Carnitine (BioDeep_00000000070)
Secondary id: BioDeep_00000016570, BioDeep_00000018399, BioDeep_00000399939, BioDeep_00000400234
natural product PANOMIX_OTCML-2023 human metabolite Endogenous blood metabolite Chemicals and Drugs
代谢物信息卡片
化学式: C7H15NO3 (161.105188)
中文名称: 左旋肉碱, 肉碱
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.03%
Last reviewed on 2024-06-29.
Cite this Page
Carnitine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/carnitine (retrieved
2024-11-03) (BioDeep RN: BioDeep_00000000070). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C[N+](C)(C)CC(CC(=O)[O-])O
InChI: InChI=1S/C7H15NO3/c1-8(2,3)5-6(9)4-7(10)11/h6,9H,4-5H2,1-3H3
描述信息
(R)-carnitine is the (R)-enantiomer of carnitine. It has a role as an antilipemic drug, a water-soluble vitamin (role), a nutraceutical, a nootropic agent and a Saccharomyces cerevisiae metabolite. It is a conjugate base of a (R)-carnitinium. It is an enantiomer of a (S)-carnitine.
Constituent of striated muscle and liver. It is used therapeutically to stimulate gastric and pancreatic secretions and in the treatment of hyperlipoproteinemias.
L-Carnitine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Levocarnitine is a Carnitine Analog.
Levocarnitine is a natural product found in Mucidula mucida, Pseudo-nitzschia multistriata, and other organisms with data available.
Levocarnitine is an amino acid derivative. Levocarnitine facilitates long-chain fatty acid entry into mitochondria, delivering substrate for oxidation and subsequent energy production. Fatty acids are utilized as an energy substrate in all tissues except the brain. (NCI04)
Carnitine is not an essential amino acid; it can be synthesized in the body. However, it is so important in providing energy to muscles including the heart-that some researchers are now recommending carnitine supplements in the diet, particularly for people who do not consume much red meat, the main food source for carnitine. Carnitine has been described as a vitamin, an amino acid, or a metabimin, i.e., an essential metabolite. Like the B vitamins, carnitine contains nitrogen and is very soluble in water, and to some researchers carnitine is a vitamin (Liebovitz 1984). It was found that an animal (yellow mealworm) could not grow without carnitine in its diet. However, as it turned out, almost all other animals, including humans, do make their own carnitine; thus, it is no longer considered a vitamin. Nevertheless, in certain circumstances-such as deficiencies of methionine, lysine or vitamin C or kidney dialysis--carnitine shortages develop. Under these conditions, carnitine must be absorbed from food, and for this reason it is sometimes referred to as a metabimin or a conditionally essential metabolite. Like the other amino acids used or manufactured by the body, carnitine is an amine. But like choline, which is sometimes considered to be a B vitamin, carnitine is also an alcohol (specifically, a trimethylated carboxy-alcohol). Thus, carnitine is an unusual amino acid and has different functions than most other amino acids, which are most usually employed by the body in the construction of protein. Carnitine is an essential factor in fatty acid metabolism in mammals. Its most important known metabolic function is to transport fat into the mitochondria of muscle cells, including those in the heart, for oxidation. This is how the heart gets most of its energy. In humans, about 25\\\\\% of carnitine is synthesized in the liver, kidney and brain from the amino acids lysine and methionine. Most of the carnitine in the body comes from dietary sources such as red meat and dairy products. Inborn errors of carnitine metabolism can lead to brain deterioration like that of Reyes syndrome, gradually worsening muscle weakness, Duchenne-like muscular dystrophy and extreme muscle weakness with fat accumulation in muscles. Borurn et al. (1979) describe carnitine as an essential nutrient for pre-term babies, certain types (non-ketotic) of hypoglycemics, kidney dialysis patients, cirrhosis, and in kwashiorkor, type IV hyperlipidemia, heart muscle disease (cardiomyopathy), and propionic or organic aciduria (acid urine resulting from genetic or other anomalies). In all these conditions and the inborn errors of carnitine metabolism, carnitine is essential to life and carnitine supplements are valuable. carnitine therapy may also be useful in a wide variety of clinical conditions. carnitine supplementation has improved some patients who have angina secondary to coronary artery disease. It may be worth a trial in any form of hyperlipidemia or muscle weakness. carnitine supplements may...
(-)-Carnitine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=541-15-1 (retrieved 2024-06-29) (CAS RN: 541-15-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].
L-Carnitine ((R)-Carnitine), a highly polar, small zwitterion, is an essential co-factor for the mitochondrial β-oxidation pathway. L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. L-Carnitine is an antioxidant. L-Carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism[1][2][3].
同义名列表
127 个代谢物同义名
1-Propanaminium, 3-carboxy-2-hydroxy-N,N,N-trimethyl-, hydroxide, inner salt, (R)-; Ammonium, (3-carboxy-2-hydroxypropyl)trimethyl-, hydroxide, inner salt, L- (8CI); Levocarnitine, Pharmaceutical Secondary Standard; Certified Reference Material; 1-Propanaminium, 3-carboxy-2-hydroxy-N,N,N-trimethyl-, inner salt, (2R)- (9CI); 1-Propanaminium, 3-carboxy-2-hydroxy-N,N,N-trimethyl-, hydroxide, inner salt; Ammonium, (3-carboxy-2-hydroxypropyl)trimethyl-, hydroxide, inner salt, L-; 3-Carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium hydroxide, inner salt; 1-Propanaminium, 3-carboxy-2-hydroxy-N,N,N-trimethyl-, inner salt, (2R)-; 1-Propanaminium, 3-carboxy-2-hydroxy-N,N,N-trimethyl-, inner salt, (R)-; (R)-(3-Carboxy-2-hydroxypropyl)trimethylammonium hydroxide, inner salt; Ammonium, (3-carboxy-2-hydroxypropyl)trimethyl-, hydroxide,inner salt; (L-3-Carboxy-2-hydroxypropyl)trimethylammonium hydroxide, inner salt; (3-Carboxy-2-hydroxypropyl)trimethyl-ammonium hydroxide, inner salt; (2r)-3-carboxy-2-hydroxy-n,n,n-trimethyl-1-propanaminium inner salt; Levocarnitine, United States Pharmacopeia (USP) Reference Standard; Levocarnitine, European Pharmacopoeia (EP) Reference Standard; (-)-(R)-3-Hydroxy-4-(trimethylammonio)butyrate, Vitamin BT; (R)-(3-Carboxy-2-hydroxypropyl)trimethylammonium hydroxide; R(-)-beta-Hydroxy-gamma-(N,N,N-trimethylammonio)butyrate; (3R)-3-hydroxy-4-(trimethylammonio)butanoate;L-Carnitine; 1-Propanaminium,3-carboxy-2-hydroxy-N,N,N-trimethyl-; 3-carboxy-2-hydroxy-N,N,N-trimethyl-1-propanaminium; Levocarnitine Oral Solution (Suguar Free) 1 g/10 