Gene Association: KEAP1
UniProt Search:
KEAP1 (PROTEIN_CODING)
Function Description: kelch like ECH associated protein 1
found 500 associated metabolites with current gene based on the text mining result from the pubmed database.
Fraxetin
Fraxetin is a hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. It has a role as an Arabidopsis thaliana metabolite, an antimicrobial agent, an apoptosis inhibitor, an apoptosis inducer, an antioxidant, an anti-inflammatory agent, a hepatoprotective agent, an antibacterial agent and a hypoglycemic agent. It is a hydroxycoumarin and an aromatic ether. Fraxetin is a natural product found in Santolina pinnata, Campanula dolomitica, and other organisms with data available. A hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.550 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.542 Fraxetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=574-84-5 (retrieved 2024-06-28) (CAS RN: 574-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1]. Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1].
Ginsenoside A2
Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside A2 is found in tea. Ginsenoside A2 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside A2 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Scopoletin
Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
Umbelliferone
Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.
Danshensu
(2R)-3-(3,4-dihydroxyphenyl)lactic acid is a (2R)-2-hydroxy monocarboxylic acid that is (R)-lactic acid substituted at position 3 by a 3,4-dihydroxyphenyl group. It is a (2R)-2-hydroxy monocarboxylic acid and a 3-(3,4-dihydroxyphenyl)lactic acid. It is a conjugate acid of a (2R)-3-(3,4-dihydroxyphenyl)lactate. Danshensu is a natural product found in Salvia miltiorrhiza, Melissa officinalis, and other organisms with data available. Salvianic acid A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76822-21-4 (retrieved 2024-06-29) (CAS RN: 76822-21-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway. Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway.
Ginsenoside Rb1
Ginsenoside Rb1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. It has a role as a neuroprotective agent, an anti-obesity agent, an anti-inflammatory drug, an apoptosis inhibitor, a radical scavenger and a plant metabolite. It is a ginsenoside, a glycoside and a tetracyclic triterpenoid. It is functionally related to a ginsenoside Rd. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rb1 appears to be most abundant in Panax quinquefolius (American Ginseng). Rb1 seems to affect the reproductive system in animal testicles. Recent research shows that Rb1 affects rat embryo development and has teratogenic effects, causing birth defects. Another study shows that Rb1 may increase testosterone production in male rats indirectly through the stimulation of the luteinizing hormone. Ginsenoside rb1 is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside Rb1 is found in tea. Ginsenoside Rb1 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Rb1 is found in tea. Ginsenoside Rb1. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=41753-43-9 (retrieved 2024-06-29) (CAS RN: 41753-43-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
Isoimperatorin
Isoimperatorin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Isoimperatorin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Isoimperatorin can be found in a number of food items such as parsley, lime, wild celery, and parsnip, which makes isoimperatorin a potential biomarker for the consumption of these food products. Isoimperatorin is a non-carcinogenic (not listed by IARC) potentially toxic compound. If the compound has been ingested, rapid gastric lavage should be performed using 5\\\\% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of -oximes has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally (T3DB). D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.
(20R)-Ginsenoside Rh2
(20S)-ginsenoside Rh2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antineoplastic agent, an apoptosis inducer, a cardioprotective agent, a bone density conservation agent and a hepatoprotective agent. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a ginsenoside, a tetracyclic triterpenoid and a 20-hydroxy steroid. It derives from a hydride of a dammarane. Ginsenoside Rh2 is a natural product found in Panax ginseng and Panax notoginseng with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner. Ginsenoside Rh2 induces the activation of caspase-8 and caspase-9. Ginsenoside Rh2 induces cancer cell apoptosis in a multi-path manner.
Rosmarinic acid
Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
Abietic_acid
Yellowish resinous powder. (NTP, 1992) Abietic acid is an abietane diterpenoid that is abieta-7,13-diene substituted by a carboxy group at position 18. It has a role as a plant metabolite. It is an abietane diterpenoid and a monocarboxylic acid. It is a conjugate acid of an abietate. Abietic acid is a natural product found in Ceroplastes pseudoceriferus, Pinus brutia var. eldarica, and other organisms with data available. An abietane diterpenoid that is abieta-7,13-diene substituted by a carboxy group at position 18. D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents CONFIDENCE standard compound; INTERNAL_ID 8337 Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2]. Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2].
Germacrone
(E,E)-germacrone is a germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. It has a role as a volatile oil component, an antiviral agent, an insecticide, an anti-inflammatory agent, an antioxidant, an antineoplastic agent, an apoptosis inducer, an autophagy inducer, an antimicrobial agent, an androgen antagonist, a neuroprotective agent, a plant metabolite, an antifungal agent, an antitussive, an antifeedant and a hepatoprotective agent. It is a germacrane sesquiterpenoid and an olefinic compound. Germacrone is a natural product found in Rhododendron calostrotum, Rhododendron nivale, and other organisms with data available. A germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. Germacrone is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Germacrone can be found in common thyme and turmeric, which makes germacrone a potential biomarker for the consumption of these food products. Germacrone is an antiviral isolate of Geranium macrorrhizum . Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). Liquiritin is found in herbs and spices. Liquiritin is isolated from Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Ailanthone
Ailanthone is a triterpenoid. Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM). Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM).
Arenobufagin
Arenobufagin is a natural product found in Bufo gargarizans, Bufotes viridis, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2]. Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2].
Carnosol
Carnosol is a naturally occurring phenolic diterpene found in rosemary (Rosemarinus officinalis, Labiatae). It has been known that an extract of rosemary leaves contains high antioxidative activity. Ninety percent of this antioxidative activity can be attributed to carnosol and carnosic acid. Carnosic acid is easily converted to carnosol by oxidation. Carnosol has multiple beneficial medicinal effects including anti-inflammatory, anti-microbial and anti-cancer activities in various disease models. Carnosol may possess important neuroprotective effects against rotenone-induced DA neuronal damage. Naturally occurring antioxidants reduce the risk of neurodegenerative diseases. In addition, carnosol and carnosic acid promoted the synthesis of nerve growth factor in glial cells. Carnosol-mediated neuroprotection in DA neurons is involved in the attenuation of caspase-3 activity, which was induced by rotenone. Furthermore, carnosol-mediated tyrosine hydroxylase (TH) increase, which is dependent on the Raf-mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK)1/2 signaling pathway, is responsible for the neuroprotection in SN4741 DA cells. (PMID: 17047462). Carnosol, a phenolic diterpene compound of the labiate herbs rosemary and sage, is an activator of the human peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand activated transcription factor, belonging to the metazoan family of nuclear hormone receptors. Activation of PPARgamma increases the transcription of enzymes involved in primary metabolism, leading to lower blood levels of fatty acids and glucose. Hence, PPARgamma represents the major target for the glitazone type of drugs currently being used clinically for the treatment of type 2 diabetes. (PMID: 16858665). Bitter principle in Salvia carnosa, Salvia officinalis (sage), Salvia triloba (Greek sage) and Rosmarinus officinalis (rosemary). Nutriceutical with anticancer props. Carnosol is a diterpenoid. Carnosol is a natural product found in Podocarpus rumphii, Lepechinia salviae, and other organisms with data available.
(all-E)-Crocetin
Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. cis-Crocetin is found in herbs and spices. cis-Crocetin is occurs as glycoside in saffro COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Occurs as glycoside in saffron. cis-Crocetin is found in herbs and spices. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Cynaropicrin
Constituent of Cynara scolymus (artichoke). Cynaropicrin is found in cardoon, globe artichoke, and root vegetables. Cynaropicrin is found in cardoon. Cynaropicrin is a constituent of Cynara scolymus (artichoke). Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one
5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.
Fucoxanthin
Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB] Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Isoliquiritigenin
Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.
Biochanin A
Biochanin A is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at position 5 and a methoxy group at position 4. A phytoestrogen, it has putative benefits in dietary cancer prophylaxis. It has a role as a phytoestrogen, a plant metabolite, an EC 3.5.1.99 (fatty acid amide hydrolase) inhibitor, a tyrosine kinase inhibitor and an antineoplastic agent. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is a conjugate acid of a biochanin A(1-). Biochanin A is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). biochanin A is a natural product found in Dalbergia oliveri, Dalbergia sissoo, and other organisms with data available. The phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. Treating MCF-7 human breast carcinoma cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. Biochanin A may be a natural ligand to bind on aryl hydrocarbon receptor acting as an antagonist/agonist of the pathway. (A7920). Biochanin A suppress nuclear factor-kappaB-driven interleukin-6 (IL6) expression. In addition to its physiologic immune function as an acute stress cytokine, sustained elevated expression levels of IL6 promote chronic inflammatory disorders, aging frailty, and tumorigenesis. (A7921). Biochanin A induces a decrease in invasive activity of U87MG cells in a dose-related manner. (A7922). Biochanin A activates peroxisome proliferator-activated receptors (PPAR) PPARalpha, PPARgamma, and adipocyte differentiation in vitro of 3T3-L1 preadipocytes, suggesting potential value of isoflavones, especially biochanin A and their parent botanicals, as antidiabetic agents and for use in regulating lipid metabolism. (A7923). See also: Trifolium pratense flower (part of). The phytoestrogen biochanin A is an isoflavone derivative isolated from red clover Trifolium pratense with anticarcinogenic properties. Treating MCF-7 human breast carcinoma cells with biochanin A alone caused the accumulation of CYP1A1 mRNA and an increase in CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity in a dose dependent manner. Biochanin A may be a natural ligand to bind on aryl hydrocarbon receptor acting as an antagonist/agonist of the pathway. (PMID: 16903077). Biochanin A suppress nuclear factor-kappaB-driven interleukin-6 (IL6) expression. In addition to its physiologic immune function as an acute stress cytokine, sustained elevated expression levels of IL6 promote chronic inflammatory disorders, aging frailty, and tumorigenesis. (PMID: 16651441). Biochanin A induces a decrease in invasive activity of U87MG cells in a dose-related manner. (PMID: 16598420). Biochanin A activates peroxisome proliferator-activated receptors (PPAR) PPARalpha, PPARgamma, and adipocyte differentiation in vitro of 3T3-L1 preadipocytes, suggesting potential value of isoflavones, especially biochanin A and their parent botanicals, as antidiabetic agents and for use in regulating lipid metabolism. (PMID: 16549448). A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at position 5 and a methoxy group at position 4. A phytoestrogen, it has putative benefits in dietary cancer prophylaxis. Widespread isoflavone found in alfalfa (Medicago sativa), chick peas (Cicer arietinum) and white clover (Trifolium repens). Glycosides also widespread. Potential nutriceutical D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9176; ORIGINAL_PRECURSOR_SCAN_NO 9175 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4338; ORIGINAL_PRECURSOR_SCAN_NO 4335 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9201; ORIGINAL_PRECURSOR_SCAN_NO 9199 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9188; ORIGINAL_PRECURSOR_SCAN_NO 9183 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4313; ORIGINAL_PRECURSOR_SCAN_NO 4310 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9213; ORIGINAL_PRECURSOR_SCAN_NO 9210 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4329; ORIGINAL_PRECURSOR_SCAN_NO 4326 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9187; ORIGINAL_PRECURSOR_SCAN_NO 9186 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4328; ORIGINAL_PRECURSOR_SCAN_NO 4326 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4310; ORIGINAL_PRECURSOR_SCAN_NO 4307 CONFIDENCE standard compound; INTERNAL_ID 960; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9197; ORIGINAL_PRECURSOR_SCAN_NO 9194 IPB_RECORD: 181; CONFIDENCE confident structure Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.
Parthenolide
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (1Ar,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a germacranolide. Parthenolide has been used in trials studying the diagnostic of Allergic Contact Dermatitis. (1aR,7aS,10aS,10bS)-1a,5-dimethyl-8-methylidene-2,3,6,7,7a,8,10a,10b-octahydrooxireno[9,10]cyclodeca[1,2-b]furan-9(1aH)-one is a natural product found in Cyathocline purpurea, Tanacetum parthenium, and other organisms with data available. Parthenolide belongs to germacranolides and derivatives class of compounds. Those are sesquiterpene lactones with a structure based on the germacranolide skeleton, characterized by a gamma lactone fused to a 1,7-dimethylcyclodec-1-ene moiety. Thus, parthenolide is considered to be an isoprenoid lipid molecule. Parthenolide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Parthenolide is a bitter tasting compound found in sweet bay, which makes parthenolide a potential biomarker for the consumption of this food product. Parthenolide is a sesquiterpene lactone of the germacranolide class which occurs naturally in the plant feverfew (Tanacetum parthenium), after which it is named. It is found in highest concentration in the flowers and fruit . relative retention time with respect to 9-anthracene Carboxylic Acid is 1.002 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.000 Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs. Parthenolide is a sesquiterpene lactone found in the medicinal herb Feverfew. Parthenolide exhibits anti-inflammatory activity by inhibiting NF-κB activation; also inhibits HDAC1 protein without affecting other class I/II HDACs.
