12,13-EpOME (BioDeep_00000003295)

 

Secondary id: BioDeep_00000014529, BioDeep_00000629436, BioDeep_00001869661, BioDeep_00001872275

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds


代谢物信息卡片


(9Z)-(12S,13R)-12,13-Epoxyoctadecenoic acid

化学式: C18H32O3 (296.2351322)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 1.18%

分子结构信息

SMILES: C(/C=C\CCCCCCCC(=O)O)[C@H]1[C@H](O1)CCCCC
InChI: InChI=1S/C18H32O3/c1-2-3-10-13-16-17(21-16)14-11-8-6-4-5-7-9-12-15-18(19)20/h8,11,16-17H,2-7,9-10,12-15H2,1H3,(H,19,20)/b11-8-/t16-,17+/m0/s1



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

14 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mohammad Vatanparast, Shabbir Ahmed, Dong-Hee Lee, Sung Hee Hwang, Bruce Hammock, Yonggyun Kim. EpOMEs act as immune suppressors in a lepidopteran insect, Spodoptera exigua. Scientific reports. 2020 11; 10(1):20183. doi: 10.1038/s41598-020-77325-2. [PMID: 33214688]
  • Isabelle Billault, Alicia Le Du, Minale Ouethrani, Zeinab Serhan, Philippe Lesot, Richard J Robins. Probing substrate-product relationships by natural abundance deuterium 2D NMR spectroscopy in liquid-crystalline solvents: epoxidation of linoleate to vernoleate by two different plant enzymes. Analytical and bioanalytical chemistry. 2012 Mar; 402(9):2985-98. doi: 10.1007/s00216-012-5748-6. [PMID: 22349323]
  • Tanya Hutter, Charles Linder, Eliahu Heldman, Sarina Grinberg. Interfacial and self-assembly properties of bolaamphiphilic compounds derived from a multifunctional oil. Journal of colloid and interface science. 2012 Jan; 365(1):53-62. doi: 10.1016/j.jcis.2011.08.057. [PMID: 21963206]
  • Runzhi Li, Keshun Yu, Tomoko Hatanaka, David F Hildebrand. Vernonia DGATs increase accumulation of epoxy fatty acids in oil. Plant biotechnology journal. 2010 Feb; 8(2):184-95. doi: 10.1111/j.1467-7652.2009.00476.x. [PMID: 20078841]
  • Yonghua Li, Fred Beisson. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. Biochimie. 2009 Jun; 91(6):685-91. doi: 10.1016/j.biochi.2009.03.016. [PMID: 19344744]
  • Vincent Sauveplane, Sylvie Kandel, Pierre-Edouard Kastner, Jürgen Ehlting, Vincent Compagnon, Danièle Werck-Reichhart, Franck Pinot. Arabidopsis thaliana CYP77A4 is the first cytochrome P450 able to catalyze the epoxidation of free fatty acids in plants. The FEBS journal. 2009 Feb; 276(3):719-35. doi: 10.1111/j.1742-4658.2008.06819.x. [PMID: 19120447]
  • Todd R Harris, Pavel A Aronov, Paul D Jones, Hiromasa Tanaka, Michael Arand, Bruce D Hammock. Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. Archives of biochemistry and biophysics. 2008 Apr; 472(2):139-49. doi: 10.1016/j.abb.2008.01.016. [PMID: 18267101]
  • Keshun Yu, Runzhi Li, Tomoko Hatanaka, David Hildebrand. Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis. Phytochemistry. 2008 Mar; 69(5):1119-27. doi: 10.1016/j.phytochem.2007.11.015. [PMID: 18179805]
  • Keshun Yu, Charles T McCracken, Runzhi Li, David F Hildebrand. Diacylglycerol acyltransferases from Vernonia and Stokesia prefer substrates with vernolic acid. Lipids. 2006 Jun; 41(6):557-66. doi: 10.1007/s11745-006-5005-x. [PMID: 16981434]
  • Enea Rezzonico, Laurence Moire, Syndie Delessert, Yves Poirier. Level of accumulation of epoxy fatty acid in Arabidopsis thaliana expressing a linoleic acid delta12-epoxygenase is influenced by the availability of the substrate linoleic acid. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2004 Sep; 109(5):1077-82. doi: 10.1007/s00122-004-1721-x. [PMID: 15221145]