mL; beta-Hydroxy-gamma-N,N,N-trimethylammoniobutyrate; (3R)-(-)-3-Hydroxy-4-(trimethylammonio)butanoate; (3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate; (-)-(R)-3-Hydroxy-4-(trimethylammonio)butyrate; gamma-Trimethyl-ammonium-beta-hydroxybutirate; (3R)-3-hydroxy-4-(trimethylammonio)butanoate; gamma-L-trimethyl-beta-hydroxybutyrobetaine; (R)-3-hydroxy-4-(trimethylammonio)butanoate; L-gamma-trimethyl-beta-hydroxybutyrobetaine; (R)-3-Hydroxy-4-(trimethylammonio)butyrate; 3-hydroxy-4-trimethylammoniobutanoic acid; gamma-Trimethyl-beta-hydroxybutyrobetaine; L-Carnitine inner salt, synthetic, >=98\\%; (R)-3-Hydroxy-4-trimethylammoniobutanoate; R-(-)-3-hydroxy-4-trimethylaminobutyrate; 3-Hydroxy-4-(trimethylammonio) butanoate; (R)-3-Hydroxy-4-trimethylammoniobutyrate; 3-hydroxy-4-trimethylammoniobutanoate; gamma-Trimethyl-hydroxybutyrobetaine; Levocarnitine (USAN:USP:INN:BAN); Levocarnitine [USAN:USP:INN:BAN]; Carnitine dl-form hydrochloride; 6-CHLORO-3-HYDROXY(1H)INDAZOLE; LEVOCARNITINE (USP MONOGRAPH); LEVOCARNITINE [USP MONOGRAPH]; LEVOCARNITINE (EP MONOGRAPH); CARNITINE HYDROCHLORIDE, DL-; LEVOCARNITINE [EP MONOGRAPH]; Levocarnitine Oral Solution; LEVOCARNITINE [ORANGE BOOK]; L-carnitine (Levocarnitine); Levocarnitine (JAN/USP/INN); Levocarnitine [USAN:INN]; Levocarnitina [Spanish]; L-Carnitine inner salt; LEVOCARNITINE [USP-RS]; LEVOCARNITINE [WHO-DD]; Levocarnitinum [Latin]; LEVOCARNITINE (USP-RS); Levocarnitinum (Latin); LEVOCARNITINE [MART.]; LEVOCARNITINE (MART.); LEVOCARNITINE [VANDF]; LEVOCARNITINE [HSDB]; LEVOCARNITINE [USAN]; LEVOCARNITINE [JAN]; LEVOCARNITINE [INN]; L-CARNITINE [VANDF]; carnitine (L-form); levocarnitine HCl; L-CARNITINE [FCC]; LEVOCARNITINE SF; L-carnitine Base; L-Carnitine,(S); UNII-0G389FZZ9M; L-(-)-Carnitine; Carnitine, (-)-; delta-carnitine; (-)-L-Carnitine; Levocarnitinum; L(-)-Carnitine; CARNITINE [MI]; Carnitine, L-; Levocarnitine; Levocarnitina; (R)-Carnitine; Carnitine HCl; (-)-Carnitine; Carnitor (TN); Carnipass 20; Levocarnitin; Carniking 50; Carnitor SF; L Carnitine; bicarnesine; 1-CARNITINE; Oristar lch; vitamin B T; L-carnitine; Nefrocarnit; L-Carnitin; 0G389FZZ9M; Levocarnil; vitamin BT; Carnipass; Carnitine; Carnitolo; Carnitene; Carniking; Carnilean; Carnitor; Karnitin; Carnicor; Carnovis; Carrier; A16AA01; Metina; L-Carn; Lefcar; L-Carnitine hydrochloride; (S)-Carnitine; DL-Carnitine; D-Carnitine; Carnitine
数据库引用编号
42 个数据库交叉引用编号
- ChEBI: CHEBI:16347
- ChEBI: CHEBI:11060
- ChEBI: CHEBI:17126
- KEGG: C00318
- KEGGdrug: D02176
- PubChem: 10917
- PubChem: 2724480
- PubChem: 288
- Metlin: METLIN52
- DrugBank: DB00583
- ChEMBL: CHEMBL1149
- ChEMBL: CHEMBL172513
- ChEMBL: CHEMBL503189
- MeSH: Carnitine
- ChemIDplus: 0000541151
- MetaCyc: CARNITINE
- chemspider: 10455
- CAS: 541-15-1
- MoNA: PS026905
- MoNA: KO002559
- MoNA: PS026904
- MoNA: PS071704
- MoNA: KO002560
- MoNA: PS071703
- MoNA: PS071701
- MoNA: KO002557
- MoNA: PR100160
- MoNA: PS026901
- MoNA: PR100320
- MoNA: PR100159
- MoNA: PS026903
- MoNA: PS071702
- MoNA: KO002561
- MoNA: PS071705
- MoNA: KO002558
- MoNA: PS026902
- PMhub: MS000007672
- MetaboLights: MTBLC16347
- PDB-CCD: 152
- NIKKAJI: J9.362I
- medchemexpress: HY-B0399
- HMDB: HMDB0000062
分类词条
相关代谢途径
Reactome(17)
- Metabolism
- Disease
- Amino acid and derivative metabolism
- Metabolism of lipids
- Transport of small molecules
- SLC-mediated transmembrane transport
- Transport of bile salts and organic acids, metal ions and amine compounds
- Signaling Pathways
- Organic cation/anion/zwitterion transport
- Disorders of transmembrane transporters
- SLC transporter disorders
- Fatty acid metabolism
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- Carnitine metabolism
- Signaling by Nuclear Receptors
- Signaling by Retinoic Acid
BioCyc(6)
PlantCyc(0)
代谢反应
225 个相关的代谢反应过程信息。
Reactome(136)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
E2QW22 + E2RPT1 + ESR1:ER:PGR:P4 + F6UTY3 + J9P0C0 ⟶ ESR1:ESTG:PGR:P4:FOXA1:GATA3:TLE3:NRIP:EP300
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + F8W2D1 + HSP90:HSP90 + Pi + Q7SZQ8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q9VH95 + Q9VL78
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Immunophilin FKBP52 + Pi + cPGES
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + Fkbp4 + HSP90:HSP90 + Pi + Q9R0Q7
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Ptges3 + Q9QVC8
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Nuclear Receptors:
ESR1:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ ADP + ESR1:ER:PGR:P4 + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Import of palmitoyl-CoA into the mitochondrial matrix:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Carnitine metabolism:
ATP + Ac-CoA + HCO3- ⟶ ADP + Mal-CoA + Pi
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Nuclear Receptors:
ESR1 dimer:ESTG + HSP90:ATP:PTGES3:FKBP52:PGR:P4 ⟶ A0A310SUH5 + ADP + ESR1:ER:PGR:P4 + HSP90:HSP90 + Pi + Q5U4Z0
- Signaling by Retinoic Acid:
CAR + PALM-CoA ⟶ CoA-SH + L-PCARN
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Beta-oxidation of pristanoyl-CoA:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Beta-oxidation of pristanoyl-CoA:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Carnitine synthesis:
2OG + Oxygen + TEABT ⟶ CAR + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
BioCyc(23)
- D-carnitine degradation I:
D-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- D-carnitine degradation II:
D-carnitine ⟶ L-carnitine
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- mitochondrial L-carnitine shuttle:
L-carnitine + palmitoyl-CoA ⟶ O-palmitoyl-L-carnitine + coenzyme A
- mitochondrial L-carnitine shuttle:
L-carnitine + a long-chain acyl-CoA ⟶ an O-long-chain-acyl-L-carnitine + coenzyme A
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation III:
H+ + L-carnitine + NAD(P)H + O2 ⟶ H2O + L-malic semialdehyde + NAD(P)+ + trimethylamine
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine biosynthesis:
3-hydroxy-N6,N6,N6-trimethyl-L-lysine ⟶ 4-trimethylammoniobutanal + gly
- L-carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- carnitine shuttle:
L-carnitine + acetyl-CoA ⟶ O-acetyl-L-carnitine + coenzyme A
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- L-carnitine degradation I:
γ-butyrobetainyl-CoA + L-carnitine ⟶ γ-butyrobetaine + L-carnitinyl-CoA
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation I:
ATP + L-carnitine + coenzyme A ⟶ AMP + L-carnitinyl-CoA + diphosphate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(4)
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- mitochondrial L-carnitine shuttle:
L-carnitine + a long-chain acyl-CoA ⟶ an O-long-chain-acyl-L-carnitine + coenzyme A
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
COVID-19 Disease Map(0)
PathBank(62)
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Carnitine Synthesis:
