Chorismate (BioDeep_00000003941)
Secondary id: BioDeep_00001868720
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C10H10O6 (226.04773600000001)
中文名称: 氯磺酸
谱图信息:
最多检出来源 Homo sapiens(otcml) 9.51%
分子结构信息
SMILES: C1=C[C@H]([C@@H](C=C1C(=O)O)OC(=C)C(=O)O)O
InChI: InChI=1S/C10H10O6/c1-5(9(12)13)16-8-4-6(10(14)15)2-3-7(8)11/h2-4,7-8,11H,1H2,(H,12,13)(H,14,15)/t7-,8-/m1/s1
描述信息
Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia [HMDB]. Chorismate is found in many foods, some of which are pigeon pea, ucuhuba, beech nut, and fireweed.
Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia.
CONFIDENCE standard compound; INTERNAL_ID 114
同义名列表
15 个代谢物同义名
(3R,4R)-3-[(1-carboxyeth-1-en-1-yl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylic acid; (3R-trans)-3-((1-Carboxyethenyl)oxy)-4-hydroxy-1,5-cyclohexadiene-1-carboxylic acid; (3R,4R)-3-[(1-Carboxyethenyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylic acid; (3R,4R)-3-[(1-Carboxyethenyl)oxy]-4-hydroxy-1,5-cyclohexadiene-1-carboxylic acid; (3R-trans)-3-(1-Carboxyvinyloxy)-4-hydroxy-1,5-cyclohexadiene-1-carboxylic acid; (3R-trans)-3-((1-Carboxyethenyl)oxy)-4-hydroxy-1,5-cyclohexadiene-1-carboxylate; (3R,4R)-3-[(1-Carboxyvinyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylic acid; (3R,4R)-3-[(1-Carboxyethenyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylate; (3R,4R)-3-[(1-Carboxyvinyl)oxy]-4-hydroxycyclohexa-1,5-diene-1-carboxylate; (-)-Chorismic acid; Acid, chorismic; Chorismic acid; SCHEMBL2619122; Chorismate; Chorismate
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:17333
- KEGG: C00251
- PubChem: 12039
- PubChem: 306
- HMDB: HMDB0012199
- Metlin: METLIN62850
- Metlin: METLIN368
- Wikipedia: Chorismic_acid
- MeSH: Chorismic Acid
- MetaCyc: CHORISMATE
- KNApSAcK: C00000733
- foodb: FDB028846
- chemspider: 11542
- CAS: 55508-12-8
- CAS: 617-12-9
- MoNA: RP011402
- MoNA: RP011403
- MoNA: RP011401
- PMhub: MS000013751
- PubChem: 3550
- PDB-CCD: ISJ
- 3DMET: B01200
- NIKKAJI: J7.035A
- LOTUS: LTS0252042
- KNApSAcK: 17333
分类词条
相关代谢途径
PlantCyc(0)
代谢反应
700 个相关的代谢反应过程信息。
Reactome(2)
- Mycobacterium tuberculosis biological processes:
CYSTA + H2O ⟶ 2OBUTA + L-Cys + ammonia
- Chorismate via Shikimate Pathway:
ATP + SKM ⟶ ADP + SKMP
BioCyc(7)
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- ubiquinone (coenzyme Q) biosynthesis:
L-tyrosine ⟶ ammonia + p-hydroxyphenylpyruvate
- tyrosine biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- phenylalanine biosynthesis:
L-glutamate + phenylpyruvate ⟶ α-ketoglutarate + L-phenylalanine
- chorismate biosynthesis:
NADP+ + shikimate ⟶ 3-dehydro-shikimate + NADPH
- tetrahydrofolate biosynthesis:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
WikiPathways(2)
- Acetaminophen synthesis:
4-Aminophenol ⟶ Acetaminophen
- Tryptophan biosynthesis:
anthranilate ⟶ N-(5'-Phosphoribosyl)anthranilate
Plant Reactome(659)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid biosynthesis:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
L-Ser + indole ⟶ H2O + L-Trp
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Tryptophan biosynthesis:
indole-3-glycerol-phosphate ⟶ glyceraldehyde 3-phosphate + indole
- Phenylalanine biosynthesis I:
CRSM ⟶ prephenate
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
prephenate ⟶ H2O + carbon dioxide + phenylpyruvate
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
prephenate ⟶ H2O + carbon dioxide + phenylpyruvate
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- Phenylalanine biosynthesis I:
L-Glu + phenylpyruvate ⟶ 2OG + L-Phe
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
ATP + SKM ⟶ ADP + SKMP
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- shikimate pathway:
3-dehydro-shikimate + TPNH ⟶ SKM + TPN
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate biosynthesis:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
- Tetrahydrofolate biosynthesis II:
6-hydroxymethyl-dihydropterin + ATP ⟶ 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine diphosphate + AMP
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- vitamin K1:
ATP + CoA-SH + O-succinylbenzoate ⟶ 4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + AMP + PPi
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
CRSM ⟶ isochorismate
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- vitamin K1:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA ⟶ 1,4-dihydroxy-2-naphthoate + CoA-SH
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(30)
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Secondary Metabolites: Ubiquinol Biosynthesis:
2-Octaprenylphenol + Hydrogen Ion + NADPH + Oxygen ⟶ 2-Octaprenyl-6-hydroxyphenol + NADP + Water
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Secondary Metabolites: Ubiquinol Biosynthesis 2:
2-Octaprenylphenol + Hydrogen Ion + NADPH + Oxygen ⟶ 2-Octaprenyl-6-hydroxyphenol + NADP + Water
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Secondary Metabolites: Ubiquinol Biosynthesis:
Chorismate ⟶ 4-Hydroxybenzoic acid + Pyruvic acid
- Secondary Metabolites: Ubiquinol Biosynthesis 2:
Chorismate ⟶ 4-Hydroxybenzoic acid + Pyruvic acid