Hesperetin 7-neohesperidoside
Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.
Berberine
Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials [Raw Data] CBA98_Berberine_pos_50eV.txt [Raw Data] CBA98_Berberine_pos_10eV.txt [Raw Data] CBA98_Berberine_pos_20eV.txt [Raw Data] CBA98_Berberine_pos_40eV.txt [Raw Data] CBA98_Berberine_pos_30eV.txt Berberine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2086-83-1 (retrieved 2024-09-04) (CAS RN: 2086-83-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(S)-3-Butyl-1(3H)-isobenzofuranone
Butylphthalide is a member of benzofurans. Butylphthalide has been used in trials studying the prevention of Restenosis. Butylphthalide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery Seed (part of); Angelica sinensis root oil (part of). Potential nutriceutical. 3-Butyl-1(3H)-isobenzofuranone is found in many foods, some of which are dill, parsley, lovage, and wild celery. C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents 3-Butyl-1(3H)-isobenzofuranone is found in dill. Potential nutriceutical. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D020011 - Protective Agents Butylphthalide (3-n-Butylphthalide) is an active molecule against cerebral ischemia. It was originally isolated from celery species and has been shown to be effective in stroke animal models. Butylphthalide (3-n-Butylphthalide) is an active molecule against cerebral ischemia. It was originally isolated from celery species and has been shown to be effective in stroke animal models.
Diosmetin
Diosmetin is a monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a tropomyosin-related kinase B receptor agonist, an apoptosis inducer, an angiogenesis inhibitor, a cardioprotective agent, a bone density conservation agent, an anti-inflammatory agent and a vasodilator agent. It is a monomethoxyflavone, a trihydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. It is a conjugate acid of a diosmetin-7-olate. Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic and anti-inflamatory activities. It also acts as a weak TrkB receptor agonist. Diosmetin is a natural product found in Vicia tenuifolia, Salvia tomentosa, and other organisms with data available. See also: Agathosma betulina leaf (part of). A monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. Isolated from peel of lemon (Citrus limon) and others. Diosmetin is found in many foods, some of which are spearmint, citrus, rosemary, and common thyme. Diosmetin is found in citrus. Diosmetin is isolated from peel of lemon (Citrus limon) and other Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.
Irigenin
Irigenin, also known as 5,7,3-trihydroxy-6,4,5-trimethoxyisoflavone, is a member of the class of compounds known as 3-hydroxy,4-methoxyisoflavonoids. 3-hydroxy,4-methoxyisoflavonoids are isoflavonoids carrying a methoxy group attached to the C4 atom, as well as a hydroxyl group at the C3-position of the isoflavonoid backbone. Thus, irigenin is considered to be a flavonoid lipid molecule. Irigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Irigenin can be synthesized from isoflavone. Irigenin can also be synthesized into iridin. Irigenin can be found in lima bean, which makes irigenin a potential biomarker for the consumption of this food product. Irigenin is an O-methylated isoflavone, a type of flavonoid. It can be isolated from the rhizomes of the leopard lily (Belamcanda chinensis), and Iris kemaonensis . Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].
Neochlorogenic acid
Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
Gentisate
Gentisic acid, also known as gentisate or 2,5-dioxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Gentisic acid is also classified as a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1\\\\\%) product of the metabolic break down of aspirin, which is excreted by the kidneys. Gentisic acid is found in essentially all organisms ranging from bacteria to fungi to plants to animals. Gentisic acid has been associated with a number of useful effects on human health and exhibits anti-inflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities (PMID: 31825145). It is widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms (PMID: 31825145). Gentisic acid is found in higher concentrations in a number of foods such as tarragons, common thymes, and common sages and in a lower concentration in grape wines, rosemaries, and sweet marjorams. Gentisic acid has also been shown to act as a pathogen-inducible signal for the activation of plant defenses in tomato plants and cucumbers (PMID: 16321412; https://doi.org/10.1094/MPMI.1999.12.3.227). Gentisic acid is a dihydroxybenzoic acid. It is a crystalline powder that forms monoclinic prism in water solution. Gentisic acid is an active metabolite of salicylic acid degradation. There is an increasing amount of evidence indicating that gentisic acid has a broad spectrum of biological activity, such as anti-inflammatory, antirheumatic and antioxidant properties. Gentisic acid is also a byproduct of tyrosine and benzoate metabolism. [HMDB]. Gentisic acid is found in many foods, some of which are common sage, common grape, nutmeg, and dill. 2,5-dihydroxybenzoic acid is a dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. It has a role as a MALDI matrix material, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a human metabolite, a fungal metabolite and a mouse metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 2,5-dihydroxybenzoate. 2,5-Dihydroxybenzoic acid is a natural product found in Persicaria mitis, Tilia tomentosa, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. 2,5-Dihydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-79-9 (retrieved 2024-07-01) (CAS RN: 490-79-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Aesculetin
Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
Aristolochic acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Thioctic acid
Lipoate, also known as lipoic acid or 6,8-thioctate, belongs to lipoic acids and derivatives class of compounds. Those are compounds containing a lipoic acid moiety (or a derivative thereof), which consists of a pentanoic acid (or derivative) attached to the C3 carbon atom of a 1,2-dithiolane ring. Lipoate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lipoate can be synthesized from octanoic acid. Lipoate can also be synthesized into lipoamide and lipoyl-AMP. Lipoate can be found in broccoli and spinach, which makes lipoate a potential biomarker for the consumption of these food products. Lipoate may be a unique E.coli metabolite. Lipoate is a non-carcinogenic (not listed by IARC) potentially toxic compound. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products Acquisition and generation of the data is financially supported in part by CREST/JST. D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. Lipoic acid ((R)-(+)-α-Lipoic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. (R)-(+)-α-Lipoic acid is more effective than racemic Lipoic acid. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
Astragaloside IV
Astragaloside IV is a pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. It has a role as an EC 4.2.1.1 (carbonic anhydrase) inhibitor, an anti-inflammatory agent, a neuroprotective agent, an antioxidant, a pro-angiogenic agent and a plant metabolite. It is a triterpenoid saponin and a pentacyclic triterpenoid. It is functionally related to a cycloastragenol. Astragaloside IV is a natural product found in Euphorbia glareosa, Astragalus ernestii, and other organisms with data available. A pentacyclic triterpenoid that is cycloastragenol having beta-D-xylopyranosyl and beta-D-glucopyranosyl residues attached at positions O-3 and O-6 respectively. It is isolated from Astragalus membranaceus var mongholicus. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.
Phillyrin
Forsythin is a lignan and a glycoside. Phillyrin is a natural product found in Forsythia suspensa, Phillyrea latifolia, and other organisms with data available. Annotation level-1 2-[4-[3-(3,4-Dimethoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Pteris semipinnata with data available. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2]. Phillyrin is isolated from Forsythia suspensa Vahl (Oleaceae), has antibacterial and anti-inflammatory activities. Phillyrin has potential inductive effects on rat CYP1A2 and CYP2D1 activities, without affecting CYP2C11 and CYP3A1/2 activities[1]. Phillyrin has anti-influenza A virus activities[2].
Imperatorin
Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.
Saikosaponin A
Saikosaponin A is a saikosaponin. Saikosaponin A is a natural product found in Bupleurum kunmingense, Clinopodium gracile, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.
Tropoflavin
7,8-dihydroxyflavone is a dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. It has a role as a plant metabolite, a tropomyosin-related kinase B receptor agonist, an antidepressant, an antioxidant and an antineoplastic agent. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A dihydroxyflavone that is flavone substituted by hydroxy groups at positions 7 and 8. A naturally occurring flavonoid produced by several plants, including the weed Tridax procumbens (coalbuttons or tridax daisy) and the tree Godmania aesculifolia, In animal models, it has shown efficacy against several diseases of the nervous system, including Alzheimers, Parkinsons, and Huntingtons. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
Ginsenoside
Ginsenoside Rf is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is a 12beta-hydroxy steroid, a 3beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside, a tetracyclic triterpenoid, a 20-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenoside Rf is a natural product found in Gynostemma pentaphyllum, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy group at position 6 has been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. D002491 - Central Nervous System Agents Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rf is a trace component of ginseng root. Ginsenoside Rf inhibits N-type Ca2+ channel. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Narcissin
Isorhamnetin-3-O-rutinoside is a disaccharide derivative, a glycosyloxyflavone, a monomethoxyflavone and a trihydroxyflavone. Narcissoside is a natural product found in Phoenix canariensis, Scolymus hispanicus, and other organisms with data available. See also: Ginkgo (part of); Calendula Officinalis Flower (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1]. Narcissin (Narcissoside), a flavonol glycoside, exhibits evident scavenging activity against both authentic ONOO-?and SIN-1-derived ONOO- with IC50s?of 3.5 and 9.6 μM, respectively[1].
Osthol
Osthol, also known as 7-methoxy-8-(3-methylpent-2-enyl)coumarin, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Osthol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Osthol can be found in a number of food items such as wild celery, lemon, parsley, and wild carrot, which makes osthol a potential biomarker for the consumption of these food products. Osthol is an O-methylated coumarin. It is a calcium channel blocker, found in plants such as Cnidium monnieri, Angelica archangelica and Angelica pubescens . Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
Calycosin
Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.
Maslinic acid
Maslinic acid is a compound derived from dry olive-pomace oil (an olive skin wax) which is a byproduct of olive oil extraction. It is a member of the group of triterpenes known as oleananes.; Maslinic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Maslinic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619) Maslinic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Maslinic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619). Maslinic acid is a pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 2 and 3 and a carboxy group at position 28 (the 2alpha,3beta stereoisomer). It is isolated from Olea europaea and Salvia canariensis and exhibits anti-inflammatory, antioxidant and antineoplastic activity. It has a role as an antioxidant, an antineoplastic agent, an anti-inflammatory agent and a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It derives from a hydride of an oleanane. Maslinic acid is a natural product found in Chaenomeles speciosa, Salvia tomentosa, and other organisms with data available. See also: Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is olean-12-ene substituted by hydroxy groups at positions 2 and 3 and a carboxy group at position 28 (the 2alpha,3beta stereoisomer). It is isolated from Olea europaea and Salvia canariensis and exhibits anti-inflammatory, antioxidant and antineoplastic activity. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation.
Zongorine
Songorine is a kaurane diterpenoid. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].
Genkwanin
Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.
Rutaecarpine
Rutecarpine is a member of beta-carbolines. Rutaecarpine is a natural product found in Bouchardatia neurococca, Zanthoxylum dimorphophyllum, and other organisms with data available. Rutaecarpine belongs to the family of Pyridopyrimidines. These are compounds containing a pyridopyrimidine, which consists of a pyridine fused to a pyrimidine. D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Rutaecarpine, an alkaloid of Evodia rutaecarpa, is an inhibitor of COX-2 with an IC50 value of 0.28 μM. Rutaecarpine, an alkaloid of Evodia rutaecarpa, is an inhibitor of COX-2 with an IC50 value of 0.28 μM.