4-Trimethylammoniobutanoic acid + Oxoglutaric acid + Oxygen ⟶ Carbon dioxide + L-Carnitine + Succinic acid
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Adrenoleukodystrophy, X-Linked:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Carnitine-Acylcarnitine Translocase Deficiency:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Adrenoleukodystrophy, X-Linked:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Carnitine-Acylcarnitine Translocase Deficiency:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Oxidation of Branched-Chain Fatty Acids:
L-Carnitine + Propionyl-CoA ⟶ Coenzyme A + Propionylcarnitine
- Beta Oxidation of Very Long Chain Fatty Acids:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Adrenoleukodystrophy, X-Linked:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Carnitine-Acylcarnitine Translocase Deficiency:
Acetyl-CoA + L-Carnitine ⟶ Coenzyme A + L-Acetylcarnitine
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Glutaric Aciduria Type I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- L-Carnitine Degradation I:
Adenosine triphosphate + Coenzyme A + L-Carnitine ⟶ Adenosine monophosphate + L-Carnitinyl-CoA + diphosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Fatty Acid Metabolism:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids:
Adenosine triphosphate + Coenzyme A + Stearic acid ⟶ Adenosine monophosphate + Pyrophosphate + Stearoyl-CoA
- Ethylmalonic Encephalopathy:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Short-Chain Acyl-CoA Dehydrogenase Deficiency (SCAD Deficiency):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency I:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Long Chain Acyl-CoA Dehydrogenase Deficiency (LCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency (VLCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Carnitine Palmitoyl Transferase Deficiency II:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Medium Chain Acyl-CoA Dehydrogenase Deficiency (MCAD):
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- Trifunctional Protein Deficiency:
Adenosine triphosphate + Coenzyme A + Palmitic acid ⟶ Adenosine monophosphate + Palmityl-CoA + Pyrophosphate
- L-Carnitine Degradation I:
Adenosine triphosphate + Coenzyme A + L-Carnitine ⟶ Adenosine monophosphate + L-Carnitinyl-CoA + diphosphate
PharmGKB(0)
18 个相关的物种来源信息
- 41956 - Amanita muscaria: 10.1016/S0305-1978(02)00034-0
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 71717 - Coprinellus micaceus: 10.1016/S0305-1978(02)00034-0
- 945030 - Digenea simplex: 10.1021/NP50093A019
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 3039 - Euglena gracilis: 10.3389/FBIOE.2021.662655
- 9606 - Homo sapiens:
- 4513 - Hordeum vulgare: 10.1016/0031-9422(82)80156-8
- 8187 - Lates calcarifer: 10.3389/FPHYS.2020.00205
- 139077 - Mucidula mucida: 10.1016/S0305-1978(02)00034-0
- 10090 - Mus musculus: 10.1002/MNFR.201300142
- 183589 - Pseudo-nitzschia multistriata: 10.3390/MD18060313
- 4896 - Schizosaccharomyces pombe: 10.1039/C4MB00346B
- 35128 - Thalassiosira pseudonana: 10.1016/J.PROTIS.2019.05.004
- 5325 - Trametes versicolor: 10.1016/S0305-1978(02)00034-0
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kie Sekiguchi, Takaya Abe, Ei Shiomi, Daiki Ikarashi, Tomohiko Matsuura, Shigekatsu Maekawa, Renpei Kato, Mitsugu Kanehira, Ryo Takata, Jun Sugimura, Takashi Sekiguchi, Wataru Obara. Abnormal carnitine metabolism in hemodialysis patients on different anticoagulants.
Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy.
2024 Jun; 28(3):364-370. doi:
10.1111/1744-9987.14096
. [PMID: 38087844] - Junyan Lyu, Hikari Okada, Hajime Sunagozaka, Kazunori Kawaguchi, Tetsuro Shimakami, Kouki Nio, Kazuhisa Murai, Takayoshi Shirasaki, Mika Yoshida, Kuniaki Arai, Tatsuya Yamashita, Takuji Tanaka, Kenichi Harada, Toshinari Takamura, Shuichi Kaneko, Taro Yamashita, Masao Honda. Potential utility of l-carnitine for preventing liver tumors derived from metabolic dysfunction-associated steatohepatitis.
Hepatology communications.
2024 May; 8(5):. doi:
10.1097/hc9.0000000000000425
. [PMID: 38619434] - Jiayu Jing, Cui Zhang, Sihao Du, Xiaohui Tan, Xia Yue, Dongfang Qiao. Sudden death with cardiac involvement in a neonate with carnitine-acylcarnitine translocase deficiency.
Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.
2024 May; 70(?):107630. doi:
10.1016/j.carpath.2024.107630
. [PMID: 38490313] - Yuichi Suzuki, Shuntaro Itagaki, Maki Nodera, Kazuhide Suyama, Hirooki Yabe, Mitsuaki Hosoya. Comparison of metabolic parameters between oral and total parenteral nutrition in children with severe eating disorders.
Fukushima journal of medical science.
2024 Apr; 70(2):75-85. doi:
10.5387/fms.2023-02
. [PMID: 38599829] - Yeon-Hee Kim, Jin-Soo Chung, Hyung-Ho Lee, Jin-Hee Park, Mi-Kyung Kim. Influence of Dietary Polyunsaturated Fatty Acid Intake on Potential Lipid Metabolite Diagnostic Markers in Renal Cell Carcinoma: A Case-Control Study.
Nutrients.
2024 Apr; 16(9):. doi:
10.3390/nu16091265
. [PMID: 38732512] - Amany E Nofal, Hind S AboShabaan, Walaa A Fadda, Rafik E Ereba, Sherin M Elsharkawy, Heba M Hathout. L-carnitine and Ginkgo biloba Supplementation In Vivo Ameliorates HCD-Induced Steatohepatitis and Dyslipidemia by Regulating Hepatic Metabolism.
Cells.
2024 Apr; 13(9):. doi:
10.3390/cells13090732
. [PMID: 38727268] - Ruijie Guo, Kai Huang, Kai Yu, Jinghua Li, Jiao Huang, Dandan Wang, Yuda Li. Effects of Fat and Carnitine on the Expression of Carnitine Acetyltransferase and Enoyl-CoA Hydratase Short-Chain 1 in the Liver of Juvenile GIFT (Oreochromis niloticus).
Genes.
2024 Apr; 15(4):. doi:
10.3390/genes15040480
. [PMID: 38674414] - Haiyang Kou, Bo Li, Zhili Wang, Jianbing Ma. Effect of l-Carnitine Supplementation on Osteoarthritis: A Systematic Review.
Molecular nutrition & food research.
2024 Apr; 68(8):e2300614. doi:
10.1002/mnfr.202300614
. [PMID: 38389158] - Zhou Liang, Hongsheng He, Bing Zhang, Zhentian Kai, Liang Zong. Hypoxia expedites the progression of papillary thyroid carcinoma by promoting the CPT1A-mediated fatty acid oxidative pathway.
Drug development research.
2024 Apr; 85(2):e22168. doi:
10.1002/ddr.22168
. [PMID: 38450796] - Caleigh M Sawicki, Lorena S Pacheco, Sona Rivas-Tumanyan, Zheyi Cao, Danielle E Haslam, Liming Liang, Katherine L Tucker, Kaumudi Joshipura, Shilpa N Bhupathiraju. Association of Gut Microbiota-Related Metabolites and Type 2 Diabetes in Two Puerto Rican Cohorts.
Nutrients.
2024 Mar; 16(7):. doi:
10.3390/nu16070959
. [PMID: 38612993] - Qing Li, Tianle Chao, Yanyan Wang, Rong Xuan, Yanfei Guo, Peipei He, Lu Zhang, Jianmin Wang. Comparative metabolomics reveals serum metabolites changes in goats during different developmental stages.
Scientific reports.