- Tyrosine Biosynthesis:
4-Hydroxyphenylpyruvic acid + L-Glutamic acid ⟶ L-Tyrosine + Oxoglutaric acid
- Phenylalanine Biosynthesis:
L-Glutamic acid + Phenylpyruvic acid ⟶ L-Phenylalanine + Oxoglutaric acid
- Phenylalanine Metabolism:
Ammonia + Cytochrome c-552 + Phenylpyruvic acid ⟶ Cytochrome c-552 + D-phenylalanine + Water
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Alanine ⟶ L-Phenylalanine + Pyruvic acid
- Tyrosine Metabolism:
4-Hydroxyphenylpyruvic acid + L-Alanine ⟶ L-Tyrosine + Pyruvic acid
- Phenylalanine Metabolism:
2-Oxo-3-phenylpropanoic acid (Mixture oxo and keto) + L-Tyrosine ⟶ 4-Hydroxyphenylpyruvic acid + L-Phenylalanine
- Tyrosine Metabolism:
4-Fumarylacetoacetic acid + Water ⟶ Acetoacetic acid + Fumaric acid + Hydrogen Ion
- Phenylalanine Biosynthesis:
L-Glutamic acid + Phenylpyruvic acid ⟶ L-Phenylalanine + Oxoglutaric acid
- Folate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Tetrahydrofolate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Folate Biosynthesis:
Adenosine triphosphate + HMDHP ⟶ Adenosine monophosphate + HMDHP pyrophosphate + Hydrogen Ion
- Folate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- 2,3-Dihydroxybenzoate Biosynthesis:
Water + isochorismate ⟶ (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + Pyruvic acid
- Biosynthesis of Siderophore Group Nonribosomal Peptides:
2,3-Dihydroxybenzoic acid + Adenosine triphosphate + L-Serine ⟶ Adenosine monophosphate + Hydrogen Ion + Pyrophosphate + enterobactin
- Chorismate Biosynthesis:
3-dehydroshikimate + Hydrogen Ion + NADPH ⟶ NADP + Shikimic acid
- Menaquinol Biosythesis:
2-succinylbenzoate + Adenosine triphosphate + Coenzyme A ⟶ 2-Succinylbenzoyl-CoA + Adenosine monophosphate + Pyrophosphate
- Enterobactin Biosynthesis:
(2,3-Dihydroxybenzoyl)adenylic acid + a holo-[EntB isochorismatase/aryl-carrier protein] ⟶ Adenosine monophosphate + Hydrogen Ion + a 2,3-dihydroxybenzoyl-[EntB isochorismatase/aryl-carrier protein]
- Shikimate Pathway (Chorismate Biosynthesis):
Adenosine triphosphate + Shikimic acid ⟶ Adenosine diphosphate + Hydrogen Ion + shikimate 3-phosphate
- 2,3-Dihydroxybenzoate Biosynthesis:
Water + isochorismate ⟶ (2S,3S)-2,3-dihydroxy-2,3-dihydrobenzoate + Pyruvic acid
- Biosynthesis of Siderophore Group Nonribosomal Peptides:
2,3-Dihydroxybenzoic acid + Adenosine triphosphate + L-Serine ⟶ Adenosine monophosphate + Hydrogen Ion + Pyrophosphate + enterobactin
- Chorismate Biosynthesis:
Adenosine triphosphate + Shikimic acid ⟶ Adenosine diphosphate + Hydrogen Ion + shikimate 3-phosphate
- Enterobactin Biosynthesis:
(2,3-Dihydroxybenzoyl)adenylic acid + a holo-[EntB isochorismatase/aryl-carrier protein] ⟶ Adenosine monophosphate + Hydrogen Ion + a 2,3-dihydroxybenzoyl-[EntB isochorismatase/aryl-carrier protein]
PharmGKB(0)
46 个相关的物种来源信息
- 4056 - Apocynaceae: LTS0252042
- 3702 - Arabidopsis thaliana: 10.1007/S004250050119
- 2 - Bacteria: LTS0252042
- 4057 - Catharanthus: LTS0252042
- 4058 - Catharanthus roseus: 10.1007/BF00233788
- 4058 - Catharanthus roseus: LTS0252042
- 2759 - Eukaryota: LTS0252042
- 4751 - Fungi: LTS0252042
- 25168 - Galium: LTS0252042
- 254777 - Galium mollugo: 10.1007/S004250050120
- 254777 - Galium mollugo: LTS0252042
- 9606 - Homo sapiens: -
- 3398 - Magnoliopsida: LTS0252042
- 2212703 - Mucoromycetes: LTS0252042
- 1913637 - Mucoromycota: LTS0252042
- 4836 - Phycomyces: LTS0252042
- 4837 - Phycomyces blakesleeanus: 10.1016/0031-9422(96)00146-X
- 4837 - Phycomyces blakesleeanus: LTS0252042
- 1344966 - Phycomycetaceae: LTS0252042
- 24966 - Rubiaceae: LTS0252042
- 1883 - Streptomyces: 10.1099/00221287-131-6-1279
- 1883 - Streptomyces: 10.1139/M79-220
- 1883 - Streptomyces: LTS0252042
- 1886 - Streptomyces albidoflavus: 10.1016/0003-9861(89)90300-7
- 1886 - Streptomyces albidoflavus: 10.1099/00221287-131-6-1279
- 1886 - Streptomyces albidoflavus: 10.1139/M79-220
- 1886 - Streptomyces albidoflavus: LTS0252042
- 1890 - Streptomyces antibioticus: LTS0252042
- 1898 - Streptomyces cacaoi: LTS0252042
- 66857 - Streptomyces cacaoi subsp. cacaoi: 10.1099/00221287-131-6-1279
- 66857 - Streptomyces cacaoi subsp. cacaoi: 10.1139/M79-220
- 1902 - Streptomyces coelicolor: 10.1016/0003-9861(89)90300-7
- 1902 - Streptomyces coelicolor: 10.1099/00221287-131-6-1279
- 1902 - Streptomyces coelicolor: 10.1139/M79-220
- 1902 - Streptomyces coelicolor: LTS0252042
- 1911 - Streptomyces griseus:
- 1911 - Streptomyces griseus: 10.1099/00221287-131-6-1279
- 1911 - Streptomyces griseus: 10.1139/M79-220
- 1911 - Streptomyces griseus: LTS0252042
- 1912 - Streptomyces hygroscopicus: 10.1099/00221287-131-6-1279
- 1912 - Streptomyces hygroscopicus: 10.1139/M79-220
- 1912 - Streptomyces hygroscopicus: LTS0252042
- 2062 - Streptomycetaceae: LTS0252042
- 35493 - Streptophyta: LTS0252042
- 58023 - Tracheophyta: LTS0252042
- 33090 - Viridiplantae: LTS0252042
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wei Li, Jinyu He, Xiuzhuo Wang, Matthew Ashline, Zirui Wu, Fengquan Liu, Zheng Qing Fu, Ming Chang. PBS3: a versatile player in and beyond salicylic acid biosynthesis in Arabidopsis.