Linderalactone
Isolinderalactone is a member of benzofurans. It has a role as a metabolite. Isolinderalactone is a natural product found in Neolitsea villosa, Neolitsea hiiranensis, and other organisms with data available. A natural product found in Neolitsea daibuensis. Linderalactone is a natural product found in Neolitsea umbrosa, Neolitsea villosa, and other organisms with data available. Isolinderalactone suppresses human glioblastoma growth and angiogenic activity through the inhibition of VEGFR2 activation in endothelial cells[1]. Isolinderalactone suppresses the expression of B-cell lymphoma 2 (Bcl-2), survi Isolinderalactone suppresses human glioblastoma growth and angiogenic activity through the inhibition of VEGFR2 activation in endothelial cells[1]. Isolinderalactone suppresses the expression of B-cell lymphoma 2 (Bcl-2), survi Linderalactone is an important sesquiterpene lactone isolated from Lindera aggregata. Linderalactone inhibits cancer growth by modulating the expression of apoptosis-related proteins and inhibition of JAK/STAT signalling pathway. Linderalactone also inhibits the proliferation of the lung cancer A-549 cells with an IC50 of 15 μM[1][2]. Linderalactone is an important sesquiterpene lactone isolated from Lindera aggregata. Linderalactone inhibits cancer growth by modulating the expression of apoptosis-related proteins and inhibition of JAK/STAT signalling pathway. Linderalactone also inhibits the proliferation of the lung cancer A-549 cells with an IC50 of 15 μM[1][2].
Senkyunolide
Senkyunolide is a member of 2-benzofurans. Senkyunolide A is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. See also: Celery (part of); Scutellaria baicalensis Root (part of); Angelica acutiloba Root (part of) ... View More ... Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].
Isovitexin
Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.
Isoorientin 7-O-(6'-O-(E)-feruloyl)glucoside
Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside, also known as homoorientin or luteolin-6-C-beta-D-glucoside, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be synthesized from luteolin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is also a parent compound for other transformation products, including but not limited to, isoorientin 7-O-glucoside, 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucosyl]isoorientin, and 7-O-(6-sinapoylglucosyl)isoorientin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be found in barley, which makes isoorientin 7-o-(6-o-(e)-feruloyl)glucoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA21_Isoorientin_neg_20eV_1-3_01_1409.txt [Raw Data] CBA21_Isoorientin_pos_20eV_1-3_01_1382.txt [Raw Data] CBA21_Isoorientin_pos_50eV_1-3_01_1385.txt [Raw Data] CBA21_Isoorientin_neg_40eV_1-3_01_1411.txt [Raw Data] CBA21_Isoorientin_neg_10eV_1-3_01_1365.txt [Raw Data] CBA21_Isoorientin_neg_50eV_1-3_01_1412.txt [Raw Data] CBA21_Isoorientin_pos_10eV_1-3_01_1354.txt [Raw Data] CBA21_Isoorientin_pos_40eV_1-3_01_1384.txt [Raw Data] CBA21_Isoorientin_pos_30eV_1-3_01_1383.txt [Raw Data] CBA21_Isoorientin_neg_30eV_1-3_01_1410.txt Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
Sinomenine
Sinomenine is a morphinane alkaloid. Sinomenine is a natural product found in Sinomenium acutum, Stephania cephalantha, and other organisms with data available. Sinomenine is an alkaloid isolated from the root of Sinomenium acutum with immunomodulatory and potential anti-angiogenic and activities. Although the mechanism of action remains to be fully elucidated, sinomenine appears to inhibit endothelial proliferation mediated through basic fibroblast growth factor (bFGF), which may contribute to its anti-angiogenic effect. In Chinese medicine, this agent has a long track-record in treating arthritis, which is accounted by its ability to inhibit proliferation of synovial fibroblasts and lymphocytes. In addition, sinomenine has been shown to suppress expressions of genes involved in inflammation and apoptosis, such as interleukin-6, a pleiotropic inflammatory cytokine and JAK3 (Janus kinase 3), Daxx (death-associated protein 6), plus HSP27 (heat shock 27kDa protein 1), respectively. D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.366 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.360 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.362 Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].
1,2,3-Trihydroxybenzene
1,2,3-trihydroxybenzene, also known as pyrogallic acid or 1,2,3-benzenetriol, is a member of the class of compounds known as 5-unsubstituted pyrrogallols. 5-unsubstituted pyrrogallols are pyrrogallols that are unsubstituted at th5-position of the benzene ring. 1,2,3-trihydroxybenzene is soluble (in water) and a very weakly acidic compound (based on its pKa). 1,2,3-trihydroxybenzene can be found in arabica coffee, beer, cocoa powder, and coffee, which makes 1,2,3-trihydroxybenzene a potential biomarker for the consumption of these food products. 1,2,3-trihydroxybenzene can be found primarily in blood, feces, and urine. 1,2,3-trihydroxybenzene is an organic compound with the formula C6H3(OH)3. It is a white water-soluble solid although samples are typically brownish because of its sensitivity toward oxygen. It is one of three isomeric benzenetriols . Pyrogallic acid is an odorless white to gray solid. Sinks and mixes with water. (USCG, 1999) Pyrogallol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 3. It has a role as a plant metabolite. It is a phenolic donor and a benzenetriol. Pyrogallol is a natural product found in Gunnera perpensa, Nigella glandulifera, and other organisms with data available. A trihydroxybenzene or dihydroxy phenol that can be prepared by heating GALLIC ACID. See also: Stevia rebaudiuna Leaf (part of); Alchemilla monticola whole (part of); Agrimonia eupatoria flowering top (part of). 1,2,3-Trihydroxybenzene, or pyrogallol is a benzenetriol. It is a white crystalline powder and a powerful reducing agent. It was first prepared by Scheele 1786 by heating gallic acid. An alternate preparation is heating para-chlorophenoldisulphonic acid with potassium hydroxide. 1,2,3-Trihydroxybenzene has been found to be a metabolite of Aspergillus (https://www.tandfonline.com/doi/pdf/10.1080/00021369.1982.10865473). A benzenetriol carrying hydroxy groups at positions 1, 2 and 3. D020011 - Protective Agents > D000975 - Antioxidants Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions. Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions.
Notopterol
Notopterol is a furanocoumarin. Notopterol is a natural product found in Hansenia forbesii and Hansenia weberbaueriana with data available. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1]. Notopterol is a coumarin extracted from N. incisum. Notopterol induces apoptosis and has antipyretic, analgesic and anti-inflammatory effects. Notopterol is used for acute myeloid leukemia (AML)[1].
Gingerol
Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). Gingerol, a plant polyphenol, is the active constituent of fresh ginger. Chemically, gingerol is a relative of capsaicin, the compound that gives chile peppers their spiciness. It is normally found as a pungent yellow oil, but also can form a low-melting crystalline solid. Constituent of ginger Zingiber officinale. (S)-[6]-Gingerol is found in many foods, some of which are caraway, star anise, cumin, and ginger. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.
Chlorogenic acid
Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.
Gynosaponin S
Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. Gynosaponin S is found in tea. Gynosaponin S is a constituent of Panax species. Constituent of Panax subspecies Gynosaponin S is found in tea. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.
Acacetin
5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].
Caffeic acid
Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Aesculin
Esculin is a hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside and a hydroxycoumarin. It is functionally related to an esculetin. Esculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P esculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum). Esculin belongs to the family of Glycosyl Compounds. These are carbohydrate derivatives in which a sugar group is bonded through its anmoeric carbonA to another group via a C-, S-,N-,O-, or Se- glycosidic bond. Esculin is a natural product found in Ficus septica, Gardenia jasminoides, and other organisms with data available. A derivative of COUMARIN with molecular formula C15H16O9. See also: Horse Chestnut (part of); Aesculus hippocastanum bark (part of). Aesculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P Aesculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum) Vitamin C2 is generally considered a bioflavanoid, related to vitamin P A hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. Acquisition and generation of the data is financially supported in part by CREST/JST. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].
Ruscogenin
Ruscogenin is a triterpenoid. Ruscogenin is a natural product found in Cordyline rubra, Cordyline banksii, and other organisms with data available. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2]. Ruscogenin, an important steroid sapogenin derived from Ophiopogon japonicus, attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Ruscogenin exerts significant anti-inflammatory and anti-thrombotic activities. Ruscogenin has orally bioactivity[1][2].
Nomilin
Nomilin is a limonoid. 1-(Acetyloxy)-1,2-dihydroobacunoic acid e-lactone is a natural product found in Citrus latipes, Citrus hystrix, and other organisms with data available. Constituent of grapefruit (Citrus paradisi). Nomilin is found in lemon, sweet orange, and citrus. Nomilin is found in citrus. Nomilin is a constituent of grapefruit (Citrus paradisi) Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2]. Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2].
Cinnamaldehyde
(E)-cinnamaldehyde is the E (trans) stereoisomer of cinnamaldehyde, the parent of the class of cinnamaldehydes. It has a role as a hypoglycemic agent, an EC 4.3.1.24 (phenylalanine ammonia-lyase) inhibitor, a vasodilator agent, an antifungal agent, a flavouring agent, a plant metabolite and a sensitiser. It is a 3-phenylprop-2-enal and a member of cinnamaldehydes. Cinnamaldehyde is a naturally occurring flavonoid that gives the spice cinnamon its flavour and odour. It occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum such as camphor and cassia. Sensitivity to cinnamaldehyde may be identified with a clinical patch test. Cinnamaldehyde is a Standardized Chemical Allergen. The physiologic effect of cinnamaldehyde is by means of Increased Histamine Release, and Cell-mediated Immunity. Cinnamaldehyde is a natural product found in Chaerophyllum bulbosum, Cinnamomum sieboldii, and other organisms with data available. Cinnamaldehyde is the aldehyde that gives cinnamon its flavor and odor. Cinnamaldehyde occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum like camphor and cassia. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90\\\\% cinnamaldehyde. Cinnamaldehyde is also used as a fungicide. Proven effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants. Its low toxicity and well-known properties make it ideal for agriculture. To a lesser extent, cinnamaldehyde is an effective insecticide, and its scent is also known to repel animals like cats and dogs. Cinnamaldehyde is also known as a corrosion inhibitor for steel and other ferrous alloys in corrosive fluids. It can be used in combination with additional components such as dispersing agents, solvents and other surfactants. Concentrated cinnamaldehyde is a skin irritant, and the chemical is toxic in large doses, but no agencies suspect the compound is a carcinogen or poses a long-term health hazard. Most cinnamaldehyde is excreted in urine as cinnamic acid, an oxidized form of cinnamaldehyde. Cinnamaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. Cinnamaldehyde, also known as (E)-3-phenyl-2-propenal or 3-phenylacrylaldehyde, is a member of the class of compounds known as cinnamaldehydes. Cinnamaldehydes are organic aromatic compounds containing a cinnamlaldehyde moiety, consisting of a benzene and an aldehyde group to form 3-phenylprop-2-enal. Cinnamaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cinnamaldehyde is a sweet, candy, and cinnamon tasting compound and can be found in a number of food items such as sour cherry, rubus (blackberry, raspberry), horseradish, and sea-buckthornberry, which makes cinnamaldehyde a potential biomarker for the consumption of these food products. Cinnamaldehyde can be found primarily in feces, as well as in human neuron and skin tissues. Cinnamaldehyde exists in all eukaryotes, ranging from yeast to humans. Cinnamaldehyde is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamaldehyde is an organic compound with the formula C6H5CH=CHCHO. Occurring naturally as predominantly the trans (E) isomer, it gives cinnamon its flavor and odor. It is a flavonoid that is naturally synthesized by the shikimate pathway. This pale yellow, viscous liquid occurs in the bark of cinnamon trees and other species of the genus Cinnamomum. The essential oil of cinnamon bark is about 50\\\\% cinnamaldehyde . The specific symptoms that can result from cinnamic aldehyde allergy can vary considerably amongst patients from a severe anaphylactic reaction to asthma, abdominal symptoms, eczema or headaches (L2140) (T3DB). Cinnamaldehyde is the aldehyde that gives cinnamon its flavor and odor. Cinnamaldehyde occurs naturally in the bark of cinnamon trees and other species of the genus Cinnamomum like camphor and cassia. These trees are the natural source of cinnamon, and the essential oil of cinnamon bark is about 90\\\\% cinnamaldehyde. Cinnamaldehyde is also used as a fungicide. Proven effective on over 40 different crops, cinnamaldehyde is typically applied to the root systems of plants. Its low toxicity and well-known properties make it ideal for agriculture. To a lesser extent, cinnamaldehyde is an effective insecticide, and its scent is also known to repel animals like cats and dogs. Cinnamaldehyde is also known as a corrosion inhibitor for steel and other ferrous alloys in corrosive fluids. It can be used in combination with additional components such as dispersing agents, solvents and other surfactants. Concentrated cinnamaldehyde is a skin irritant, and the chemical is toxic in large doses, but no agencies suspect the compound is a carcinogen or poses a long-term health hazard. Most cinnamaldehyde is excreted in urine as cinnamic acid, an oxidized form of cinnamaldehyde. D020011 - Protective Agents > D016587 - Antimutagenic Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D000970 - Antineoplastic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2]. trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2].