2024 03; 14(1):7291. doi:
10.1038/s41598-024-57803-7
. [PMID: 38538719] - Kuiliang Zhang, Lei Jiang, Lamei Xue, Yu Wang, Yujie Sun, Mingcong Fan, Haifeng Qian, Li Wang, Yan Li. 5-Heptadecylresorcinol Improves Aging-Associated Hepatic Fatty Acid Oxidation Dysfunction via Regulating Adipose Sirtuin 3.
Nutrients.
2024 Mar; 16(7):. doi:
10.3390/nu16070978
. [PMID: 38613012] - Yang Yang, Huaifeng Li, Ke Liu, Lu Zou, Shanshan Xiang, Yajun Geng, Xuechuan Li, Shimei Qiu, Jiahua Yang, Xuya Cui, Lin Li, Yang Li, Weijian Li, Siyuan Yan, Liguo Liu, Xiangsong Wu, Fatao Liu, Wenguang Wu, Shili Chen, Yingbin Liu. Acylcarnitines promote gallbladder cancer metastasis through lncBCL2L11-THOC5-JNK axis.
Journal of translational medicine.
2024 Mar; 22(1):299. doi:
10.1186/s12967-024-05091-0
. [PMID: 38519939] - Ting Hu, Wen Zhang, Feifei Han, Rui Zhao, Hongchuan Liu, Zhuoling An. Machine learning reveals serum myristic acid, palmitic acid and heptanoylcarnitine as biomarkers of coronary artery disease risk in patients with type 2 diabetes mellitus.
Clinica chimica acta; international journal of clinical chemistry.
2024 Mar; 556(?):117852. doi:
10.1016/j.cca.2024.117852
. [PMID: 38438006] - Tobias Harm, Xiaoqing Fu, Moritz Frey, Kristina Dittrich, Adrian Brun, Tatsiana Castor, Oliver Borst, Karin Anne Lydia Müller, Tobias Geisler, Dominik Rath, Michael Lämmerhofer, Meinrad Paul Gawaz. Machine learning insights into thrombo-ischemic risks and bleeding events through platelet lysophospholipids and acylcarnitine species.
Scientific reports.
2024 03; 14(1):6089. doi:
10.1038/s41598-024-56304-x
. [PMID: 38480746] - Lei Ma, Chong Chen, Chunxing Zhao, Tong Li, Lingyu Ma, Jiayu Jiang, Zhaojun Duan, Qin Si, Tsung-Hsien Chuang, Rong Xiang, Yunping Luo. Targeting carnitine palmitoyl transferase 1A (CPT1A) induces ferroptosis and synergizes with immunotherapy in lung cancer.
Signal transduction and targeted therapy.
2024 Mar; 9(1):64. doi:
10.1038/s41392-024-01772-w
. [PMID: 38453925] - Marit Schwantje, Signe Mosegaard, Suzan J G Knottnerus, Jan Bert van Klinken, Ronald J Wanders, Henk van Lenthe, Jill Hermans, Lodewijk IJlst, Simone W Denis, Yorrick R J Jaspers, Sabine A Fuchs, Riekelt H Houtkooper, Sacha Ferdinandusse, Frédéric M Vaz. Tracer-based lipidomics enables the discovery of disease-specific candidate biomarkers in mitochondrial β-oxidation disorders.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2024 Feb; 38(4):e23478. doi:
10.1096/fj.202302163r
. [PMID: 38372965] - Kristina Vacy, Sarah Thomson, Archer Moore, Alex Eisner, Sam Tanner, Cindy Pham, Richard Saffery, Toby Mansell, David Burgner, Fiona Collier, Peter Vuillermin, Martin O'Hely, Wah Chin Boon, Peter Meikle, Satvika Burugupalli, Anne-Louise Ponsonby. Cord blood lipid correlation network profiles are associated with subsequent attention-deficit/hyperactivity disorder and autism spectrum disorder symptoms at 2 years: a prospective birth cohort study.
EBioMedicine.
2024 Feb; 100(?):104949. doi:
10.1016/j.ebiom.2023.104949
. [PMID: 38199043] - Wei Li, Yanqing Zhang, Jing Zhao, Tan Yang, Junbo Xie. L-carnitine modified nanoparticles target the OCTN2 transporter to improve the oral absorption of jujuboside B.
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2024 Jan; ?(?):114185. doi:
10.1016/j.ejpb.2024.114185
. [PMID: 38280469] - Ross Summer, Jamie L Todd, Megan L Neely, L Jason Lobo, Andrew Namen, L Kristin Newby, Shirin Shafazand, Sally Suliman, Christian Hesslinger, Sascha Keller, Thomas B Leonard, Scott M Palmer, Olga Ilkayeva, Michael J Muehlbauer, Christopher B Newgard, Jesse Roman. Circulating metabolic profile in idiopathic pulmonary fibrosis: data from the IPF-PRO Registry.
Respiratory research.
2024 Jan; 25(1):58. doi:
10.1186/s12931-023-02644-7
. [PMID: 38273290] - Gabriela Ramos Leal, Thais de Almeida Oliveira, Mariana Pedrosa de Paula Guimarães, Lucas Francisco Leodido Correia, Erlandia Márcia Vasconcelos, Joanna Maria Gonçalves Souza-Fabjan. Lipid modulation during IVM increases the metabolism and improves the cryosurvival of cat oocytes.
Theriogenology.
2024 Jan; 214(?):33-42. doi:
10.1016/j.theriogenology.2023.10.001
. [PMID: 37839095] - Maryam Hafezi, Arezoo Arabipoor, Firouzeh Ghaffari, Samira Vesali, Maryam Zareei, Zahra Hajinaghibali Hessari. Adding L-carnitine to antagonist ovarian stimulation doesn't improve the outcomes of IVF/ ICSI cycle in patients with polycystic ovarian syndrome: a double-blind randomized clinical trial.
Journal of ovarian research.
2024 Jan; 17(1):9. doi:
10.1186/s13048-023-01319-7
. [PMID: 38191449] - Xiaozheng Yu, Jiaqi Li, Yixuan Guo, Yang Yu, Ran Cai, Benliang Chen, Minyao Chen, Caiyun Sun, Wensheng Li. Response of Neuropeptides to Hunger Signals in Teleost.
Neuroendocrinology.
2024; 114(4):365-385. doi:
10.1159/000535611
. [PMID: 38142691] - Ang Li, Fei Li, Wei Song, Zi-Li Lei, Chang-Yin Zhou, Xue Zhang, Qing-Yuan Sun, Qin Zhang, Teng Zhang. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy leads to disorder of gut microbiota and bile acid metabolism in offspring.
Ecotoxicology and environmental safety.
2024 Jan; 269(?):115811. doi:
10.1016/j.ecoenv.2023.115811
. [PMID: 38086265] - Xinyi Dai, Min Liang, Yanna Dai, Shaohua Ding, Xiaohe Sun, Luzhou Xu. Causality of genetically determined blood metabolites on irritable bowel syndrome: A Mendelian randomization study.
PloS one.
2024; 19(4):e0298963. doi:
10.1371/journal.pone.0298963
. [PMID: 38568932] - Heba-Tallah Abd Elrahim Abd Elkader, Marium Marzoq Hussein, Nema A Mohammed, Heba M Abdou. The protective role of L-carnitine on oxidative stress, neurotransmitter perturbations, astrogliosis, and apoptosis induced by thiamethoxam in the brains of male rats.
Naunyn-Schmiedeberg's archives of pharmacology.
2023 Dec; ?(?):. doi:
10.1007/s00210-023-02887-7
. [PMID: 38099937] - Xinxin Gao, Jihong Zhang, Qilian Qin, Peipei Wu, Huan Zhang, Qian Meng. Metabolic changes during larval-pupal metamorphosis of Helicoverpa armigera.
Insect science.
2023 Dec; 30(6):1663-1676. doi:
10.1111/1744-7917.13201
. [PMID: 37200210] - E M Arroyo-Urea, María Muñoz-Hernando, Marta Leo-Barriga, Fernando Herranz, Ana González-Paredes. A quality by design approach for the synthesis of palmitoyl-L-carnitine-loaded nanoemulsions as drug delivery systems.