The New phytologist.
2023 01; 237(2):414-422. doi:
10.1111/nph.18558
. [PMID: 36263689] - Ravikumar R Patel, Disha D Patel, Jaimika Bhatt, Parth Thakor, Lindsay R Triplett, Vasudev R Thakkar. Induction of pre-chorismate, jasmonate and salicylate pathways by Burkholderia sp. RR18 in peanut seedlings.
Journal of applied microbiology.
2021 Sep; 131(3):1417-1430. doi:
10.1111/jam.15019
. [PMID: 33522007] - Estanislao Burgos, Maria Belen De Luca, Isidore Diouf, Luis A de Haro, Elise Albert, Christopher Sauvage, Zhao J Tao, Luisa Bermudez, Ramon Asís, Adriano N Nesi, Michel Matringe, Claire Bréhélin, Thomas Guiraud, Carine Ferrand, Isabelle Atienza, Joana Jorly, Jean P Mauxion, Pierre Baldet, Alisdair R Fernie, Leandro Quadrana, Christophe Rothan, Mathilde Causse, Fernando Carrari. Validated MAGIC and GWAS population mapping reveals the link between vitamin E content and natural variation in chorismate metabolism in tomato.
The Plant journal : for cell and molecular biology.
2021 02; 105(4):907-923. doi:
10.1111/tpj.15077
. [PMID: 33179365] - Wenfang Lin, Hong Zhang, Dongmei Huang, Dirk Schenke, Daguang Cai, Binghua Wu, Ying Miao. Dual-Localized WHIRLY1 Affects Salicylic Acid Biosynthesis via Coordination of ISOCHORISMATE SYNTHASE1, PHENYLALANINE AMMONIA LYASE1, and S-ADENOSYL-L-METHIONINE-DEPENDENT METHYLTRANSFERASE1.
Plant physiology.
2020 12; 184(4):1884-1899. doi:
10.1104/pp.20.00964
. [PMID: 32900979] - Amna Mhamdi. Here, There, and Everywhere: Plastid- and Nuclear-Localized WHIRLY1 Regulates Salicylic Acid Homeostasis during Developmental Senescence.
Plant physiology.
2020 12; 184(4):1620-1621. doi:
10.1104/pp.20.01475
. [PMID: 33277328] - Zhu Li, Huiying Wang, Dongqin Ding, Yongfei Liu, Huan Fang, Zhishuai Chang, Tao Chen, Dawei Zhang. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway.
Journal of industrial microbiology & biotechnology.
2020 Jul; 47(6-7):525-535. doi:
10.1007/s10295-020-02288-2
. [PMID: 32642925] - Michael P Torrens-Spence, Anastassia Bobokalonova, Valentina Carballo, Christopher M Glinkerman, Tomáš Pluskal, Amber Shen, Jing-Ke Weng. PBS3 and EPS1 Complete Salicylic Acid Biosynthesis from Isochorismate in Arabidopsis.
Molecular plant.
2019 12; 12(12):1577-1586. doi:
10.1016/j.molp.2019.11.005
. [PMID: 31760159] - Yongkun Lv, Monireh Marsafari, Mattheos Koffas, Jingwen Zhou, Peng Xu. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
ACS synthetic biology.
2019 11; 8(11):2514-2523. doi:
10.1021/acssynbio.9b00193
. [PMID: 31622552] - Cynthia K Holland, Corey S Westfall, Jason E Schaffer, Alejandro De Santiago, Chloe Zubieta, Sophie Alvarez, Joseph M Jez. Brassicaceae-specific Gretchen Hagen 3 acyl acid amido synthetases conjugate amino acids to chorismate, a precursor of aromatic amino acids and salicylic acid.
The Journal of biological chemistry.
2019 11; 294(45):16855-16864. doi:
10.1074/jbc.ra119.009949
. [PMID: 31575658] - Dmitrij Rekhter, Daniel Lüdke, Yuli Ding, Kirstin Feussner, Krzysztof Zienkiewicz, Volker Lipka, Marcel Wiermer, Yuelin Zhang, Ivo Feussner. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid.
Science (New York, N.Y.).
2019 08; 365(6452):498-502. doi:
10.1126/science.aaw1720
. [PMID: 31371615] - Xiaowei Han, Florian Altegoer, Wieland Steinchen, Lynn Binnebesel, Jan Schuhmacher, Timo Glatter, Pietro I Giammarinaro, Armin Djamei, Stefan A Rensing, Stefanie Reissmann, Regine Kahmann, Gert Bange. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor.
Nature.
2019 01; 565(7741):650-653. doi:
10.1038/s41586-018-0857-9
. [PMID: 30651637] - Yingjie Zhou, Johan Memelink, Huub J M Linthorst. An E. coli biosensor for screening of cDNA libraries for isochorismate pyruvate lyase-encoding cDNAs.
Molecular genetics and genomics : MGG.
2018 Oct; 293(5):1181-1190. doi:
10.1007/s00438-018-1450-5
. [PMID: 29796759] - Chao Chen, Yonghua Zhang, Pan Ye, Xiaofeng Ma, Chaoxing Zheng, Genfa Zhang. ENO2 knock-out mutants in Arabidopsis modify the regulation of the gene expression response to NaCl stress.