Dendrobine
Dendrobine is a member of indoles. Dendroban-12-one is a natural product found in Dendrobium chrysanthum, Dendrobium linawianum, and Dendrobium nobile with data available. Dendrobine is an alkaloid isolated from Dendrobium nobile. Dendrobine possesses antiviral activity against influenza A viruses, with IC50s of 3.39 μM, 2.16 μM and 5.32 μM for A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1) and A/Aichi/2/68 (H3N2), respectively[1]. Dendrobine is an alkaloid isolated from Dendrobium nobile. Dendrobine possesses antiviral activity against influenza A viruses, with IC50s of 3.39 μM, 2.16 μM and 5.32 μM for A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1) and A/Aichi/2/68 (H3N2), respectively[1].
Linonin
Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Ginsenoside F2
Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. Ginsenoside F2 is found in tea. Ginsenoside F2 is isolated from Panax species. Isolated from Panax subspecies Ginsenoside F2 is found in tea. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].
Daphnetol
7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research Daphnetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=486-35-1 (retrieved 2024-09-04) (CAS RN: 486-35-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Vitexin 6'-O-malonyl 2'-O-xyloside
Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].
Dioscin
Dioscin is a spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. It has a role as a metabolite, an antifungal agent, an antiviral agent, an antineoplastic agent, an anti-inflammatory agent, a hepatoprotective agent, an apoptosis inducer and an EC 1.14.18.1 (tyrosinase) inhibitor. It is a spirostanyl glycoside, a spiroketal, a hexacyclic triterpenoid and a trisaccharide derivative. It is functionally related to a diosgenin. It derives from a hydride of a spirostan. Dioscin is a natural product found in Ophiopogon intermedius, Dracaena draco, and other organisms with data available. See also: Dioscorea polystachya tuber (part of). A spirostanyl glycoside that consists of the trisaccharide alpha-L-Rha-(1->4)-[alpha-L-Rha-(1->2)]-beta-D-Glc attached to position 3 of diosgenin via a glycosidic linkage. Dioscin is a member of the class of compounds known as steroidal saponins. Steroidal saponins are saponins in which the aglycone moiety is a steroid. The steroidal aglycone is usually a spirostane, furostane, spirosolane, solanidane, or curcubitacin derivative. Dioscin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Dioscin can be found in fenugreek and yam, which makes dioscin a potential biomarker for the consumption of these food products. [Raw Data] CBA65_Dioscin_pos_30eV.txt [Raw Data] CBA65_Dioscin_pos_20eV.txt [Raw Data] CBA65_Dioscin_pos_10eV.txt [Raw Data] CBA65_Dioscin_pos_50eV.txt [Raw Data] CBA65_Dioscin_pos_40eV.txt Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells. Dioscin (CCRIS 4123; Collettiside III) is a natural plant-derived steroidal saponin that has good anti-cancer activity against a variety of cancer cells.
Mecheliolide
Micheliolide is a sesquiterpene lactone. Micheliolide is a natural product found in Costus and Magnolia champaca with data available. Micheliolide can attenuate high glucose-stimulated NF-κB activation, IκBα degradation, and the expression of MCP-1, TGF-β1, and FN in mouse mesangial cells. Micheliolide can attenuate high glucose-stimulated NF-κB activation, IκBα degradation, and the expression of MCP-1, TGF-β1, and FN in mouse mesangial cells.
OJV-VI
Ophiopogonin D is a steroid saponin. Ophiopogonin D is a natural product found in Ophiopogon jaburan, Ophiopogon japonicus, and Liriope muscari with data available. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2]. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2]. Ophiopogonin D, isolated from the tubers of Ophiopogon japonicus, is a rare naturally occurring C29 steroidal glycoside[1]. Ophiopogonin D is a CYP2J3 inducer that significantly inhibits Ang II induced NF-κB nuclear translocation, IκBα down-regulation, intracellular Ca2+ overload and activation of pro-inflammatory cytokines by increasing the expression of CYP2J2/EETs and PPARα in human umbilical vein endothelial cells (HUVECs). Ophiopogonin D has been used to treat inflammatory and cardiovascular diseases for thousands of years[2].
Citric acid
Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].
Epigallocatechin gallate
Epigallocatechin gallate (EGCG) is the principal catechin in tea from Camellia sinensis, the most consumed beverage worldwide (after water). Depending on brew time and temperature, a single cup of green tea may contain 100-200 mg EGCG. To control the dose of EGCG administered in experimental studies, green tea solids (GTS) or capsules of green tea extract standardized to EGCG content are often employed. However, there is considerable variability in the EGCG content of commercially available dietary supplements, ranging from 12-143\\\\\\\\% of the tablet or capsule weight. While standardizing tea preparations to EGCG or using highly purified EGCG for research presents an important strategy for the conduct of precise studies as well as the ability to replicate experiments, it is worth noting this approach limits the potential contributions and possible synergy with other bioactive tea ingredients, including caffeine and other flavonoids. Human studies of the bioavailability of green tea catechins reveal these compounds to be poorly absorbed, with <0.1\\\\\\\\% of ingested catechins appearing in blood. Most ingested EGCG is rapidly cleared from blood with an elimination half-life of {approx}3 h and preferentially excreted via bile to the colon. The growing interest in the role of EGCG in health promotion and disease prevention is reflected by an exponential growth of research publications in this field. (J Am Coll Nutr. 2007 Aug;26(4):362S-365S). (-)-epigallocatechin 3-gallate is a gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. It has a role as an antineoplastic agent, an antioxidant, a Hsp90 inhibitor, a neuroprotective agent, a plant metabolite, a geroprotector and an apoptosis inducer. It is a gallate ester, a polyphenol and a member of flavans. It is functionally related to a (-)-epigallocatechin. Epigallocatechin gallate has been investigated for the treatment of Hypertension and Diabetic Nephropathy. (-)-Epigallocatechin gallate is a natural product found in Limoniastrum guyonianum, Scurrula atropurpurea, and other organisms with data available. Epigallocatechin Gallate is a phenolic antioxidant found in a number of plants such as green and black tea. It inhibits cellular oxidation and prevents free radical damage to cells. It is under study as a potential cancer chemopreventive agent. (NCI) A gallate ester obtained by the formal condensation of gallic acid with the (3R)-hydroxy group of (-)-epigallocatechin. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2748; ORIGINAL_PRECURSOR_SCAN_NO 2746 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762; ORIGINAL_PRECURSOR_SCAN_NO 2760 ORIGINAL_ACQUISITION_NO 2759; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 2758 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2759; ORIGINAL_PRECURSOR_SCAN_NO 2756 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5920; ORIGINAL_PRECURSOR_SCAN_NO 5917 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5910; ORIGINAL_PRECURSOR_SCAN_NO 5905 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2828; ORIGINAL_PRECURSOR_SCAN_NO 2826 ORIGINAL_PRECURSOR_SCAN_NO 2760; CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2762 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5919 CONFIDENCE standard compound; INTERNAL_ID 808; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2754; ORIGINAL_PRECURSOR_SCAN_NO 2752 CONFIDENCE standard compound; INTERNAL_ID 179 Annotation level-1 (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
trans-3,3',4',5,5',7-Hexahydroxyflavanone
(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in tea. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is a constituent of Camellia sinensis (Chinese green tea). Constituent of Camellia sinensis (Chinese green tea). (±)-Dihydromyricetin is found in tea. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Ferulic acid
trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Curcumenol
Curcumenol is a sesquiterpenoid. (3S,3aS,6R,8aS)-3,8-Dimethyl-5-(propan-2-ylidene)-2,3,4,5,6,8a-hexahydro-1H-3a,6-epoxyazulen-6-ol is a natural product found in Curcuma longa and Curcuma phaeocaulis with data available. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors 4-Epicurcumenol is a constituent of rhizomes of Curcuma zedoaria (zedoary). Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2]. Curcumenol ((+)-Curcumenol) is a potent CYP3A4 inhibitor with an IC50 of 12.6 μM, which is one of constituents in the plants of medicinally important genus of Curcuma zedoaria, with neuroprotection, anti-inflammatory, anti-tumor and hepatoprotective activities. Curcumenol ((+)-Curcumenol) suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells[1][2].
Fumaric acid
Fumaric acid appears as a colorless crystalline solid. The primary hazard is the threat to the environment. Immediate steps should be taken to limit spread to the environment. Combustible, though may be difficult to ignite. Used to make paints and plastics, in food processing and preservation, and for other uses. Fumaric acid is a butenedioic acid in which the C=C double bond has E geometry. It is an intermediate metabolite in the citric acid cycle. It has a role as a food acidity regulator, a fundamental metabolite and a geroprotector. It is a conjugate acid of a fumarate(1-). Fumaric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Fumaric acid is a precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase. Fumarate is converted by fumarase to malate. A fumarate is a salt or ester of the organic compound fumaric acid, a dicarboxylic acid. Fumarate has recently been recognized as an oncometabolite. (A15199). As a food additive, fumaric acid is used to impart a tart taste to processed foods. It is also used as an antifungal agent in boxed foods such as cake mixes and flours, as well as tortillas. Fumaric acid is also added to bread to increase the porosity of the final baked product. It is used to impart a sour taste to sourdough and rye bread. In cake mixes, it is used to maintain a low pH and prevent clumping of the flours used in the mix. In fruit drinks, fumaric acid is used to maintain a low pH which, in turn, helps to stabilize flavor and color. Fumaric acid also prevents the growth of E. coli in beverages when used in combination with sodium benzoate. When added to wines, fumaric acid helps to prevent further fermentation and yet maintain low pH and eliminate traces of metallic elements. In this fashion, it helps to stabilize the taste of wine. Fumaric acid can also be added to dairy products, sports drinks, jams, jellies and candies. Fumaric acid helps to break down bonds between gluten proteins in wheat and helps to create a more pliable dough. Fumaric acid is used in paper sizing, printer toner, and polyester resin for making molded walls. Fumaric acid is a dicarboxylic acid. It is a precursor to L-malate in the Krebs tricarboxylic acid (TCA) cycle. It is formed by the oxidation of succinic acid by succinate dehydrogenase. Fumarate is converted by the enzyme fumarase to malate. Fumaric acid has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite. High levels of this organic acid can be found in tumors or biofluids surrounding tumors. Its oncogenic action appears to due to its ability to inhibit prolyl hydroxylase-containing enzymes. In many tumours, oxygen availability becomes limited (hypoxia) very quickly due to rapid cell proliferation and limited blood vessel growth. The major regulator of the response to hypoxia is the HIF transcription factor (HIF-alpha). Under normal oxygen levels, protein levels of HIF-alpha are very low due to constant degradation, mediated by a series of post-translational modification events catalyzed by the prolyl hydroxylase domain-containing enzymes PHD1, 2 and 3, (also known as EglN2, 1 and 3) that hydroxylate HIF-alpha and lead to its degradation. All three of the PHD enzymes are inhibited by fumarate. Fumaric acid is found to be associated with fumarase deficiency, which is an inborn error of metabolism. It is also a metabolite of Aspergillus. Produced industrially by fermentation of Rhizopus nigricans, or manufactured by catalytic or thermal isomerisation of maleic anhydride or maleic acid. Used as an antioxidant, acidulant, leavening agent and flavouring agent in foods. Present in raw lean fish. Dietary supplement. Used in powdered products since fumaric acid is less hygroscopic than other acids. A precursor to L-malate in the Krebs tricarboxylic acid cycle. It is formed by the oxidation of succinate by succinate dehydrogenase (wikipedia). Fumaric acid is also found in garden tomato, papaya, wild celery, and star fruit. Fumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=110-17-8 (retrieved 2024-07-01) (CAS RN: 110-17-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite. Fumaric acid, associated with fumarase deficiency, is identified as an oncometabolite or an endogenous, cancer causing metabolite.
Farrerol
Farrerol is an organic molecular entity. It has a role as a metabolite. (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6]. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].