Drug delivery.
2023 Dec; 30(1):2179128. doi:
10.1080/10717544.2023.2179128
. [PMID: 36803136] - D Wilkinson, I J Gallagher, A McNelly, D E Bear, N Hart, H E Montgomery, A Le Guennec, M R Conte, T Francis, S D R Harridge, P J Atherton, Z A Puthucheary. The metabolic effects of intermittent versus continuous feeding in critically ill patients.
Scientific reports.
2023 11; 13(1):19508. doi:
10.1038/s41598-023-46490-5
. [PMID: 37945671] - Burcu Uner, Ahmet Dogan Ergin, Irfan Aamer Ansari, Melahat Sedanur Macit-Celebi, Siddique Akber Ansari, Hamad M Al Kahtani. Assessing the In Vitro and In Vivo Performance of L-Carnitine-Loaded Nanoparticles in Combating Obesity.
Molecules (Basel, Switzerland).
2023 Oct; 28(20):. doi:
10.3390/molecules28207115
. [PMID: 37894594] - Karrar Imad Abdulsahib Al-Shammari, Sarah Jasim Zamil, Justyna Batkowska. The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails.
Poultry science.
2023 Oct; 103(1):103166. doi:
10.1016/j.psj.2023.103166
. [PMID: 37939584] - Wataru Shiraishi, Takahisa Tateishi, Shotaro Hayashida, Go Tajima, Miyuki Tsumura, Noriko Isobe. [A case of very long chain acyl-CoA dehydrogenase deficiency diagnosed due to a trigger of hyperemesis gravidarum during pregnancy].
Rinsho shinkeigaku = Clinical neurology.
2023 Sep; ?(?):. doi:
10.5692/clinicalneurol.cn-001854
. [PMID: 37779023] - Gabriela D A Pinto, Antonio Murgia, Carla Lai, Carolina S Ferreira, Vanessa A Goes, Deborah de A B Guimarães, Layla G Ranquine, Desirée L Reis, Claudio J Struchiner, Julian L Griffin, Graham J Burton, Alexandre G Torres, Tatiana El-Bacha. Sphingolipids and acylcarnitines are altered in placentas from women with gestational diabetes mellitus.
The British journal of nutrition.
2023 09; 130(6):921-932. doi:
10.1017/s000711452200397x
. [PMID: 36539977] - Syed Muhammad Shoaib, Samina Afzal, Ali Feezan, Muhammad Sajid Hamid Akash, Ahmed Nadeem, Tahir Maqbool Mir. Metabolomics Analysis and Biochemical Profiling of Arsenic-Induced Metabolic Impairment and Disease Susceptibility.
Biomolecules.
2023 09; 13(9):. doi:
10.3390/biom13091424
. [PMID: 37759824] - Qinjian Zhang, Nan Yao, Zunzhong Liu, Changmiao Xu, Zijiao Ding. An Autopsy Analysis of a Patient With Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency Caused by Compound Heterozygous HADHA Gene Mutations.
The American journal of forensic medicine and pathology.
2023 Aug; ?(?):. doi:
10.1097/paf.0000000000000872
. [PMID: 37549033] - Ming-Wei Zhan, Lei Wang, Xu-Xin Zhan, Peng-Fei Liu, Qiang Lou, Yu-Qi Lai, Yi Yu, Xue-Jun Shang. [Exploring the mechanism of levocarnitine in the treatment of epididymitis based on network pharmacology and molecular docking technology].
Zhonghua nan ke xue = National journal of andrology.
2023 Aug; 29(8):698-704. doi:
"
. [PMID: 38619515] - Xi Zhou, Guobin Huang, Lu Wang, Yuanyuan Zhao, Junbo Li, Dong Chen, Lai Wei, Zhishui Chen, Bo Yang. L-carnitine promotes liver regeneration after hepatectomy by enhancing lipid metabolism.
Journal of translational medicine.
2023 07; 21(1):487. doi:
10.1186/s12967-023-04317-x
. [PMID: 37474946] - Sepide Talebi, Hamed Mohammadi, Sheida Zeraattalab-Motlagh, Arman Arab, Mohammad Keshavarz Mohammadian, Seyed Mojtaba Ghoreishy, Maryam Abbaspour Tehrani Fard, Reza Amiri Khosroshahi, Kurosh Djafarian. Nutritional interventions for exercise-induced muscle damage: an umbrella review of systematic reviews and meta-analyses of randomized trials.
Nutrition reviews.
2023 Jul; ?(?):. doi:
10.1093/nutrit/nuad078
. [PMID: 37460208] - Natalia Zakharova, Chenguang Luo, Raisa Aringazina, Vadim Samusenkov. The efficacy of L-carnitine in patients with nonalcoholic steatohepatitis and concomitant obesity.
Lipids in health and disease.
2023 Jul; 22(1):101. doi:
10.1186/s12944-023-01867-3
. [PMID: 37438785] - Mengjun Xiao, Zhenhua Xie, Jing Liu, Xian Li, Qiang Zhang, Zhenkun Zhang, Dongxiao Li. [Analysis of clinical characteristics and ACADM gene variants in four children with Medium chain acyl-CoA dehydrogenase deficiency].
Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics.
2023 Jul; 40(7):787-794. doi:
10.3760/cma.j.cn511374-20220611-00402
. [PMID: 37368378] - Halil Tuna Akar, Yılmaz Yıldız, Rüya Mutluay, Emel Tekin, Ayşegül Tokatlı. Adult-onset carnitine palmitoyl transferase II (CPT II) deficiency presenting with rhabdomyolysis and acute kidney injury.
CEN case reports.
2023 Jun; ?(?):. doi:
10.1007/s13730-023-00804-8
. [PMID: 37341884] - Jonathan Sasenick, Malki Miller, Deepa Rastogi, Mark Morrissey, Shantanu Rastogi. Carnitine supplementation increases serum concentrations of free carnitine and total acylcarnitine in preterm neonates: A retrospective cohort study.
JPEN. Journal of parenteral and enteral nutrition.
2023 Jun; ?(?):. doi:
10.1002/jpen.2535
. [PMID: 37345267] - Huan Wang, Cuicui Ma, Yan Li, Lei Zhang, Lima A, Chengcong Yang, Feiyan Zhao, Haifeng Han, Dongyang Shang, Fan Yang, Yuying Zhang, Heping Zhang, Zhihong Sun, Ruifang Guo. Probio-X Relieves Symptoms of Hyperlipidemia by Regulating Patients' Gut Microbiome, Blood Lipid Metabolism, and Lifestyle Habits.
Microbiology spectrum.
2023 06; 11(3):e0444022. doi:
10.1128/spectrum.04440-22
. [PMID: 37022264] - Sara M Radwan, Mustafa Alqulaly, Magdy Y Elsaeed, Shimaa Z Elshora, Asmaa H Atwa, Eman F Wasfey. L-carnitine reverses methotrexate-induced nephrotoxicity in experimental rat model: Insight on SIRT1/PGC-1α/Nrf2/HO-1 axis.
Journal of applied toxicology : JAT.
2023 Jun; ?(?):. doi:
10.1002/jat.4503
. [PMID: 37312617] - Tao Yang, Ning Liang, Jiahao Zhang, Yaxing Bai, Yuedan Li, Zifeng Zhao, Liusheng Chen, Min Yang, Qian Huang, Pan Hu, Qian Wang, Hongxin Zhang. OCTN2 enhances PGC-1α-mediated fatty acid oxidation and OXPHOS to support stemness in hepatocellular carcinoma.
Metabolism: clinical and experimental.