Molecular biology reports.
2018 Oct; 45(5):1331-1338. doi:
10.1007/s11033-018-4292-7
. [PMID: 30120651] - Keith M Macaulay, Geraldine A Heath, Alessio Ciulli, Alex M Murphy, Chris Abell, John P Carr, Alison G Smith. The biochemical properties of the two Arabidopsis thaliana isochorismate synthases.
The Biochemical journal.
2017 04; 474(10):1579-1590. doi:
10.1042/bcj20161069
. [PMID: 28356402] - Takayuki Tohge, Alisdair R Fernie. An Overview of Compounds Derived from the Shikimate and Phenylpropanoid Pathways and Their Medicinal Importance.
Mini reviews in medicinal chemistry.
2017; 17(12):1013-1027. doi:
10.2174/1389557516666160624123425
. [PMID: 27342231] - Barbara Emonds-Alt, Nadine Coosemans, Thomas Gerards, Claire Remacle, Pierre Cardol. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5'-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii.
The Plant journal : for cell and molecular biology.
2017 01; 89(1):141-154. doi:
10.1111/tpj.13352
. [PMID: 27612091] - David A Lovelock, Ivana Šola, Sabine Marschollek, Caroline E Donald, Gordana Rusak, Karl-Heinz van Pée, Jutta Ludwig-Müller, David M Cahill. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease.
Molecular plant pathology.
2016 10; 17(8):1237-51. doi:
10.1111/mpp.12361
. [PMID: 26719902] - Rafia Mir, Shais Jallu, T P Singh. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes.
Critical reviews in microbiology.
2015 Jun; 41(2):172-89. doi:
10.3109/1040841x.2013.813901
. [PMID: 23919299] - Münevver Doğramacı, Michael E Foley, David P Horvath, Alvaro G Hernandez, Radhika S Khetani, Christopher J Fields, Kathleen M Keating, Mark A Mikel, James V Anderson. Glyphosate's impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching.
BMC genomics.
2015 May; 16(?):395. doi:
10.1186/s12864-015-1627-9
. [PMID: 25986459] - Xiaoyan Wang, Jiong Gao, Zheng Zhu, Xianxin Dong, Xiaolei Wang, Guodong Ren, Xin Zhou, Benke Kuai. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2015 Apr; 82(1):151-62. doi:
10.1111/tpj.12803
. [PMID: 25702611] - Marina Eremina, Wilfried Rozhon, Saiqi Yang, Brigitte Poppenberger. ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1.
The Plant journal : for cell and molecular biology.
2015 Mar; 81(6):895-906. doi:
10.1111/tpj.12775
. [PMID: 25620024] - Corey S Westfall, Ang Xu, Joseph M Jez. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.
The Journal of biological chemistry.
2014 Oct; 289(41):28619-28. doi:
10.1074/jbc.m114.591123
. [PMID: 25160622] - Christian Pfaff, Niels Glindemann, Jens Gruber, Margrit Frentzen, Radin Sadre. Chorismate pyruvate-lyase and 4-hydroxy-3-solanesylbenzoate decarboxylase are required for plastoquinone biosynthesis in the cyanobacterium Synechocystis sp. PCC6803.
The Journal of biological chemistry.
2014 Jan; 289(5):2675-86. doi:
10.1074/jbc.m113.511709
. [PMID: 24337576] - Jon Lucas Boatwright, Karolina Pajerowska-Mukhtar. Salicylic acid: an old hormone up to new tricks.
Molecular plant pathology.
2013 Aug; 14(6):623-34. doi:
10.1111/mpp.12035
. [PMID: 23621321] - Yeon Hee Ban, Jong Hyun Lee, Gyo Rim Gu, Boram Lee, SangJoon Mo, Ho Jeong Kwon, Yeo Joon Yoon. Mutational biosynthesis of a FK506 analogue containing a non-natural starter unit.
Molecular bioSystems.
2013 May; 9(5):944-7. doi:
10.1039/c2mb25419k
. [PMID: 23223556] - David Hansson, Audrius Menkis, Ke Olson, Jan Stenlid, Anders Broberg, Magnus Karlsson. Biosynthesis of fomannoxin in the root rotting pathogen Heterobasidion occidentale.
Phytochemistry.
2012 Dec; 84(?):31-9. doi:
10.1016/j.phytochem.2012.08.008
. [PMID: 22981000] - Alex Van Moerkercke, Carlos S Galván-Ampudia, Julian C Verdonk, Michel A Haring, Robert C Schuurink. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.
Journal of experimental botany.
2012 May; 63(8):3157-71. doi:
10.1093/jxb/ers034
. [PMID: 22345641] - Darren M Soanes, Apratim Chakrabarti, Konrad H Paszkiewicz, Angus L Dawe, Nicholas J Talbot. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.
PLoS pathogens.
2012 Feb; 8(2):e1002514. doi:
10.1371/journal.ppat.1002514
. [PMID: 22346750] - Stephanus J Ferreira, Uwe Sonnewald. The mode of sucrose degradation in potato tubers determines the fate of assimilate utilization.
Frontiers in plant science.
2012; 3(?):23. doi:
10.3389/fpls.2012.00023
. [PMID: 22639642] - Christoph Hemetsberger, Christian Herrberger, Bernd Zechmann, Morten Hillmer, Gunther Doehlemann. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity.
PLoS pathogens.
2012; 8(5):e1002684. doi:
10.1371/journal.ppat.1002684
. [PMID: 22589719] - Janick Mathys, Kaat De Cremer, Pieter Timmermans, Stefan Van Kerckhove, Bart Lievens, Mieke Vanhaecke, Bruno P A Cammue, Barbara De Coninck. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection.
Frontiers in plant science.