Ligusticide
Ligusticide, also known as ligustilide, (E)-isomer or (Z)-ligustilide, is a member of the class of compounds known as isobenzofurans. Isobenzofurans are organic aromatic compounds containing an isobenzofuran moiety. Ligusticide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ligusticide can be found in lovage, which makes ligusticide a potential biomarker for the consumption of this food product. (Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available.
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. Curdione is found in turmeric. Curdione is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary). Curdione is found in turmeric. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Dauricine
Dauricine is a bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). It has a role as a plant metabolite. It is a tertiary amino compound, a member of phenols, an aromatic ether, a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Dauricine is a natural product found in Nelumbo nucifera, Menispermum canadense, and Menispermum dauricum with data available. A bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1]. Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1].
alpha-Allocryptopine
Alpha-allocryptopine, also known as alpha-fagarine or beta-homochelidonine, is a member of the class of compounds known as protopine alkaloids. Protopine alkaloids are alkaloids with a structure based on a tricyclic protopine formed by oxidative ring fission of protoberberine N-metho salts. Alpha-allocryptopine is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Alpha-allocryptopine can be found in barley, which makes alpha-allocryptopine a potential biomarker for the consumption of this food product. Allocryptopine is a dibenzazecine alkaloid, an organic heterotetracyclic compound, a tertiary amino compound, a cyclic ketone, a cyclic acetal and an aromatic ether. Allocryptopine is a natural product found in Zanthoxylum beecheyanum, Berberis integerrima, and other organisms with data available. See also: Sanguinaria canadensis root (part of). KEIO_ID A137; [MS2] KO008812 KEIO_ID A137; [MS3] KO008813 KEIO_ID A137 Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2]. Allocryptopine, a derivative of tetrahydropalmatine, is extracted from Macleaya cordata (Thunb.) Pers. Papaveraceae. Allocryptopine has antiarrhythmic effects and potently blocks human ether-a-go-go related gene (hERG) current[1][2].
Scopolin
Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin. Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available. See also: Chamaemelum nobile flower (part of). A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2]. Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].
Resveratrol
Resveratrol is a stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. It has a role as a phytoalexin, an antioxidant, a glioma-associated oncogene inhibitor and a geroprotector. It is a stilbenol, a polyphenol and a member of resorcinols. Resveratrol (3,5,4-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature. Resveratrol is a plant polyphenol found in high concentrations in red grapes that has been proposed as a treatment for hyperlipidemia and to prevent fatty liver, diabetes, atherosclerosis and aging. Resveratrol use has not been associated with serum enzyme elevations or with clinically apparent liver injury. Resveratrol is a natural product found in Vitis rotundifolia, Vitis amurensis, and other organisms with data available. Resveratrol is a phytoalexin derived from grapes and other food products with antioxidant and potential chemopreventive activities. Resveratrol induces phase II drug-metabolizing enzymes (anti-initiation activity); mediates anti-inflammatory effects and inhibits cyclooxygenase and hydroperoxidase functions (anti-promotion activity); and induces promyelocytic leukemia cell differentiation (anti-progression activity), thereby exhibiting activities in three major steps of carcinogenesis. This agent may inhibit TNF-induced activation of NF-kappaB in a dose- and time-dependent manner. (NCI05) Resveratrol is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. Resveratrol is a polyphenolic phytoalexin. It is also classified as a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. The levels of resveratrol found in food vary greatly. Red wine contains between 0.2 and 5.8 mg/L depending on the grape variety, while white wine has much less. The reason for this difference is that red wine is fermented with grape skins, allowing the wine to absorb the resveratrol, whereas white wine is fermented after the skin has been removed. Resveratrol is also sold as a nutritional supplement. A number of beneficial health effects, such as anti-cancer, antiviral, neuroprotective, anti-aging, anti-inflammatory, and life-prolonging effects have been reported for resveratrol. The fact that resveratrol is found in the skin of red grapes and as a constituent of red wine may explain the "French paradox". This paradox is based on the observation that the incidence of coronary heart disease is relatively low in southern France despite high dietary intake of saturated fats. Resveratrol is thought to achieve these cardioprotective effects by a number of different routes: (1) inhibition of vascular cell adhesion molecule expression; (2) inhibition of vascular smooth muscle cell proliferation; (3) stimulation of endothelial nitric oxide synthase (eNOS) activity; (4) inhibition of platelet aggregation; and (5) inhibition of LDL peroxidation (PMID: 17875315, 14676260, 9678525). Resveratrol is a biomarker for the consumption of grapes and raisins. A stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 IPB_RECORD: 1781; CONFIDENCE confident structure IPB_RECORD: 321; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].
Astragaloside
Astragaloside II is a triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. It has a role as a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of oxolanes, a pentacyclic triterpenoid and a triterpenoid saponin. It is functionally related to a cycloastragenol. Astragaloside II is a natural product found in Euphorbia glareosa, Astragalus hoantchy, and other organisms with data available. See also: Astragalus propinquus root (part of). A triterpenoid saponin that is cycloastragenol glycosylated at positions 3 and 6 by 2-O-acetyl-beta-D-xylosyl and beta-D-glucosyl residues respectively. Astragaloside II is a natural compound isolated from Astragalus membranaceus. Astragaloside II is a natural compound isolated from Astragalus membranaceus.
Hesperidin
Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
Asperuloside
Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone. Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available. See also: Galium aparine whole (part of). A iridoid monoterpenoid glycoside isolated from Galium verum. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1]. Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].
Hesperetin
Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.
Esculentic acid (Diplazium)
Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].
Formononetin
Formononetin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. It has a role as a phytoestrogen and a plant metabolite. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to a daidzein. It is a conjugate acid of a formononetin(1-). Formononetin is under investigation in clinical trial NCT02174666 (Isoflavone Treatment for Postmenopausal Osteopenia.). Formononetin is a natural product found in Pterocarpus indicus, Ardisia paniculata, and other organisms with data available. See also: Astragalus propinquus root (part of); Trifolium pratense flower (part of). Formononetin are abundant in vegetables. It is a phyto-oestrogen that is a polyphenolic non-steroidal plant compound with oestrogen-like biological activity (PMID: 16108819). It can be the source of considerable estrogenic activity (http://www.herbalchem.net/Intermediate.htm). Widespread isoflavone found in soy beans (Glycine max), red clover (Trifolium pratense and chick peas (Cicer arietinum). Potential nutriceutical A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by a methoxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8803; ORIGINAL_PRECURSOR_SCAN_NO 8802 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8826; ORIGINAL_PRECURSOR_SCAN_NO 8825 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4484; ORIGINAL_PRECURSOR_SCAN_NO 4480 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4471 DATA_PROCESSING MERGING RMBmix ver. 0.2.7; CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8863; ORIGINAL_PRECURSOR_SCAN_NO 8861 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4474; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8847; ORIGINAL_PRECURSOR_SCAN_NO 8844 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8852; ORIGINAL_PRECURSOR_SCAN_NO 8851 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8822; ORIGINAL_PRECURSOR_SCAN_NO 8821 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4569; ORIGINAL_PRECURSOR_SCAN_NO 4566 CONFIDENCE standard compound; INTERNAL_ID 301; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4507; ORIGINAL_PRECURSOR_SCAN_NO 4504 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2291; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2291 IPB_RECORD: 481; CONFIDENCE confident structure Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].
Syringin
Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].
Andrographolide
Andrographolide is a labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. It has a role as a metabolite, an anti-inflammatory drug, an anti-HIV agent and an antineoplastic agent. It is a gamma-lactone, a primary alcohol, a secondary alcohol, a labdane diterpenoid and a carbobicyclic compound. Andrographolide (HMPL-004) is a botanical product extracted from a herb that occurs naturally in China. The herb has an extensive history of use in TCM for the treatment of upper respiratory tract infections and other inflammatory and infectious diseases. Andrographolide is a natural product found in Andrographis paniculata, Ginkgo biloba, and Cymbopogon schoenanthus with data available. Andrographolide is a labdane diterpenoid that is produced by the Andrographis paniculata plant, which has a broad range of therapeutic applications including anti-inflammatory and anti-platelet aggregation activities and potential antineoplastic properties. Since andrographolide has multiple therapeutic activities there are several proposed mechanisms of action for this agent. The anti-inflammatory effects of this agent appear to be related to the inhibition of nitric oxide (NO) production by macrophages. This agent may activate the NO/cyclic GMP pathway and inhibit both the phospholipase C gamma 2 (PLC gamma2)/protein kinase C (PKC) and PI3K/AKT-MAPK signaling pathways in activated platelets to inhibit platelet aggregation. In activated platelets, these three signaling pathways are downstream of integrin activation mediated by collagen binding and influence the association of fibrinogen with its receptors. Additionally, andrographolide may exert its anti-cancer activity through the induction of cell cycle arrest at G0/G1 phase and the stimulation of lymphocyte proliferation and activation. These processes could result in decreased proliferation of and increased immunocytotoxicity against tumor cells. A labdane diterpenoid isolated from the leaves and roots of Andrographis paniculata that exhibits anti-HIV, anti-inflammatory and antineoplastic properties. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78275 - Agent Affecting Blood or Body Fluid > C1327 - Antiplatelet Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Origin: Plant; SubCategory_DNP: Diterpenoids, Andrographolide diterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.941 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.939 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.936 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.938 Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects. Andrographolide is a NF-κB inhibitor, which inhibits NF-κB activation through covalent modification of a cysteine residue on p50 in endothelial cells without affecting IκBα degradation or p50/p65 nuclear translocation. Andrographolide has antiviral effects.
Quercetin
Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Liquiritigenin
Liquiritigenin is a dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. It has a role as a hormone agonist and a plant metabolite. 5-deoxyflavanone is a solid. This compound belongs to the flavanones. These are compounds containing a flavan-3-one moiety, whose structure is characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. MF101 is a novel estrogen receptor beta (ERβ) selective agonist and unlike currently available hormone therapies, does not activate the estrogen receptor alpha (ERα), known to be implicated in tumor formation. MF101 is an oral drug designed for the treatment of hot flashes and night sweats in peri-menopausal and menopausal women. Liquiritigenin is a natural product found in Dracaena draco, Pterocarpus marsupium, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer and all Leguminosae subspecies Several glycosides, particularly the rutinoside and neohesperidoside, are important in influencing citrus fruit flavour [DFC]. Liquiritigenin is found in many foods, some of which are sorrel, roselle, pepper (c. annuum), and black crowberry. Liquiritigenin is found in alfalfa. Liquiritigenin is isolated from Glycyrrhiza, Medicago, Myroxylon, Cicer, and all Leguminosae species. Several glycosides, particularly rutinoside and neohesperidoside, are important in influencing citrus fruit flavour. A dihydroxyflavanone compound having the two hydroxy substituents at the 4- and 7-positions. Isolated from the root of Glycyrrhizae uralensis, it is a selective agonist for oestrogen receptor beta. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.
Orientin
Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
Piperine
Piperine, also known as fema 2909, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. Piperine is a pepper tasting compound. Piperine is found in the highest concentration within pepper (Piper nigrum) and many other Piper species. Piperine has also been detected, but not quantified, in dills and herbs and spices. Piperine is responsible for the hot taste of pepper. Piperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. It is used to impart pungent taste to brandy. Piperine is a N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. It has a role as a NF-kappaB inhibitor, a plant metabolite, a food component and a human blood serum metabolite. It is a member of benzodioxoles, a N-acylpiperidine, a piperidine alkaloid and a tertiary carboxamide. It is functionally related to an (E,E)-piperic acid. Bioperine has been used in trials studying the treatment of Multiple Myeloma and Deglutition Disorders. Piperine is a natural product found in Macropiper, Piper boehmeriifolium, and other organisms with data available. See also: Black Pepper (part of) ... View More ... Constituent of pepper (Piper nigrum) and many other Piper subspecies (Piperaceae). It is used to impart pungent taste to brandy. Responsible for the hot taste of pepper. Flavour ingredient. Piperine is found in dill, herbs and spices, and pepper (spice). A N-acylpiperidine that is piperidine substituted by a (1E,3E)-1-(1,3-benzodioxol-5-yl)-5-oxopenta-1,3-dien-5-yl group at the nitrogen atom. It is an alkaloid isolated from the plant Piper nigrum. Piperine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-62-2 (retrieved 2024-07-01) (CAS RN: 94-62-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.