2023 Jun; ?(?):155628. doi:
10.1016/j.metabol.2023.155628
. [PMID: 37315888] - Taiyang Liao, Wei Mei, Li Zhang, Liang Ding, Nan Yang, Peimin Wang, Li Zhang. L-carnitine alleviates synovitis in knee osteoarthritis by regulating lipid accumulation and mitochondrial function through the AMPK-ACC-CPT1 signaling pathway.
Journal of orthopaedic surgery and research.
2023 May; 18(1):386. doi:
10.1186/s13018-023-03872-9
. [PMID: 37237380] - Fu Li, Gregory Artiushin, Amita Sehgal. Modulation of sleep by trafficking of lipids through the Drosophila blood brain barrier.
eLife.
2023 May; 12(?):. doi:
10.7554/elife.86336
. [PMID: 37140181] - Olivia Fayez Morid, Esther T Menze, Mariane G Tadros, Mina Y George. L-carnitine Modulates Cognitive Impairment Induced by Doxorubicin and Cyclophosphamide in Rats; Insights to Oxidative Stress, Inflammation, Synaptic Plasticity, Liver/brain, and Kidney/brain Axes.
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology.
2023 May; ?(?):. doi:
10.1007/s11481-023-10062-1
. [PMID: 37140732] - Aiping Liu, Yitong Cai, Yuan Yuan, Ming Liu, Zhengjing Zhang, Yongquan Xu, Pingzu Jiao. Efficacy and safety of carnitine supplementation on NAFLD: a systematic review and meta-analysis.
Systematic reviews.
2023 04; 12(1):74. doi:
10.1186/s13643-023-02238-w
. [PMID: 37120548] - Zulvikar Syambani Ulhaq, Yukiko Ogino, William Ka Fai Tse. Deciphering the pathogenesis of retinopathy associated with carnitine palmitoyltransferase I deficiency in zebrafish model.
Biochemical and biophysical research communications.
2023 Apr; 664(?):100-107. doi:
10.1016/j.bbrc.2023.04.096
. [PMID: 37141637] - Giovana D Catandi, Ming-Hao Cheng, Adam J Chicco, Tom Chen, Elaine M Carnevale. L-carnitine enhances developmental potential of bovine oocytes matured under high lipid concentrations in vitro.
Animal reproduction science.
2023 Apr; 252(?):107249. doi:
10.1016/j.anireprosci.2023.107249
. [PMID: 37119563] - Jing Fu, Xianjun Ma. Effects of high-flux hemodialysis combined with levocarnitine on blood lipid metabolism, calcium and phosphorus metabolism, iPTH, cardiac function and inflammation of uremic patients.
Minerva medica.
2023 04; 114(2):277-278. doi:
10.23736/s0026-4806.21.07508-x
. [PMID: 34056886] - A Martín, F J Giráldez, J Mateo, I Caro, S Andrés. Dietary administration of l-carnitine during the fattening period of early feed restricted lambs modifies lipid metabolism and meat quality.
Meat science.
2023 Apr; 198(?):109111. doi:
10.1016/j.meatsci.2023.109111
. [PMID: 36657262] - Diego F Carrillo-González, Darwin Y Hernández-Herrera, Juan G Maldonado-Estrada. The role of L-carnitine in bovine embryo metabolism. A review of the effect of supplementation with a metabolic modulator on in vitro embryo production.
Animal biotechnology.
2023 Apr; 34(2):413-423. doi:
10.1080/10495398.2021.1938593
. [PMID: 34154517] - Min Yao, Ping Zhou, Yan-Yan Qin, Li Wang, Deng-Fu Yao. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis.
World journal of gastroenterology.
2023 Mar; 29(12):1765-1778. doi:
10.3748/wjg.v29.i12.1765
. [PMID: 37032731] - Helena Beatriz Ferreira, Tânia Melo, Hugo Rocha, Artur Paiva, Pedro Domingues, M Rosário Domingues. Lipid profile variability in children at different ages measured in dried blood spots.
Molecular omics.
2023 03; 19(3):229-237. doi:
10.1039/d2mo00206j
. [PMID: 36625394] - Diana Zelencova-Gopejenko, Melita Videja, Aiga Grandane, Linda Pudnika-Okinčica, Anda Sipola, Karlis Vilks, Maija Dambrova, Kristaps Jaudzems, Edgars Liepinsh. Heart-Type Fatty Acid Binding Protein Binds Long-Chain Acylcarnitines and Protects against Lipotoxicity.
International journal of molecular sciences.
2023 Mar; 24(6):. doi:
10.3390/ijms24065528
. [PMID: 36982599] - Chengyuan Sun, Yan Guo, Peixu Cong, Yuan Tian, Xiang Gao. Liver Lipidomics Analysis Revealed the Novel Ameliorative Mechanisms of L-Carnitine on High-Fat Diet-Induced NAFLD Mice.
Nutrients.
2023 Mar; 15(6):. doi:
10.3390/nu15061359
. [PMID: 36986087] - Neven Hassan, Maha Rashad, Ebtihal Elleithy, Zainab Sabry, Ghada Ali, Sherif Elmosalamy. L-Carnitine alleviates hepatic and renal mitochondrial-dependent apoptotic progression induced by letrozole in female rats through modulation of Nrf-2, Cyt c and CASP-3 signaling.
Drug and chemical toxicology.
2023 Mar; 46(2):357-368. doi:
10.1080/01480545.2022.2039180
. [PMID: 35176959] - Varun M Bhave, Zsuzsanna Ament, Amit Patki, Yan Gao, Naruchorn Kijpaisalratana, Boyi Guo, Ninad S Chaudhary, Ana-Lucia Garcia Guarniz, Robert Gerszten, Adolfo Correa, Mary Cushman, Suzanne Judd, M Ryan Irvin, W Taylor Kimberly. Plasma Metabolites Link Dietary Patterns to Stroke Risk.
Annals of neurology.
2023 03; 93(3):500-510. doi:
10.1002/ana.26552
. [PMID: 36373825] - Jiaqi Sun, Jun Ding, Qingsong Shen, Xiyang Wang, Min Wang, Yongping Huang, Xuechun Zhang, Huan Zhu, Feng Zhang, Dongde Wu, Min Peng, Zhonglin Zhang, Yufeng Yuan, Wenhua Li, Zhi-Gang She, Xiao-Jing Zhang, Hongliang Li, Peng Zhang, Zan Huang. Decreased propionyl-CoA metabolism facilitates metabolic reprogramming and promotes hepatocellular carcinoma.
Journal of hepatology.
2023 Mar; 78(3):627-642. doi:
10.1016/j.jhep.2022.11.017
. [PMID: 36462680] - Katharina J Weiss, Ursula Berger, Maliha Haider, Matias Wagner, E M Charlotte Märtner, Stephanie Regenauer-Vandewiele, Amelie Lotz-Havla, Elfriede Schuhmann, Wulf Röschinger, Esther M Maier. Free carnitine concentrations and biochemical parameters in medium-chain acyl-CoA dehydrogenase deficiency: genotype-phenotype correlation.
Clinical genetics.
2023 Feb; ?(?):. doi:
10.1111/cge.14316
. [PMID: 36840705] - Yanfei Li, Yuchen Xie, Chensheng Qiu, Bowen Yu, Fangzheng Yang, Yuanchao Cheng, Weizhen Zhong, Junhua Yuan. Effects of L-carnitine supplementation on glucolipid metabolism: a systematic review and meta-analysis.
Food & function.
2023 Feb; ?(?):. doi:
10.1039/d2fo02930h
. [PMID: 36815696] - Xue Cheng, Xiaosheng Tan, Wei Wang, Ziyao Zhang, Rongfei Zhu, Mi Wu, Mingyu Li, Yiqing Chen, Zhihui Liang, Peng Zhu, Xiongwen Wu, Xiufang Weng. Long-Chain Acylcarnitines Induce Senescence of Invariant Natural Killer T Cells in Hepatocellular Carcinoma.
Cancer research.