2012; 3(?):108. doi:
10.3389/fpls.2012.00108
. [PMID: 22661981] - Samantha Rayson, Luis Arciga-Reyes, Lucie Wootton, Marta De Torres Zabala, William Truman, Neil Graham, Murray Grant, Brendan Davies. A role for nonsense-mediated mRNA decay in plants: pathogen responses are induced in Arabidopsis thaliana NMD mutants.
PloS one.
2012; 7(2):e31917. doi:
10.1371/journal.pone.0031917
. [PMID: 22384098] - Rohan G T Lowe, Barbara J Howlett. Indifferent, affectionate, or deceitful: lifestyles and secretomes of fungi.
PLoS pathogens.
2012; 8(3):e1002515. doi:
10.1371/journal.ppat.1002515
. [PMID: 22396640] - Ilga Porth, Björn Hamberger, Richard White, Kermit Ritland. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway.
BMC genomics.
2011 Dec; 12(?):608. doi:
10.1186/1471-2164-12-608
. [PMID: 22177423] - Yunliu Zeng, Zhiyong Pan, Yuduan Ding, Andan Zhu, Hongbo Cao, Qiang Xu, Xiuxin Deng. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck].
Journal of experimental botany.
2011 Nov; 62(15):5297-309. doi:
10.1093/jxb/err140
. [PMID: 21841170] - Armin Djamei, Kerstin Schipper, Franziska Rabe, Anupama Ghosh, Volker Vincon, Jörg Kahnt, Sonia Osorio, Takayuki Tohge, Alisdair R Fernie, Ivo Feussner, Kirstin Feussner, Peter Meinicke, York-Dieter Stierhof, Heinz Schwarz, Boris Macek, Matthias Mann, Regine Kahmann. Metabolic priming by a secreted fungal effector.
Nature.
2011 Oct; 478(7369):395-8. doi:
10.1038/nature10454
. [PMID: 21976020] - Zhoutong Sun, Yuanyuan Ning, Lixia Liu, Yingmiao Liu, Bingbing Sun, Weihong Jiang, Chen Yang, Sheng Yang. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid.
Microbial cell factories.
2011 Sep; 10(?):71. doi:
10.1186/1475-2859-10-71
. [PMID: 21910908] - Tzu-Ying Sung, Tsui-Yun Chung, Chih-Ping Hsu, Ming-Hsiun Hsieh. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis.
BMC plant biology.
2011 Aug; 11(?):118. doi:
10.1186/1471-2229-11-118
. [PMID: 21861936] - Sangaalofa T Clark, Wynand S Verwoerd. A systems approach to identifying correlated gene targets for the loss of colour pigmentation in plants.
BMC bioinformatics.
2011 Aug; 12(?):343. doi:
10.1186/1471-2105-12-343
. [PMID: 21849042] - Shen Yu, Allegra Vit, Sean Devenish, H Khris Mahanty, Aymelt Itzen, Roger S Goody, Wulf Blankenfeldt. Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin/mitomycin C resistance in other bacteria.
BMC structural biology.
2011 Aug; 11(?):33. doi:
10.1186/1472-6807-11-33
. [PMID: 21849072] - Huimin Man, Stephan Pollmann, Elmar W Weiler, Edward G Kirby. Increased glutamine in leaves of poplar transgenic with pine GS1a caused greater anthranilate synthetase α-subunit (ASA1) transcript and protein abundances: an auxin-related mechanism for enhanced growth in GS transgenics?.
Journal of experimental botany.
2011 Aug; 62(13):4423-31. doi:
10.1093/jxb/err026
. [PMID: 21642235] - Ilka Nacif Abreu, Maria Ahnlund, Thomas Moritz, Benedicte Riber Albrectsen. UHPLC-ESI/TOFMS determination of salicylate-like phenolic gycosides in Populus tremula leaves.
Journal of chemical ecology.
2011 Aug; 37(8):857-70. doi:
10.1007/s10886-011-9991-7
. [PMID: 21748301] - Candace E Elliott, Ellen M Fox, Renee S Jarvis, Barbara J Howlett. The cross-pathway control system regulates production of the secondary metabolite toxin, sirodesmin PL, in the ascomycete, Leptosphaeria maculans.
BMC microbiology.
2011 Jul; 11(?):169. doi:
10.1186/1471-2180-11-169
. [PMID: 21791055] - Hiroaki Saika, Akira Oikawa, Fumio Matsuda, Haruko Onodera, Kazuki Saito, Seiichi Toki. Application of gene targeting to designed mutation breeding of high-tryptophan rice.
Plant physiology.
2011 Jul; 156(3):1269-77. doi:
10.1104/pp.111.175778
. [PMID: 21543727] - Barek Tamasloukht, Mary Sarah-Jane Wong Quai Lam, Yves Martinez, Koffi Tozo, Odile Barbier, Cyril Jourda, Alain Jauneau, Gisèle Borderies, Sandrine Balzergue, Jean-Pierre Renou, Stéphanie Huguet, Jean Pierre Martinant, Christophe Tatout, Catherine Lapierre, Yves Barrière, Deborah Goffner, Magalie Pichon. Characterization of a cinnamoyl-CoA reductase 1 (CCR1) mutant in maize: effects on lignification, fibre development, and global gene expression.
Journal of experimental botany.
2011 Jul; 62(11):3837-48. doi:
10.1093/jxb/err077
. [PMID: 21493812] - Annelies Haegeman, Soumi Joseph, Godelieve Gheysen. Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology.
Molecular and biochemical parasitology.
2011 Jul; 178(1-2):7-14. doi:
10.1016/j.molbiopara.2011.04.001
. [PMID: 21513748] - Juliana Almeida, Leandro Quadrana, Ramón Asís, Nathalia Setta, Fabiana de Godoy, Luisa Bermúdez, Santiago N Otaiza, Junia V Corrêa da Silva, Alisdair R Fernie, Fernando Carrari, Magdalena Rossi. Genetic dissection of vitamin E biosynthesis in tomato.
Journal of experimental botany.
2011 Jul; 62(11):3781-98. doi:
10.1093/jxb/err055
. [PMID: 21527625] - Marcel C van Verk, John F Bol, Huub J M Linthorst. WRKY transcription factors involved in activation of SA biosynthesis genes.