Obacunone
Constituent of Citrus subspecies, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple). Obacunone is found in many foods, some of which are pomes, sweet orange, lemon, and fruits. Obacunone is found in fruits. Obacunone is a constituent of Citrus species, Fortunella margarita (oval kumquat) and Casimiroa edulis (Mexican apple) Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].
8-Prenylnaringenin
Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299
Kurarinone
(2S)-(-)-kurarinone is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. It has a role as a metabolite and an antineoplastic agent. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4-hydroxyflavanones. It is functionally related to a (2S)-flavanone. 7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone is a natural product found in Albizia julibrissin, Cunila, and other organisms with data available. A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1]. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].
Nookatone
Nootkatone is a natural organic compound and is the most important and expensive aromatic of grapefruit. It is a sesquiterpene and a ketone. Nootkatone was previously thought to be one of the main chemical components of the smell and flavour of grapefruits. In its solid form it is usually found as crystals. As a liquid, it is viscous and yellow. Nootkatone is typically extracted from grapefruit, but can also be manufactured with genetically modified organisms, or through the chemical or biochemical oxidation of valencene. It is also found in Alaska yellow cedar trees and vetiver grass. (+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. Constituent of grapefruit oil and juice. Flavouring ingredient. Nootkatone is found in many foods, some of which are citrus, sweet orange, lime, and lemon. Nootkatone is an organic compound, a sesquiterpenoid, which means that it is a C15 derivative that also contains an oxygen-containing functional group (a ketone). It is the most valuable aroma compound of grapefruit.[2] Nootkatone was originally isolated from the wood of the Alaskan yellow cedar, Cupressus nootkatensis. The species name, nootkatensis, is derived from the language of the Nuu-Chah-Nulth people of Canada (formerly referred to as the Nootka people).[3] Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].
(R)-Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). (R)-Methysticin is found in beverages. (R)-Methysticin is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002). Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Silicristin
Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. Isolated from fruits of Silybum marianum (milk thistle). Silicristin is found in coffee and coffee products and green vegetables. Silicristin is found in coffee and coffee products. Silicristin is isolated from fruits of Silybum marianum (milk thistle). C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].
Cafestol
Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. Cafestol is found in arabica coffee. Cafestol is a constituent of coffee bean oil. Cafestol is present in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constits. of coffee products are associated with cardiotoxic properties Cafestol is a diterpene molecule present in coffee Cafestol is a diterpene molecule and is a constituent of coffee bean oil. It is found in boiled-type coffee beverages. Possesses hypercholesterolaemic activity. Diterpenoid constitsuents of coffee products are associated with cardiotoxic props. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
Juglone
Juglone is a hydroxy-1,4-naphthoquinone that is 1,4-naphthoquinone in which the hydrogen at position 5 has been replaced by a hydroxy group. A plant-derived 1,4-naphthoquinone with confirmed antibacterial and antitumor activities. It has a role as a herbicide, a reactive oxygen species generator and a geroprotector. Juglone is a natural product found in Talaromyces diversus, Carya alba, and other organisms with data available. Occurs in Juglans subspecies and pecan nuts (Carya illinoensis). Juglone is found in many foods, some of which are common walnut, liquor, black walnut, and nuts. Juglone is found in black walnut. Juglone occurs in Juglans species and pecan nuts (Carya illinoensis D000074385 - Food Ingredients > D005503 - Food Additives > D005520 - Food Preservatives D009676 - Noxae > D003603 - Cytotoxins D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
Costunolide
Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. Constituent of costus root (Saussurea lappa). Costunolide is found in tarragon, sweet bay, and herbs and spices. Costunolide is found in herbs and spices. Costunolide is a constituent of costus root (Saussurea lappa) D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents INTERNAL_ID 2266; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2266 D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].
Alloimperatorin
Alloimperatorin is a member of the class of compounds known as 8-hydroxypsoralens. 8-hydroxypsoralens are psoralens containing a hydroxyl group attached at the C8 position of the psoralen group. Alloimperatorin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Alloimperatorin can be found in corn, which makes alloimperatorin a potential biomarker for the consumption of this food product. Alloimperatorin is a member of psoralens. Alloimperatorin is a natural product found in Campylotropis hirtella, Saposhnikovia divaricata, and other organisms with data available. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2]. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2].
ARNEBIN-7
Deoxyshikonin is a hydroxy-1,4-naphthoquinone. Deoxyshikonin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). Deoxyshikonin is isolated from Arnebia euchroma with antitumor activity. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF, indicates a prolymphangiogenesis as well as a proangiogenesis effect in vitro[1]. Deoxyshikonin shows significant synergic antimicrobial activity against S. pneumonia (MIC=17 μg/mL), also shows significantly inhibitory activities against MRSA[2]. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF. Deoxyshikonin inhibited colorectal cancer (CRC) through the PI3K/Akt/mTOR pathway. Deoxyshikonin has proangiogenesis effect and antitumor activity. Deoxyshikonin is an antibacterial agent against methicillin-resistant S. aureus (MRSA) and S. pneumonia (MIC=17 μg/mL)[1][2][3]. Deoxyshikonin is isolated from Arnebia euchroma with antitumor activity. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF, indicates a prolymphangiogenesis as well as a proangiogenesis effect in vitro[1]. Deoxyshikonin shows significant synergic antimicrobial activity against S. pneumonia (MIC=17 μg/mL), also shows significantly inhibitory activities against MRSA[2].
febrifugine
Isofebrifugine is a member of quinazolines. Isofebrifugine is a natural product found in Hydrangea febrifuga and Hydrangea macrophylla with data available. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].
Sanguinarine
Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine (13-methyl[1,3]benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium) is derived from the root of Sanguinaria canadensis and other poppy-fumaria species (for references, see Ref. 1). This benzophenanthridine alkaloid is a structural homologue of chelerythrine, which is a potent inhibitor of protein kinase C (2). Sanguinarine has been shown to display antitumor (3) and anti-inflammatory properties in animals (4) and to inhibit neutrophil function, including degranulation and phagocytosis in vitro(5). It is also a potent inhibitor of Na-K-dependent ATPase (6, 7, 8) and cholinesterase (9).
Carnosic_acid
Carnosic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. It has a role as an antineoplastic agent, an antioxidant, a HIV protease inhibitor, an angiogenesis modulating agent, an apoptosis inducer, a plant metabolite, an anti-inflammatory agent and a food preservative. It is an abietane diterpenoid, a carbotricyclic compound, a member of catechols and a monocarboxylic acid. It is a conjugate acid of a carnosate. Carnosic acid is a natural product found in Salvia tomentosa, Illicium verum, and other organisms with data available. See also: Rosemary (part of). An abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents
(S)-4',5,7-Trihydroxy-6-prenylflavanone
6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. (S)-4,5,7-Trihydroxy-6-prenylflavanone is found in alcoholic beverages. (S)-4,5,7-Trihydroxy-6-prenylflavanone is isolated from Humulus lupulus (hops). Isolated from Humulus lupulus (hops). 6-Prenylnaringenin is found in beer and alcoholic beverages. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].
Triptolide
Triptolide is an organic heteroheptacyclic compound, an epoxide, a gamma-lactam and a diterpenoid. It has a role as an antispermatogenic agent and a plant metabolite. Triptolide has been used in trials studying the treatment of HIV, Crohns Disease, Intestinal Diseases, Gastrointestinal Diseases, and Digestive System Diseases, among others. Triptolide is a natural product found in Tripterygium hypoglaucum, Celastraceae, and other organisms with data available. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6]. Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6].
Pteryxin
Pteryxin is a member of coumarins. Pteryxin is a natural product found in Musineon divaricatum, Pteryxia terebinthina, and other organisms with data available. Origin: Plant, Coumarins Pteryxin, a coumarin in Peucedanum japonicum Thunb leaves, exerts antiobesity activity[1]. Pteryxin is a potent butyrylcholinesterase (BChE) inhibitor, with an IC50 of 12.96 μg/ml[2]. Pteryxin, a coumarin in Peucedanum japonicum Thunb leaves, exerts antiobesity activity[1]. Pteryxin is a potent butyrylcholinesterase (BChE) inhibitor, with an IC50 of 12.96 μg/ml[2].
Monotropein
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
Betulin
Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
FT-0775798
Dehydroeburicoic acid is a bile acid. Dehydroeburicoic acid is a natural product found in Gloeophyllum odoratum, Taiwanofungus camphoratus, and other organisms with data available.
Yatansin
Brusatol is a triterpenoid. Brusatol is a natural product found in Brucea javanica and Brucea mollis with data available. Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2]. Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2].
Lycopene
Lycopene is an acyclic carotene commonly obtained from tomatoes and other red fruits. It has a role as an antioxidant and a plant metabolite. It contains a carotenoid psi-end derivative. Lycopene is a naturally occuring red carotenoid pigment that is responsible in red to pink colors seen in tomatoes, pink grapefruit, and other foods. Having a chemical formula of C40H56, lycopene is a tetraterpene assembled from eight isoprene units that are solely composed of carbon and hydrogen. Lycophene may undergo extensive isomerization that allows 1056 theoretical cis-trans configurations; however the all-trans configuration of lycopene is the most predominant isomer found in foods that gives the red hue. Lycopene is a non-essential human nutrient that is classified as a non-provitamin A carotenoid pigment since it lacks a terminal beta ionone ring and does not mediate vitamin A activity. However lycophene is a potent antioxidant molecule that scavenges reactive oxygen species (ROS) singlet oxygen. Tomato lycopene extract is used as a color additive in food products. Lycopene is a natural product found in Rhodobacter capsulatus, Afifella marina, and other organisms with data available. Lycopene is a linear, unsaturated hydrocarbon carotenoid, the major red pigment in fruits such as tomatoes, pink grapefruit, apricots, red oranges, watermelon, rosehips, and guava. As a class, carotenoids are pigment compounds found in photosynthetic organisms (plants, algae, and some types of fungus), and are chemically characterized by a large polyene chain containing 35-40 carbon atoms; some carotenoid polyene chains are terminated by two 6-carbon rings. In animals, carotenoids such as lycopene may possess antioxidant properties which may retard aging and many degenerative diseases. As an essential nutrient, lycopene is required in the animal diet. (NCI04) A carotenoid and red pigment produced by tomatoes, other red fruits and vegetables, and photosynthetic algae. It is a key intermediate in the biosynthesis of other carotenoids, and has antioxidant, anti-carcinogenic, radioprotective, and anti-inflammatory properties. Lycopene (molecular formula: C40H56) is a bright red carotenoid pigment. It is a phytochemical found in tomatoes and other red fruits. Lycopene is the most common carotenoid in the human body and is one of the most potent carotenoid antioxidants. Its name is derived from the tomatos species classification, Solanum lycopersicum. Lycopene is a terpene assembled from 8 isoprene units. Lycopene is the most powerful carotenoid quencher of singlet oxygen. Singlet oxygen from ultraviolet light is a primary cause of skin aging (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids An acyclic carotene commonly obtained from tomatoes and other red fruits. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents It is used as food colouring
Astaxanthin