2023 02; 83(4):582-594. doi:
10.1158/0008-5472.can-22-2273
. [PMID: 36512635] - Yi Gong, Tong Jiang, Hui He, Yu Wang, Guo-Lin Wu, Ying Shi, Qinjun Cai, Can-Li Xiong, Rong Shen, Jian Li. Effects of carnitine on glucose and lipid metabolic profiles and fertility outcomes in women with polycystic ovary syndrome: A systematic review and meta-analysis.
Clinical endocrinology.
2023 Feb; ?(?):. doi:
10.1111/cen.14885
. [PMID: 36746677] - Zhijian Zhang, Li Li, Ce Zhang, Pengfei Zhang, Zhongze Fang, Jingmin Li, Shuai Wang. Relationship between plasma amino acid and carnitine levels and primary angle-closure glaucoma based on mass spectrometry metabolomics.
Experimental eye research.
2023 02; 227(?):109366. doi:
10.1016/j.exer.2022.109366
. [PMID: 36592680] - Hirofumi Enomoto, Nobuhiro Zaima. Desorption electrospray ionization-mass spectrometry imaging of carnitine and imidazole dipeptides in pork chop tissues.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2023 Feb; 1216(?):123601. doi:
10.1016/j.jchromb.2023.123601
. [PMID: 36680959] - Tongliang Wang, Yaqi Zeng, Chaoxin Ma, Jun Meng, Jianwen Wang, Wanlu Ren, Chuankun Wang, Xinxin Yuan, Xixi Yang, Xinkui Yao. Plasma Non-targeted Metabolomics Analysis of Yili Horses Raced on Tracks With Different Surface Hardness.
Journal of equine veterinary science.
2023 Feb; 121(?):104197. doi:
10.1016/j.jevs.2022.104197
. [PMID: 36572130] - Irene Lasheras-Otero, Iker Feliu, Alberto Maillo, Haritz Moreno, Marta Redondo-Muñoz, Paula Aldaz, Ana Bocanegra, Ana Olias-Arjona, Fernando Lecanda, Joaquin Fernandez-Irigoyen, Enrique Santamaria, Ignacio M Larrayoz, David Gomez-Cabrero, Claudia Wellbrock, Silvestre Vicent, Imanol Arozarena. The Regulators of Peroxisomal Acyl-Carnitine Shuttle CROT and CRAT Promote Metastasis in Melanoma.
The Journal of investigative dermatology.
2023 Feb; 143(2):305-316.e5. doi:
10.1016/j.jid.2022.08.038
. [PMID: 36058299] - Jake Hsu, Nina Fatuzzo, Nielson Weng, Wojciech Michno, Wentao Dong, Maryline Kienle, Yuqin Dai, Anca Pasca, Monther Abu-Remaileh, Natalie Rasgon, Benedetta Bigio, Carla Nasca, Chaitan Khosla. Carnitine octanoyltransferase is important for the assimilation of exogenous acetyl-L-carnitine into acetyl-CoA in mammalian cells.
The Journal of biological chemistry.
2023 02; 299(2):102848. doi:
10.1016/j.jbc.2022.102848
. [PMID: 36587768] - Dominique Lisa Birrer, Ekaterina Kachaylo, Eva Breuer, Michael Linecker, Philipp Kron, Udo Ungethüm, Catherine Hagedorn, Regula Steiner, Carola Kälin, Lucia Bautista Borrego, Jean-Francois Dufour, Michelangelo Foti, Thorsten Hornemann, Pierre-Alain Clavien, Bostjan Humar. Normalization of lipid oxidation defects arising from hypoxia early posthepatectomy prevents liver failure in mouse.
American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.
2023 Feb; 23(2):190-201. doi:
10.1016/j.ajt.2022.10.003
. [PMID: 36804129] - Aslihan Cakmak, Emirhan Nemutlu, Samiye Yabanoglu-Ciftci, Ipek Baysal, Elif Kocaaga, Lutfi Coplu, Deniz Inal-Ince. Metabolomic, oxidative, and inflammatory responses to acute exercise in chronic obstructive pulmonary disease.
Heart & lung : the journal of critical care.
2023 Jan; 59(?):52-60. doi:
10.1016/j.hrtlng.2023.01.011
. [PMID: 36724589] - Thalita S Berteli, Alessandra A Vireque, Eduardo D Borges, Caroline M Da Luz, Paula A Navarro. Membrane lipid changes in mouse blastocysts induced by ovarian stimulation, IVF and oocyte vitrification.
Reproductive biomedicine online.
2023 Jan; ?(?):. doi:
10.1016/j.rbmo.2023.01.007
. [PMID: 37095039] - Dehui Chang, Feiyan Kong, Wei Jiang, Fudong Li, Chunlei Zhang, Haoshuai Ding, Yindong Kang, Weiping Li, Chuang Huang, Xin Zhou, Xiaoli Zhang, Hongmei Jiao, Yafen Kang, Xuejun Shang, Bin Zhang. Effects of L-carnitine Administration on Sperm and Sex Hormone Levels in a Male Wistar Rat Reproductive System Injury Model in a High-Altitude Hypobaric Hypoxic Environment.
Reproductive sciences (Thousand Oaks, Calif.).
2023 Jan; ?(?):. doi:
10.1007/s43032-022-00948-5
. [PMID: 36633830] - Sen Wang, Zhixin Guo, Xin Wang, Ning Wang, Jiajing Wang, Nan Zheng, Rongxin Zheng, Wenhao Fang, Yuke Chen, Qiuju Wang, Dongming Zhang. Dietary L-carnitine supplementation changes lipid metabolism and glucose utilization of Rhynchocypris lagowskii fed diets with different lipid sources.
Fish physiology and biochemistry.
2023 Jan; ?(?):. doi:
10.1007/s10695-022-01166-1
. [PMID: 36604356] - Can Cao, Qi Li, Yanping Chen, Mingyang Zou, Caihong Sun, Xiangning Li, Lijie Wu. Untargeted Metabolomic Analysis Reveals the Metabolic Disturbances and Exacerbation of Oxidative Stress in the Cerebral Cortex of a BTBR Mouse Model of Autism.
Journal of molecular neuroscience : MN.
2023 Jan; 73(1):15-27. doi:
10.1007/s12031-022-02096-6
. [PMID: 36574152] - Xinyin Hu, Wanyi Wang, Xuhan Su, Haoye Peng, Zuolin Tan, Yunqing Li, Yuhua Huang. Comparison of nutritional supplements in improving glycolipid metabolism and endocrine function in polycystic ovary syndrome: a systematic review and network meta-analysis.
PeerJ.
2023; 11(?):e16410. doi:
10.7717/peerj.16410
. [PMID: 38025704] - Farnoush Fallah, Reza Mahdavi. Ameliorating effects of L-carnitine and synbiotic co-supplementation on anthropometric measures and cardiometabolic traits in women with obesity: a randomized controlled clinical trial.
Frontiers in endocrinology.
2023; 14(?):1237882. doi:
10.3389/fendo.2023.1237882
. [PMID: 37929031] - Raheleh Farahzadi, Mohammad Saeid Hejazi, Ommoleila Molavi, Elahe Pishgahzadeh, Soheila Montazersaheb, Sevda Jafari. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation.
Oxidative medicine and cellular longevity.
2023; 2023(?):9328344. doi:
10.1155/2023/9328344
. [PMID: 37600065] - Timothy J Garrett, Michelle A Puchowicz, Edwards A Park, Qingming Dong, Gregory Farage, Richard Childress, Joy Guingab, Claire L Simpson, Saunak Sen, Elizabeth C Brogdon, Logan M Buchanan, Rajendra Raghow, Marshall B Elam. Effect of statin treatment on metabolites, lipids and prostanoids in patients with Statin Associated Muscle Symptoms (SAMS).
PloS one.
2023; 18(12):e0294498. doi:
10.1371/journal.pone.0294498
. [PMID: 38100464] - Bianca R Silva, José R V Silva. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development.