  • N Tsevegsuren, K Aitzetmuller, K Vosmann. Geranium sanguineum (Geraniaceae) seed oil: a new source of petroselinic and vernolic acid. Lipids. 2004 Jun; 39(6):571-6. doi: 10.1007/s11745-004-1265-8. [PMID: 15554157]
  • Grazyna Nowak, David F Grant, Jeffery H Moran. Linoleic acid epoxide promotes the maintenance of mitochondrial function and active Na+ transport following hypoxia. Toxicology letters. 2004 Mar; 147(2):161-75. doi: 10.1016/j.toxlet.2003.11.002. [PMID: 14757320]
  • Laurence Moire, Enea Rezzonico, Simon Goepfert, Yves Poirier. Impact of unusual fatty acid synthesis on futile cycling through beta-oxidation and on gene expression in transgenic plants. Plant physiology. 2004 Jan; 134(1):432-42. doi: 10.1104/pp.103.032938. [PMID: 14671017]
  • Johan Edqvist, Isabelle Farbos. Characterization of germination-specific lipid transfer proteins from Euphorbia lagascae. Planta. 2002 May; 215(1):41-50. doi: 10.1007/s00425-001-0717-x. [PMID: 12012240]
  • Edgar B Cahoon, Kevin G Ripp, Sarah E Hall, Brian McGonigle. Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant physiology. 2002 Feb; 128(2):615-24. doi: 10.1104/pp.010768. [PMID: 11842164]
  • J H Moran, G Nowak, D F Grant. Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria. Toxicology and applied pharmacology. 2001 Apr; 172(2):150-61. doi: 10.1006/taap.2001.9149. [PMID: 11298501]
  • S Singh, S Thomaeus, M Lee, S Stymne, A Green. Transgenic expression of a delta 12-epoxygenase gene in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta. 2001 Apr; 212(5-6):872-9. doi: 10.1007/s004250000456. [PMID: 11346964]
  • L Liu, E G Hammond, B J Nikolau. In vivo studies of the biosynthesis of vernolic acid in the seed of Vernonia galamensis. Lipids. 1998 Dec; 33(12):1217-21. doi: 10.1007/s11745-998-0326-3. [PMID: 9930408]
  • M Lee, M Lenman, A Banaś, M Bafor, S Singh, M Schweizer, R Nilsson, C Liljenberg, A Dahlqvist, P O Gummeson, S Sjödahl, A Green, S Stymne. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science (New York, N.Y.). 1998 May; 280(5365):915-8. doi: 10.1126/science.280.5365.915. [PMID: 9572738]
  • I Ncube, T Gitlesen, P Adlercreutz, J S Read, B Mattiasson. Fatty acid selectivity of a lipase purified from Vernonia galamensis seed. Biochimica et biophysica acta. 1995 Jul; 1257(2):149-56. doi: 10.1016/0005-2760(95)00067-m. [PMID: 7619855]
  • G Eggink, P de Waard, G N Huijberts. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Canadian journal of microbiology. 1995; 41 Suppl 1(?):14-21. doi: 10.1139/m95-163. [PMID: 7606658]
  • M Bafor, M A Smith, L Jonsson, K Stobart, S Stymne. Biosynthesis of vernoleate (cis-12-epoxyoctadeca-cis-9-enoate) in microsomal preparations from developing endosperm of Euphorbia lagascae. Archives of biochemistry and biophysics. 1993 May; 303(1):145-51. doi: 10.1006/abbi.1993.1265. [PMID: 8489257]
  • A Brock. Binding of digitoxin to human serum albumin: influence of ionic strength and ionic medium on the digitoxin-albumin complex formation. Acta pharmacologica et toxicologica. 1975 Nov; 37(5):361-8. doi: 10.1111/j.1600-0773.1975.tb00854.x. [PMID: 887]
  • . . . . doi: . [PMID: 17085685]