Astaxanthin (pronounced as-tuh-zan-thin) is a carotenoid. It belongs to a larger class of phytochemicals known as terpenes. It is classified as a xanthophyll, which means "yellow leaves". Like many carotenoids, it is a colorful, lipid-soluble pigment. Astaxanthin is produced by microalgae, yeast, salmon, trout, krill, shrimp, crayfish, crustaceans, and the feathers of some birds. Professor Basil Weedon was the first to map the structure of astaxanthin.; Astaxanthin is the main carotenoid pigment found in aquatic animals. It is also found in some birds, such as flamingoes, quails, and other species. This carotenoid is included in many well-known seafoods such as salmon, trout, red seabream, shrimp, lobster, and fish eggs. Astaxanthin, similar to other carotenoids, cannot be synthesized by animals and must be provided in the diet. Mammals, including humans, lack the ability to synthesize astaxanthin or to convert dietary astaxanthin into vitamin A. Astaxanthin belongs to the xanthophyll class of carotenoids. It is closely related to beta-carotene, lutein, and zeaxanthin, sharing with them many of the general metabolic and physiological functions attributed to carotenoids. In addition, astaxanthin has unique chemical properties based on its molecular structure. The presence of the hydroxyl (OH) and keto (CdO) moieties on each ionone ring explains some of its unique features, namely, the ability to be esterified and a higher antioxidant activity and a more polar nature than other carotenoids. In its free form, astaxanthin is considerably unstable and particularly susceptible to oxidation. Hence it is found in nature either conjugated with proteins (e.g., salmon muscle or lobster exoskeleton) or esterified with one or two fatty acids (monoester and diester forms), which stabilize the molecule. Various astaxanthin isomers have been characterized on the basis of the configuration of the two hydroxyl groups on the molecule. the geometrical and optical isomers of astaxanthin are distributed selectively in different tissues and that levels of free astaxanthin in the liver are greater than the corresponding concentration in the plasma, suggesting concentrative uptake by the liver. Astaxanthin, similar to other carotenoids, is a very lipophilic compound and has a low oral bioavailability. This criterion has limited the ability to test this compound in well-defined rodent models of human disease. (PMID: 16562856); Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink color characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis, the red yeast, Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated productand is) also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helycobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans. (PMID: 16431409); Astaxanthin, unlike some carotenoids, does not convert to Vitamin A (retinol) in the human body. Too much Vitamin A is toxic for a human, but astaxanthin is not. However, it is a powerful antioxidant; it is claimed to be 10 times more capable than other carotenoids. However, other sources suggest astaxanthin has slightly lower antioxidant activity than other carotenoids.; While astaxanthin is a natural nutr... Astaxanthin is the main carotenoid pigment found in aquatic animals. It is also found in some birds, such as flamingoes, quails, and other species. This carotenoid is included in many well-known seafoods such as salmon, trout, red seabream, shrimp, lobster, and fish eggs. Astaxanthin, similar to other carotenoids, cannot be synthesized by animals and must be provided in the diet. Mammals, including humans, lack the ability to synthesize astaxanthin or to convert dietary astaxanthin into vitamin A. Astaxanthin belongs to the xanthophyll class of carotenoids. It is closely related to beta-carotene, lutein, and zeaxanthin, sharing with them many of the general metabolic and physiological functions attributed to carotenoids. In addition, astaxanthin has unique chemical properties based on its molecular structure. The presence of the hydroxyl (OH) and keto (CdO) moieties on each ionone ring explains some of its unique features, namely, the ability to be esterified and a higher antioxidant activity and a more polar nature than other carotenoids. In its free form, astaxanthin is considerably unstable and particularly susceptible to oxidation. Hence it is found in nature either conjugated with proteins (e.g. salmon muscle or lobster exoskeleton) or esterified with one or two fatty acids (monoester and diester forms) which stabilize the molecule. Various astaxanthin isomers have been characterized on the basis of the configuration of the two hydroxyl groups on the molecule. The geometrical and optical isomers of astaxanthin are distributed selectively in different tissues and levels of free astaxanthin in the liver are greater than the corresponding concentration in the plasma, suggesting concentrative uptake by the liver. Astaxanthin, similar to other carotenoids, is a very lipophilic compound and has a low oral bioavailability. This criterion has limited the ability to test this compound in well-defined rodent models of human disease (PMID: 16562856). Astaxanthin is a carotenoid widely used in salmonid and crustacean aquaculture to provide the pink colour characteristic of that species. This application has been well documented for over two decades and is currently the major market driver for the pigment. Additionally, astaxanthin also plays a key role as an intermediary in reproductive processes. Synthetic astaxanthin dominates the world market but recent interest in natural sources of the pigment has increased substantially. Common sources of natural astaxanthin are the green algae Haematococcus pluvialis (the red yeast), Phaffia rhodozyma, as well as crustacean byproducts. Astaxanthin possesses an unusual antioxidant activity which has caused a surge in the nutraceutical market for the encapsulated product. Also, health benefits such as cardiovascular disease prevention, immune system boosting, bioactivity against Helicobacter pylori, and cataract prevention, have been associated with astaxanthin consumption. Research on the health benefits of astaxanthin is very recent and has mostly been performed in vitro or at the pre-clinical level with humans (PMID: 16431409). Astaxanthin is used in fish farming to induce trout flesh colouring. Astaxanthin is a carotenone that consists of beta,beta-carotene-4,4-dione bearing two hydroxy substituents at positions 3 and 3 (the 3S,3S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. It has a role as an anticoagulant, an antioxidant, a food colouring, a plant metabolite and an animal metabolite. It is a carotenone and a carotenol. It derives from a hydride of a beta-carotene. Astaxanthin is a keto-carotenoid in the terpenes class of chemical compounds. It is classified as a xanthophyll but it is a carotenoid with no vitamin A activity. It is found in the majority of aquatic organisms with red pigment. Astaxanthin has shown to mediate anti-oxidant and anti-inflammatory actions. It may be found in fish feed or some animal food as a color additive. Astaxanthin is a natural product found in Ascidia zara, Linckia laevigata, and other organisms with data available. Astaxanthin is a natural and synthetic xanthophyll and nonprovitamin A carotenoid, with potential antioxidant, anti-inflammatory and antineoplastic activities. Upon administration, astaxanthin may act as an antioxidant and reduce oxidative stress, thereby preventing protein and lipid oxidation and DNA damage. By decreasing the production of reactive oxygen species (ROS) and free radicals, it may also prevent ROS-induced activation of nuclear factor-kappa B (NF-kB) transcription factor and the production of inflammatory cytokines such as interleukin-1beta (IL-1b), IL-6 and tumor necrosis factor-alpha (TNF-a). In addition, astaxanthin may inhibit cyclooxygenase-1 (COX-1) and nitric oxide (NO) activities, thereby reducing inflammation. Oxidative stress and inflammation play key roles in the pathogenesis of many diseases, including cardiovascular, neurological, autoimmune and neoplastic diseases. A carotenone that consists of beta,beta-carotene-4,4-dione bearing two hydroxy substituents at positions 3 and 3 (the 3S,3S diastereomer). A carotenoid pigment found mainly in animals (crustaceans, echinoderms) but also occurring in plants. It can occur free (as a red pigment), as an ester, or as a blue, brown or green chromoprotein. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant C2140 - Adjuvant
Ginsenoside K
Ginsenoside C-K is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antineoplastic agent, a hepatoprotective agent, an anti-allergic agent and an anti-inflammatory agent. It is a beta-D-glucoside, a 12beta-hydroxy steroid, a ginsenoside, a tetracyclic triterpenoid, a 3beta-hydroxy steroid and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. ginsenoside C-K is a natural product found in Panax ginseng and Fusarium sacchari with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 20 has been converted to the corresponding beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. Ginsenoside C-K, a bacterial metabolite of G-Rb1, exhibits anti-inflammatory effects by reducing iNOS and COX-2. Ginsenoside C-K exhibits an inhibition against the activity of CYP2C9 and CYP2A6 in human liver microsomes with IC50s of 32.0±3.6 μM and 63.6±4.2 μM, respectively. Ginsenoside K. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=39262-14-1 (retrieved 2024-10-17) (CAS RN: 39262-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Jintan
Monoammonium glycyrrhizinate is an organic molecular entity. An oleanolic acid from GLYCYRRHIZA that has some antiallergic, antibacterial, and antiviral properties. It is used topically for allergic or infectious skin inflammation and orally for its aldosterone effects in electrolyte regulation. D000893 - Anti-Inflammatory Agents Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities. Ammonium glycyrrhizinate (Monoammonium glycyrrhizinate) has various pharmacological actions such as anti-inflammatory, antiallergic, antigastriculcer, and antihepatitis activities.
Crocin
Crocin is a water-soluble carotenoid pigment of saffron (Crocus sativus L.) that has been used as a spice for flavoring and coloring food preparations, and in Chinese traditional medicine as an anodyne or tranquilizer. Saffron is now used worldwide in folk medicine and is reputed to be useful in treating various human disorders such as heart and blood disorders. Stroke and heart attack are involved in reputed folkloric uses of saffron. Saffron is orally administrated as a decoction. Saffron extract exerts a protective effect on renal ischemia reperfusion induced oxidative damage in rats. Crocin suppresses tumor necrosis factor (TNF)alpha-induced apoptosis of pheochromocytoma (PC12) cells by modulating mRNA expressions of Bcl-2 family proteins, which trigger downstream signals culminating in caspase-3 activation followed by cell death. Depriving cultured PC12 cells of serum/glucose causes a rapid increase in cellular ceramide levels, followed by an increase in the risk of cell death. The accumulation of ceramide was found to depend on the activation of neutral sphingomyelinase (nSMase). Crocin prevented the activation of nSMase by enhancing the transcription of gamma-glutamylcysteinyl synthase, which contributes to a stable glutathione supply that blocks the activity of nSMase. (PMID: 17215084). Crocetin esters present in saffron stigmas and in Gardenia jasminoides Ellis fruit are the compounds responsible for their color. (PMID: 16448211). Crocin-1 is a diester that is crocetin in which both of the carboxy groups have been converted to their gentiobiosyl esters. It is one of the water-soluble yellow-red pigments of saffron and is used as a spice for flavouring and colouring food. Note that in India, the term Crocin is also used by GlaxoSmithKline as a brand-name for paracetamol. It has a role as an antioxidant, a food colouring, a plant metabolite and a histological dye. It is a diester, a disaccharide derivative and a diterpenoid. It is functionally related to a beta-D-gentiobiosyl crocetin and a gentiobiose. Crocin has been investigated for the treatment of Hyperglycemia, Metabolic Syndrome, Hypertriglyceridemia, and Hypercholesterolemia. Crocin is a natural product found in Gardenia jasminoides, Calycanthus, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids The colouring principle of saffron Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1]. Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1].
Cymarin
Cymarin is a cardenolide glycoside. Cymarin is a natural product found in Apocynum cannabinum, Adonis amurensis, and other organisms with data available. A cardiotonic cardiac glycoside found in STROPHANTHUS. The aglycone is STROPHANTHIN. C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents
K-Strophanthidin
Strophanthidin is a 3beta-hydroxy steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a 19-oxo steroid, a member of cardenolides and a steroid aldehyde. It is functionally related to a 5beta-cardanolide. Strophanthidin is a natural product found in Crossosoma bigelovii, Adonis aestivalis, and other organisms with data available. 3 beta,5,14-Trihydroxy-19-oxo-5 beta-card-20(22)-enolide. The aglycone cardioactive agent isolated from Strophanthus Kombe, S. gratus and other species; it is a very toxic material formerly used as digitalis. Synonyms: Apocymarin; Corchorin; Cynotoxin; Corchorgenin. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].
Helenalin
Helenalin is a sesquiterpene lactone that is 3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione substituted by a hydroxy group at position 4, methyl groups at positions 4a and 8 and a methylidene group at position 3 (the 3aS,4S,4aR,7aR,8R,9aR stereoisomer). It has a role as an anti-inflammatory agent, an antineoplastic agent, a plant metabolite and a metabolite. It is a gamma-lactone, a cyclic ketone, an organic heterotricyclic compound, a sesquiterpene lactone and a secondary alcohol. Helenalin is a natural product found in Pentanema britannicum, Psilostrophe cooperi, and other organisms with data available. A sesquiterpene lactone that is 3,3a,4,4a,7a,8,9,9a-octahydroazuleno[6,5-b]furan-2,5-dione substituted by a hydroxy group at position 4, methyl groups at positions 4a and 8 and a methylidene group at position 3 (the 3aS,4S,4aR,7aR,8R,9aR stereoisomer). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D002316 - Cardiotonic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D002317 - Cardiovascular Agents D018501 - Antirheumatic Agents
Capsanthin
Capsanthin is found in green vegetables. Capsanthin is a constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical.Paprika oleoresin (also known as paprika extract) is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens(Indian red chillies), and is primarily used as a colouring and/or flavouring in food products. It is composed of capsaicin, the main flavouring compound giving pungency in higher concentrations, and capsanthin and capsorubin, the main colouring compounds (among other carotenoids) Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). Constituent of paprika (Capsicum annuum) and asparagus (Asparagus officinalis). Potential nutriceutical D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
2-Hexenal
(2E)-hexenal is a 2-hexenal in which the olefinic double bond has E configuration. It occurs naturally in a wide range of fruits, vegetables, and spices. It has a role as a flavouring agent, an antibacterial agent and a plant metabolite. 2-Hexenal is a natural product found in Lonicera japonica, Origanum sipyleum, and other organisms with data available. 2-Hexenal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. 2-Hexenal is found in allspice. 2-Hexenal is used in perfumery and flavourings. 2-Hexenal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. 2-Hexenal (CAS: 505-57-7), also known as 2-hexenaldehyde or 3-propylacrolein, belongs to the class of organic compounds known as medium-chain aldehydes. These are aldehydes with a chain length containing between 6 and 12 carbon atoms. Thus, 2-hexenal is considered to be a fatty aldehyde lipid molecule. Outside of the human body, 2-hexenal is found, on average, in the highest concentration within a few different foods, such as corn, tea, and bilberries. 2-Hexenal has also been detected, but not quantified in, several different foods, such as common wheat, ginkgo nuts, spearmints, sunflowers, and watermelons. This could make 2-hexenal a potential biomarker for the consumption of these foods. (E)-2-Hexenal is found in allspice. It is used in perfumery and flavouring. (E)-2-Hexenal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators Acquisition and generation of the data is financially supported in part by CREST/JST. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
Tricetin
Tricetin is flavone hydroxylated at positions 3, 4, 5, 5 and 7. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a tricetin(1-). Tricetin is a natural product found in Punica granatum, Lathyrus pratensis, and other organisms with data available. Constituent of the seed coat of lentil (Lens culinaris). Tricetin is found in many foods, some of which are ginkgo nuts, pulses, tea, and cereals and cereal products. Tricetin is found in cereals and cereal products. Tricetin is a constituent of the seed coat of lentil (Lens culinaris) Flavone hydroxylated at positions 3, 4, 5, 5 and 7.