Animal reproduction science.
2022 Dec; 249(?):107186. doi:
10.1016/j.anireprosci.2022.107186
. [PMID: 36638648] - Yee Yin Tan, Wen Yan Nikki Fong, Charmaine Jiahui Chan, Suresh Chandran. Do renal and cardiac malformations in the fetus signal carnitine palmitoyltransferase II deficiency? A rare lethal fatty acid oxidation defect.
BMJ case reports.
2022 Dec; 15(12):. doi:
10.1136/bcr-2022-251321
. [PMID: 36535739] - Li Kong, Wenkai Zhang, Shanshan Liu, Zhen Zhong, Guodong Zheng. Quercetin, Engelitin and Caffeic Acid of Smilax china L. Polyphenols, Stimulate 3T3-L1 Adipocytes to Brown-like Adipocytes Via β3-AR/AMPK Signaling Pathway.
Plant foods for human nutrition (Dordrecht, Netherlands).
2022 Dec; 77(4):529-537. doi:
10.1007/s11130-022-00996-x
. [PMID: 35986845] - Mohammad Heidari, Babak Qasemi-Panahi, Gholamali Moghaddam, Hossein Daghigh-Kia, Reza Masoudi. L-carnitine improves quality parameters and epigenetic patterns of buck's frozen-thawed semen.
Animal reproduction science.
2022 Dec; 247(?):107092. doi:
10.1016/j.anireprosci.2022.107092
. [PMID: 36306715] - Chanidapa Wongtada, Putthamas Pewlong, Pravit Asawanonda, Nopadon Noppakun, Pornkanok Pongpamorn, Atchara Paemanee, Supaart Sirikantaramas, Chanat Kumtornrut. Influence of moisturizer containing licochalcone A, 1,2-decanediol, L-carnitine, and salicylic acid on facial skin lipidome among seborrhea participants.
Journal of cosmetic dermatology.
2022 Dec; 21(12):7081-7089. doi:
10.1111/jocd.15381
. [PMID: 36102580] - Masoud Eskandani, Bahman Navidshad, Morteza Eskandani, Somayeh Vandghanooni, Farzad Mirzaei Aghjehgheshlagh, Ali Nobakht, Amir Ali Shahbazfar. The effects of L-carnitine-loaded solid lipid nanoparticles on performance, antioxidant parameters, and expression of genes associated with cholesterol metabolism in laying hens.
Poultry science.
2022 Dec; 101(12):102162. doi:
10.1016/j.psj.2022.102162
. [PMID: 36191516] - Haoran Wei, Mingming Zhao, Junfang Wu, Chenze Li, Man Huang, Jianing Gao, Qi Zhang, Liang Ji, Yan Wang, Chunxia Zhao, Erdan Dong, Lemin Zheng, Dao Wen Wang. Association of Systemic Trimethyllysine With Heart Failure With Preserved Ejection Fraction and Cardiovascular Events.
The Journal of clinical endocrinology and metabolism.
2022 11; 107(12):e4360-e4370. doi:
10.1210/clinem/dgac519
. [PMID: 36062477] - Mustafa Kutlu Inci, Se-Hyung Park, Robert N Helsley, Suzanna L Attia, Samir Softic. Fructose impairs fat oxidation: Implications for the mechanism of western diet-induced NAFLD.
The Journal of nutritional biochemistry.
2022 Nov; 114(?):109224. doi:
10.1016/j.jnutbio.2022.109224
. [PMID: 36403701] - Yuan Tian, Xinyun Zhu, Shubo Lv, Chenlu Jia, Linlin Zhang, Min Ni, Yizhuo Xu, Rui Peng, Suna Liu, Dehua Zhao. Analysis of gene mutations of medium-chain acyl-coenzyme a dehydrogenase deficiency (MCADD) by next-generation sequencing in Henan, China.
Clinica chimica acta; international journal of clinical chemistry.
2022 Nov; 536(?):155-161. doi:
10.1016/j.cca.2022.09.008
. [PMID: 36096209] - Yu-Yu Li, Jia Xu, Xue-Cheng Sun, Hong-Yu Li, Kai Mu. Newborn screening and genetic variation of medium chain acyl-CoA dehydrogenase deficiency in the Chinese population.
Journal of pediatric endocrinology & metabolism : JPEM.
2022 Oct; 35(10):1264-1271. doi:
10.1515/jpem-2022-0394
. [PMID: 36068006] - A N Sasunova, A A Goncharov, S V Morozov, V A Isakov. [Modification of dietary patterns in patients with non-alcoholic steatohepatitis].
Terapevticheskii arkhiv.
2022 Oct; 94(8):973-978. doi:
10.26442/00403660.2022.08.201773
. [PMID: 36286977] - Laura Díez-Ricote, Paloma Ruiz-Valderrey, Víctor Micó, Ruth Blanco, Joao Tomé-Carneiro, Alberto Dávalos, José M Ordovás, Lidia Daimiel. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis.
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012107
. [PMID: 36292963] - Joshua N Bernard, Vikram Chinnaiyan, Thomas Andl, Gregoire F Le Bras, M Nasar Qureshi, Deborah A Altomare, Claudia D Andl. Augmented CPT1A Expression Is Associated with Proliferation and Colony Formation during Barrett's Tumorigenesis.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911745
. [PMID: 36233047] - Wei Xu, Ákos Kenéz, Sabine Mann, Thomas R Overton, Joseph J Wakshlag, Daryl V Nydam, Tao Feng, Francisco Leal Yepes. Effects of dietary branched-chain amino acid supplementation on serum and milk metabolome profiles in dairy cows during early lactation.
Journal of dairy science.
2022 Oct; 105(10):8497-8508. doi:
10.3168/jds.2022-21892
. [PMID: 35965128] - Wei-Feng Cai, Mao-Mao Yan, Zheng Wang, Meng-Ping Jiang, Bing Yan, Chun-Yan Shen. Optimization of the extract from flower of Citrus aurantium L. var. amara Engl. and its inhibition of lipid accumulation.
Journal of food biochemistry.
2022 10; 46(10):e14332. doi:
10.1111/jfbc.14332
. [PMID: 35894798] - Traci M Grucz, Jessica Crow, David Sugrue, Stephanie Davis, Erin Gager, Jessica Beattie, Kenneth M Shermock, Andrew S Jarrell. Levocarnitine supplementation for management of hypertriglyceridemia in patients receiving parenteral nutrition.
Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition.
2022 Oct; 37(5):1172-1179. doi:
10.1002/ncp.10775
. [PMID: 34528297] - R Hazzan, N Abu Ahmad, W Slim, E Mazen, Z Neeman. Hepatoprotective effect of combination of L-carnitine and magnesium-hydroxide in nonalcoholic fatty liver disease patients: a double-blinded randomized controlled pilot study.
European review for medical and pharmacological sciences.
2022 10; 26(20):7522-7532. doi:
10.26355/eurrev_202210_30023
. [PMID: 36314323] - Edwin R Price, Ulf Bauchinger, Scott R McWilliams, Michelle L Boyles, Lillie A Langlois, Alexander R Gerson, Christopher G Guglielmo. The effects of training, acute exercise and dietary fatty acid composition on muscle lipid oxidative capacity in European starlings.
The Journal of experimental biology.
2022 10; 225(19):. doi:
10.1242/jeb.244433
. [PMID: 36200468] - XueQing Hu, Cong Qi, Fang Feng, Yan Wang, TingTing Di, YuJiao Meng, Yazhuo Wang, Ning Zhao, XiaWei Zhang, Ping Li, Jingxia Zhao. Combining network pharmacology, RNA-seq, and metabolomics strategies to reveal the mechanism of Cimicifugae Rhizoma - Smilax glabra Roxb herb pair for the treatment of psoriasis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Oct; 105(?):154384. doi:
10.1016/j.phymed.2022.154384
. [PMID: 35963195]