BMC plant biology.
2011 May; 11(?):89. doi:
10.1186/1471-2229-11-89
. [PMID: 21595875] - Alessandro Alboresi, Luca Dall'osto, Alessio Aprile, Petronia Carillo, Enrica Roncaglia, Luigi Cattivelli, Roberto Bassi. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein.
BMC plant biology.
2011 Apr; 11(?):62. doi:
10.1186/1471-2229-11-62
. [PMID: 21481232] - Hong Liang, Ying-Tao Zhao, Jie-Qiong Zhang, Xiu-Jie Wang, Rong-Xiang Fang, Yan-Tao Jia. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae.
BMC genomics.
2011 Jan; 12(?):87. doi:
10.1186/1471-2164-12-87
. [PMID: 21276262] - Thomas A Colquhoun, Joo Young Kim, Ashlyn E Wedde, Laura A Levin, Kyle C Schmitt, Robert C Schuurink, David G Clark. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.
Journal of experimental botany.
2011 Jan; 62(3):1133-43. doi:
10.1093/jxb/erq342
. [PMID: 21068208] - Maddalena Rossi, Alberto Amaretti, Stefano Raimondi. Folate production by probiotic bacteria.
Nutrients.
2011 01; 3(1):118-34. doi:
10.3390/nu3010118
. [PMID: 22254078] - Paulo Vieira, Etienne G J Danchin, Cédric Neveu, Carine Crozat, Stéphanie Jaubert, Richard S Hussey, Gilbert Engler, Pierre Abad, Janice de Almeida-Engler, Philippe Castagnone-Sereno, Marie-Noëlle Rosso. The plant apoplasm is an important recipient compartment for nematode secreted proteins.
Journal of experimental botany.
2011 Jan; 62(3):1241-53. doi:
10.1093/jxb/erq352
. [PMID: 21115667] - Akira Nakagawa, Hiromichi Minami, Ju-Sung Kim, Takashi Koyanagi, Takane Katayama, Fumihiko Sato, Hidehiko Kumagai. A bacterial platform for fermentative production of plant alkaloids.
Nature communications.
2011; 2(?):326. doi:
10.1038/ncomms1327
. [PMID: 21610729] - Annika Spies, Viktor Korzun, Rosemary Bayles, Jeyaraman Rajaraman, Axel Himmelbach, Pete E Hedley, Patrick Schweizer. Allele mining in barley genetic resources reveals genes of race-non-specific powdery mildew resistance.
Frontiers in plant science.
2011; 2(?):113. doi:
10.3389/fpls.2011.00113
. [PMID: 22629270] - Sang-Gyu Kim, Felipe Yon, Emmanuel Gaquerel, Jyotasana Gulati, Ian T Baldwin. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata.
PloS one.
2011; 6(10):e26214. doi:
10.1371/journal.pone.0026214
. [PMID: 22028833] - Cheng Yuan, Cui Li, Lijie Yan, Andrew O Jackson, Zhiyong Liu, Chenggui Han, Jialin Yu, Dawei Li. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots.
PloS one.
2011; 6(10):e26468. doi:
10.1371/journal.pone.0026468
. [PMID: 22031834] - Fuli Xie, Guojun Cheng, Hui Xu, Zhi Wang, Lei Lei, Youguo Li. Identification of a novel gene for biosynthesis of a bacteroid-specific electron carrier menaquinone.
PloS one.
2011; 6(12):e28995. doi:
10.1371/journal.pone.0028995
. [PMID: 22194970] - Vered Tzin, Gad Galili. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants.
Molecular plant.
2010 Nov; 3(6):956-72. doi:
10.1093/mp/ssq048
. [PMID: 20817774] - Guosheng Liu, Yuanyuan Ji, Nazmul H Bhuiyan, Guillaume Pilot, Gopalan Selvaraj, Jitao Zou, Yangdou Wei. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis.
The Plant cell.
2010 Nov; 22(11):3845-63. doi:
10.1105/tpc.110.079392
. [PMID: 21097712] - Lucia Mattiello, Matias Kirst, Felipe R da Silva, Renato A Jorge, Marcelo Menossi. Transcriptional profile of maize roots under acid soil growth.
BMC plant biology.
2010 Sep; 10(?):196. doi:
10.1186/1471-2229-10-196
. [PMID: 20828383] - Beth Marbois, Letian X Xie, Samuel Choi, Kathleen Hirano, Kyle Hyman, Catherine F Clarke. para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae.
The Journal of biological chemistry.
2010 Sep; 285(36):27827-38. doi:
10.1074/jbc.m110.151894
. [PMID: 20592037] - Luis González-Candelas, Santiago Alamar, Paloma Sánchez-Torres, Lorenzo Zacarías, Jose F Marcos. A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection.
BMC plant biology.
2010 Aug; 10(?):194. doi:
10.1186/1471-2229-10-194
. [PMID: 20807411] - Michael Bartsch, Paweł Bednarek, Pedro D Vivancos, Bernd Schneider, Edda von Roepenack-Lahaye, Christine H Foyer, Erich Kombrink, Dierk Scheel, Jane E Parker. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves.
The Journal of biological chemistry.
2010 Aug; 285(33):25654-65. doi:
10.1074/jbc.m109.092569
. [PMID: 20538606] - Jun-Feng Wang, Huan-Qin Dai, Yu-Ling Wei, Hua-Jie Zhu, Yong-Ming Yan, Yue-Hu Wang, Chun-Lin Long, Hui-Min Zhong, Li-Xin Zhang, Yong-Xian Cheng. Antituberculosis agents and an inhibitor of the para-aminobenzoic acid biosynthetic pathway from Hydnocarpus anthelminthica seeds.
Chemistry & biodiversity.
2010 Aug; 7(8):2046-53. doi:
10.1002/cbdv.201000072
. [PMID: 20730968] - Junli Huang, Min Gu, Zhibing Lai, Baofang Fan, Kai Shi, Yan-Hong Zhou, Jing-Quan Yu, Zhixiang Chen. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress.
