ethnopharmacology.
2023 Jan; 306(?):116142. doi:
10.1016/j.jep.2023.116142
. [PMID: 36638856] - Ziwei Chen, Jinping Gu, Susu Lin, Zijin Xu, Hongyu Xu, Jiajing Zhao, Peishi Feng, Yi Tao, Suhong Chen, Ping Wang. Saffron essential oil ameliorates CUMS-induced depression-like behavior in mice via the MAPK-CREB1-BDNF signaling pathway.
Journal of ethnopharmacology.
2023 Jan; 300(?):115719. doi:
10.1016/j.jep.2022.115719
. [PMID: 36126781] - Di Feng, Qian Gao, Xiaoan Sun, Songrui Ning, Na Qi, Zetian Hua, Jingchun Tang. Effects of foliage-applied exogenous γ-aminobutyric acid on seedling growth of two rice varieties under salt stress.
PloS one.
2023; 18(2):e0281846. doi:
10.1371/journal.pone.0281846
. [PMID: 36821566] - Hong-Ying Chen, Peng-Fei Yao, Yan-Qi Han, Xu Xu, Jun Xu, Bi-Yan Pan, Dong-Sheng Ouyang, Tie-Jun Zhang. ["Component-target-efficacy" network analysis and experimental verification of Qingkailing Oral Preparation].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jan; 48(1):170-182. doi:
10.19540/j.cnki.cjcmm.20220920.401
. [PMID: 36725269] - Pengda Cheng, Qianyu Yue, Yutian Zhang, Shuang Zhao, Abid Khan, Xinyue Yang, Jieqiang He, Shicong Wang, Wenyun Shen, Qian Qian, Wanshan Du, Fengwang Ma, Dehui Zhang, Qingmei Guan. Application of γ-aminobutyric acid (GABA) improves fruit quality and rootstock drought tolerance in apple.
Journal of plant physiology.
2023 Jan; 280(?):153890. doi:
10.1016/j.jplph.2022.153890
. [PMID: 36571915] - Yu Shan, Jianan Zhao, Yixin Zheng, Shicheng Guo, Steven J Schrodi, Dongyi He. Understanding the function of the GABAergic system and its potential role in rheumatoid arthritis.
Frontiers in immunology.
2023; 14(?):1114350. doi:
10.3389/fimmu.2023.1114350
. [PMID: 36825000] - Yunfeng Tang, Lixin Sun, Yun Zhao, Jingchun Yao, Zhong Feng, Zhong Liu, Guimin Zhang, Chenghong Sun. UHPLC-ESI-QE-Orbitrap-MS based metabolomics reveals the antioxidant mechanism of icaritin on mice with cerebral ischemic reperfusion.
PeerJ.
2023; 11(?):e14483. doi:
10.7717/peerj.14483
. [PMID: 36643627] - Meisam Keshtkar Garoosi, Forough Sanjarian, Mehrdad Chaichi. The role of γ-aminobutyric acid and salicylic acid in heat stress tolerance under salinity conditions in Origanum vulgare L.
PloS one.
2023; 18(7):e0288169. doi:
10.1371/journal.pone.0288169
. [PMID: 37418380]