Plant physiology.
2010 Aug; 153(4):1526-38. doi:
10.1104/pp.110.157370
. [PMID: 20566705] - Mitsuko Kishi-Kaboshi, Kazunori Okada, Leona Kurimoto, Shinya Murakami, Toshiaki Umezawa, Naoto Shibuya, Hisakazu Yamane, Akio Miyao, Hiroshi Takatsuji, Akira Takahashi, Hirohiko Hirochika. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis.
The Plant journal : for cell and molecular biology.
2010 Aug; 63(4):599-612. doi:
10.1111/j.1365-313x.2010.04264.x
. [PMID: 20525005] - Carla J Eaton, Murray P Cox, Barbara Ambrose, Matthias Becker, Uljana Hesse, Christopher L Schardl, Barry Scott. Disruption of signaling in a fungal-grass symbiosis leads to pathogenesis.
Plant physiology.
2010 Aug; 153(4):1780-94. doi:
10.1104/pp.110.158451
. [PMID: 20519633] - Julia Hofmann, Abd El Naser El Ashry, Shahbaz Anwar, Alexander Erban, Joachim Kopka, Florian Grundler. Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism.
The Plant journal : for cell and molecular biology.
2010 Jun; 62(6):1058-71. doi:
10.1111/j.1365-313x.2010.04217.x
. [PMID: 20374527] - Changfeng Zhang, Zhansheng Ding, Xiangbing Xu, Qing Wang, Guozheng Qin, Shiping Tian. Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury.
Amino acids.
2010 Jun; 39(1):181-94. doi:
10.1007/s00726-009-0397-6
. [PMID: 20091071] - Safiyh Taghavi, Daniel van der Lelie, Adam Hoffman, Yian-Biao Zhang, Michael D Walla, Jaco Vangronsveld, Lee Newman, Sébastien Monchy. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638.
PLoS genetics.
2010 May; 6(5):e1000943. doi:
10.1371/journal.pgen.1000943
. [PMID: 20485560] - Leland S Pierson, Elizabeth A Pierson. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes.
Applied microbiology and biotechnology.
2010 May; 86(6):1659-70. doi:
10.1007/s00253-010-2509-3
. [PMID: 20352425] - Kazuya Ishikawa, Kazuya Yoshimura, Kazuo Harada, Eiichiro Fukusaki, Takahisa Ogawa, Masahiro Tamoi, Shigeru Shigeoka. AtNUDX6, an ADP-ribose/NADH pyrophosphohydrolase in Arabidopsis, positively regulates NPR1-dependent salicylic acid signaling.
Plant physiology.
2010 Apr; 152(4):2000-12. doi:
10.1104/pp.110.153569
. [PMID: 20181750] - Nina Zellerhoff, Axel Himmelbach, Wubei Dong, Stephane Bieri, Ulrich Schaffrath, Patrick Schweizer. Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses.
Plant physiology.
2010 Apr; 152(4):2053-66. doi:
10.1104/pp.109.151829
. [PMID: 20172964] - Ralph Kissen, Per Winge, Diem Hong Thi Tran, Tommy S Jørstad, Trond R Størseth, Tone Christensen, Atle M Bones. Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome.
BMC genomics.
2010 Mar; 11(?):190. doi:
10.1186/1471-2164-11-190
. [PMID: 20307264] - Giuliano Degrassi, Giulia Devescovi, Joseph Bigirimana, Vittorio Venturi. Xanthomonas oryzae pv. oryzae XKK.12 contains an AroQgamma chorismate mutase that is involved in rice virulence.
Phytopathology.
2010 Mar; 100(3):262-70. doi:
10.1094/phyto-100-3-0262
. [PMID: 20128700] - Giulia Friso, Wojciech Majeran, Mingshu Huang, Qi Sun, Klaas J van Wijk. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly.
Plant physiology.
2010 Mar; 152(3):1219-50. doi:
10.1104/pp.109.152694
. [PMID: 20089766] - Seema Singh, Susanna A Braus-Stromeyer, Christian Timpner, Van Tuan Tran, Gertrud Lohaus, Michael Reusche, Jessica Knüfer, Thomas Teichmann, Andreas von Tiedemann, Gerhard H Braus. Silencing of Vlaro2 for chorismate synthase revealed that the phytopathogen Verticillium longisporum induces the cross-pathway control in the xylem.
Applied microbiology and biotechnology.
2010 Feb; 85(6):1961-76. doi:
10.1007/s00253-009-2269-0
. [PMID: 19826808] - Cecil Stushnoff, Laurence J M Ducreux, Robert D Hancock, Pete E Hedley, David G Holm, Gordon J McDougall, James W McNicol, Jenny Morris, Wayne L Morris, Julie A Sungurtas, Susan R Verrall, Tatiana Zuber, Mark A Taylor. Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L.
Journal of experimental botany.
2010 Feb; 61(4):1225-38. doi:
10.1093/jxb/erp394
. [PMID: 20110266] - Xudong Zhang, Sixue Chen, Zhonglin Mou. Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis.
Journal of plant physiology.
2010 Jan; 167(2):144-8. doi:
10.1016/j.jplph.2009.08.002
. [PMID: 19716624] - Vered Tzin, Gad Galili. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana.
The arabidopsis book.
2010; 8(?):e0132. doi:
10.1199/tab.0132
. [PMID: 22303258] - Thomas A Colquhoun, Bernardus C J Schimmel, Joo Young Kim, Didier Reinhardt, Kenneth Cline, David G Clark. A petunia chorismate mutase specialized for the production of floral volatiles.
The Plant journal : for cell and molecular biology.
2010 Jan; 61(1):145-55. doi:
10.1111/j.1365-313x.2009.04042.x
. [PMID: 19811620] - Pranav R Prabhu, André O Hudson. Identification and Partial Characterization of an L-Tyrosine Aminotransferase (TAT) from Arabidopsis thaliana.
Biochemistry research international.
2010; 2010(?):549572. doi:
10.1155/2010/549572
. [PMID: 21188077] - Vered Tzin, Sergey Malitsky, Asaph Aharoni, Gad Galili. Expression of a bacterial bi-functional chorismate mutase/prephenate dehydratase modulates primary and secondary metabolism associated with aromatic amino acids in Arabidopsis.
The Plant journal : for cell and molecular biology.
2009 Oct; 60(1):156-67. doi:
10.1111/j.1365-313x.2009.03945.x
. [PMID: 19508381] - Anita Zamboni, Pamela Gatto, Alessandro Cestaro, Stefania Pilati, Roberto Viola, Fulvio Mattivi, Claudio Moser, Riccardo Velasco. Grapevine cell early activation of specific responses to DIMEB, a resveratrol elicitor.
BMC genomics.
2009 Aug; 10(?):363. doi:
10.1186/1471-2164-10-363
. [PMID: 19660119] - Marcello Iriti, Franco Faoro. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.
International journal of molecular sciences.
2009 Jul; 10(8):3371-3399. doi:
10.3390/ijms10083371
. [PMID: 20111684] - Joyce C Yang, Ramana Madupu, A Scott Durkin, Nathan A Ekborg, Chandra S Pedamallu, Jessica B Hostetler, Diana Radune, Bradley S Toms, Bernard Henrissat, Pedro M Coutinho, Sandra Schwarz, Lauren Field, Amaro E Trindade-Silva, Carlos A G Soares, Sherif Elshahawi, Amro Hanora, Eric W Schmidt, Margo G Haygood, Janos Posfai, Jack Benner, Catherine Madinger, John Nove, Brian Anton, Kshitiz Chaudhary, Jeremy Foster, Alex Holman, Sanjay Kumar, Philip A Lessard, Yvette A Luyten, Barton Slatko, Nicole Wood, Bo Wu, Max Teplitski, Joseph D Mougous, Naomi Ward, Jonathan A Eisen, Jonathan H Badger, Daniel L Distel. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms).
PloS one.
2009 Jul; 4(7):e6085. doi:
10.1371/journal.pone.0006085
. [PMID: 19568419] - Zhixiang Chen, Zuyu Zheng, Junli Huang, Zhibing Lai, Baofang Fan. Biosynthesis of salicylic acid in plants.
Plant signaling & behavior.
2009 Jun; 4(6):493-6. doi:
10.4161/psb.4.6.8392
. [PMID: 19816125] - Ziyin Yang, Miwa Sakai, Hironori Sayama, Taku Shimeno, Koji Yamaguchi, Naoharu Watanabe. Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers.
Journal of plant physiology.
2009 May; 166(8):887-91. doi:
10.1016/j.jplph.2008.11.001
. [PMID: 19097671] - Laurent G Deluc, David R Quilici, Alain Decendit, Jérôme Grimplet, Matthew D Wheatley, Karen A Schlauch, Jean-Michel Mérillon, John C Cushman, Grant R Cramer. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay.
BMC genomics.
2009 May; 10(?):212. doi:
10.1186/1471-2164-10-212
. [PMID: 19426499] - Rachel A Okrent, Matthew D Brooks, Mary C Wildermuth. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate.
The Journal of biological chemistry.
2009 Apr; 284(15):9742-54. doi:
10.1074/jbc.m806662200
. [PMID: 19189963] - Vincent P Klink, Parsa Hosseini, Margaret H MacDonald, Nadim W Alkharouf, Benjamin F Matthews. Population-specific gene expression in the plant pathogenic nematode Heterodera glycines exists prior to infection and during the onset of a resistant or susceptible reaction in the roots of the Glycine max genotype Peking.
BMC genomics.
2009 Mar; 10(?):111. doi:
10.1186/1471-2164-10-111
. [PMID: 19291306] - Bartel Vanholme, Peter Kast, Annelies Haegeman, Joachim Jacob, Wim Grunewald, Godelieve Gheysen. Structural and functional investigation of a secreted chorismate mutase from the plant-parasitic nematode Heterodera schachtii in the context of related enzymes from diverse origins.
Molecular plant pathology.
2009 Mar; 10(2):189-200. doi:
10.1111/j.1364-3703.2008.00521.x
. [PMID: 19236568] - Pascal Rippert, Juliette Puyaubert, Delphine Grisollet, Laure Derrier, Michel Matringe. Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis.
Plant physiology.
2009 Mar; 149(3):1251-60. doi:
10.1104/pp.108.130070
. [PMID: 19136569] - Pingsha Hu, Yan Meng, Roger P Wise. Functional contribution of chorismate synthase, anthranilate synthase, and chorismate mutase to penetration resistance in barley-powdery mildew interactions.
Molecular plant-microbe interactions : MPMI.
2009 Mar; 22(3):311-20. doi:
10.1094/mpmi-22-3-0311
. [PMID: 19245325] - Axel A Elling, Makedonka Mitreva, Xiaowu Gai, John Martin, Justin Recknor, Eric L Davis, Richard S Hussey, Dan Nettleton, James P McCarter, Thomas J Baum. Sequence mining and transcript profiling to explore cyst nematode parasitism.
BMC genomics.
2009 Jan; 10(?):58. doi:
10.1186/1471-2164-10-58
. [PMID: 19183474] - Hadar Less, Gad Galili. Coordinations between gene modules control the operation of plant amino acid metabolic networks.
BMC systems biology.
2009 Jan; 3(?):14. doi:
10.1186/1752-0509-3-14
. [PMID: 19171064] - Maria Elizabeth Abreu, Sergi Munné-Bosch. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana.
Journal of experimental botany.
2009; 60(4):1261-71. doi:
10.1093/jxb/ern363
. [PMID: 19188277] - Anoop S Sindhu, Tom R Maier, Melissa G Mitchum, Richard S Hussey, Eric L Davis, Thomas J Baum. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.
Journal of experimental botany.
2009; 60(1):315-24. doi:
10.1093/jxb/ern289
. [PMID: 19015219]