Benzyl isothiocyanate
Benzyl isothiocyanate, also known as alpha-isothiocyanatotoluene or isothiocyanic acid, benzyl ester, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Benzyl isothiocyanate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl isothiocyanate is a mild, dusty, and horseradish tasting compound and can be found in a number of food items such as cabbage, garden onion, garden cress, and papaya, which makes benzyl isothiocyanate a potential biomarker for the consumption of these food products. Benzyl isothiocyanate (BITC) is an isothiocyanate found in plants of the mustard family . Benzyl isothiocyanate is an isothiocyanate and a member of benzenes. It has a role as an antibacterial drug. Benzyl isothiocyanate is a natural product found in Erucaria microcarpa, Simicratea welwitschii, and other organisms with data available. See also: Lepidium meyenii root (part of). Benzyl isothiocyanate is found in brassicas. Benzyl isothiocyanate is isolated from Tropaeolum majus (garden nasturtium) and Lepidium sativum (garden cress), also in other plants especially in the Cruciferae. Potential nutriceutical. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].
Selenomethionine
L-selenomethionine is the L-enantiomer of selenomethionine. It is an enantiomer of a D-selenomethionine. It is a tautomer of a L-selenomethionine zwitterion. Selenomethionine is a naturally occuring amino acid in some plant materials such as cereal grains, soybeans and enriched yeast but it cannot be synthesized from animals or humans. It can be produced from post-structural modifications. *In vivo*, selenomethionine plays an essential role in acting as an antioxidant, where it depletes reactive oxygen species (ROS) and aids in the formation and recycling of glutathione, another important antioxidant. In comparison to selenite, which is the inorganic form of selenium, the organic form of selenomethionine is more readily absorbed in the human body. Selenomethionin is used in biochemical laboratories where its incorporation into proteins that need to be visualized enhances the performance of X-ray crystallography. L-Selenomethionine is the amino acid methionine with selenium substituting for the sulphur moiety. Methionine is an essential amino acid in humans, whereas selenium is a free-radical scavenging anti-oxidant, essential for the protection of various tissues from the damages of lipid peroxidation. As a trace mineral that is toxic in high doses, selenium is a cofactor for glutathione peroxidase, an anti-oxidant enzyme that neutralizes hydrogen peroxide. L-Selenomethionine is considered a safe, efficacious form of selenium and is readily bioavailable. Selenium may be chemoprotective for certain cancers, particularly prostate cancer. (NCI04) Diagnostic aid in pancreas function determination. Selenomethionine (CAS: 1464-42-2) is an amino acid containing selenium that cannot be synthesized by higher animals but can be obtained from plant material. Selenomethionine is the major seleno-compound in cereal grains (wheat grain, maize, and rice), soybeans, and enriched yeast. Seleno-compounds present in plants may have a profound effect on the health of animals and human subjects. It is now known that the total Se content cannot be used as an indication of its efficacy, but knowledge of individual selenocompounds is necessary to fully assess the significance. Thus, speciation of the seleno-compounds has moved to the forefront. Since animals and man are dependent upon plants for their nutritional requirements, this makes the types of seleno-compounds in plants even more critical. Se enters the food chain through incorporation into plant proteins, mostly as selenocysteine and selenomethionine at normal Se levels. There are two possible pathways for the catabolism of selenomethionine. One is the transsulfuration pathway via selenocystathionine to produce selenocysteine, which in turn is degraded into H2Se by the enzyme beta-lyase. The other pathway is the transamination-decarboxylation pathway. It was estimated that 90\\\\% of methionine is metabolized through this pathway and thus could be also the major route for selenomethionine catabolism (PMID:14748935). Found in onion, cabbage, coco de mono (Lecythis elliptica), Brazil nuts (Bertholletia excelsa), wheat grains and other plants. Dietary supplement for avoidance of Se deficiency in humans and ruminants C26170 - Protective Agent > C275 - Antioxidant The L-enantiomer of selenomethionine. L-SelenoMethionine, an L-isomer of Selenomethionine, is a major natural food-form of selenium. L-SelenoMethionin is a cancer chemopreventive agent that can reduce cancer incidence by dietary supplementation and induce apoptosis of cancer cells. L-SelenoMethionine also can increase expression of glutathione peroxidase[1][2][3]. Selenomethionine is a naturally occurring amino acid containing selenium and is a common natural food source.
Allicin
Allicin is found in garden onion. Allicin is isolated from garlic (Allium sativum). Nutriceutical Allicin is an organic compound obtained from garlic. It is also obtainable from onions, and other species in the family Alliaceae. It was first isolated and studied in the laboratory by Chester J. Cavallito in 1944. This colourless liquid has a distinctively pungent smell. This compound exhibits antibacterial and anti-fungal properties. Allicin is garlics defence mechanism against attacks by pests Allicin is a sulfoxide and a botanical anti-fungal agent. It has a role as an antibacterial agent. Allicin has been used in trials studying the treatment of Follicular Lymphoma. Allicin is a natural product found in Allium chinense, Allium nutans, and other organisms with data available. See also: Garlic (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants Isolated from garlic (Allium sativum). Nutriceutical D009676 - Noxae > D000963 - Antimetabolites D000890 - Anti-Infective Agents D007004 - Hypoglycemic Agents Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2]. Allicin (diallyl thiosulfinate) is isolated from garlic including Diallyl monosulfide, Diallyl disulfide, Diallyl trisulfide, Diallyl tetrasulfide, and Methyl allyl disulphide etc. They accounts for 98\% of the extract. Allicin (diallyl thiosulfinate) has highly potent antimicrobial activity, and inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains[1][2].
Falcarindiol
Constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is found in many foods, some of which are wild carrot, carrot, garden tomato (variety), and caraway. Falcarindiol is found in caraway. Falcarindiol is a constituent of roots of several plants including the common carrot (Daucus carota) and Angelica acutiloba (Dong Dang Gui). Falcarindiol is a natural product found in Anthriscus nitida, Chaerophyllum aureum, and other organisms with data available. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Trigonelline (N'-methylnicotinate)
Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.
5-Isopropyl-2-methylphenol
5-Isopropyl-2-methylphenol, also known as 2-hydroxy-p-cymene or 2-p-cymenol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. 5-Isopropyl-2-methylphenol is a very hydrophobic molecule, practically insoluble in water, but fairly soluble in organic solvents. Thus, 5-Isopropyl-2-methylphenol is considered to be an isoprenoid lipid molecule. Thymol is found in the essential oil of thyme and in the essential oils of several different plants. It can be extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol has also been identified as a volatile compound found in cannabis samples obtained from police seizures (PMID:26657499 ). Carvacrol is a phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). It has a role as a volatile oil component, a flavouring agent, an antimicrobial agent, an agrochemical and a TRPA1 channel agonist. It is a member of phenols, a p-menthane monoterpenoid and a botanical anti-fungal agent. It derives from a hydride of a p-cymene. Carvacrol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. Carvacrol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Oregano Leaf Oil (part of). A phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). Constituent of many essential oils. Especies found in the Labiatae. Thyme oil (=70\\\\%) and Origanum oil (=80\\\\%) are rich sources. Flavouring ingredient COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
Visnagin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2]. Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Deoxyelephantopin
Deoxyelephantopin is a sesquiterpenoid. Deoxyelephantopin is a natural product found in Elephantopus scaber with data available. Isodeoxyelephantopin is a terpene lactone. Deoxyelephantopin, a natural bioactive sesquiterpene lactone from Elephantopus scaber, has shown promising anticancer effects against a broad spectrum of cancers. Deoxyelephantopin inhibits NF-κB, MAPK, PI3K/Akt, and β-catenin signaling[1]. Deoxyelephantopin, a natural bioactive sesquiterpene lactone from Elephantopus scaber, has shown promising anticancer effects against a broad spectrum of cancers. Deoxyelephantopin inhibits NF-κB, MAPK, PI3K/Akt, and β-catenin signaling[1].
Yucron
Methylmethionine sulfonium salt is an organic molecular entity. Methylmethionine chloride may be useful in helping the healing of gastric ulcers. In Japan, it is used as an over the counter product for gastrointestinal health support. It is also called "Vitamin U", but it is not a true vitamin. A vitamin found in green vegetables. It is used in the treatment of peptic ulcers, colitis, and gastritis and has an effect on secretory, acid-forming, and enzymatic functions of the intestinal tract. A - Alimentary tract and metabolism > A02 - Drugs for acid related disorders > A02B - Drugs for peptic ulcer and gastro-oesophageal reflux disease (gord) D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents D018977 - Micronutrients > D014815 - Vitamins Vitamin U (S-Methylmethionine sulfonium) chloride is an orally active anti-ulcer agent with antioxidant activity. Vitamin U inhibits adipocyte differentiation. Vitamin U promotes skin wound healing.Vitamin U can be used in the research of gastrointestinal ulceration[1][2][3][4][5].
Catalposide
Catalposide is a glycoside.
Curzerenone
Constituent of Curcuma zedoaria (zedoary). Curzerenone is found in turmeric. 5-Epicurzerenone is from Curcuma zedoaria (zedoary Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Picrocrocin
Picrocrocin is a glycoside formed from glucose and safranal. It is found in the spice saffron, which comes from the crocus flower. Picrocrocin has a bitter taste and is the chemical most responsible for the taste of saffron. It is believed that picrocrocin is a degradation product of the carotenoid zeaxanthin (Wikipedia). Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Isolated from saffron (stamens of Crocus sativus). Food colour and flavouring ingredient Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].
Verbinone
Verbenone, also known as verbenone, (1r)-isomer, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Verbenone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Verbenone is a camphor, celery, and menthol tasting compound and can be found in a number of food items such as spearmint, cabbage, white cabbage, and rosemary, which makes verbenone a potential biomarker for the consumption of these food products. Verbenone is a natural organic compound classified as a terpene that is found naturally in a variety of plants. The chemical has a pleasant characteristic odor. Besides being a natural constituent of plants, it and its analogs are insect pheromones. In particular, verbenone when formulated in a long-lasting matrix has an important role in the control of bark beetles such as the mountain pine beetle and the Southern pine bark beetle . 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].
beta-Geraniol
Geraniol is a colorless to pale yellow oily liquid with a sweet rose odor. (NTP, 1992) Geraniol is a monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. It has a role as a fragrance, an allergen, a volatile oil component and a plant metabolite. It is a monoterpenoid, a primary alcohol and a 3,7-dimethylocta-2,6-dien-1-ol. Geraniol is a monoterpene that is found within many essential oils of fruits, vegetables, and herbs including rose oil, citronella, lemongrass, lavender, and other aromatic plants. It is emitted from the flowers of many species of plant and is commonly used by the food, fragrance, and cosmetic industry. Geraniol has demonstrated a wide spectrum of pharmacological activities including antimicrobial, anti-inflammatory, antioxidant, anti-cancer, and neuroprotective to name a few. Interestingly, geraniol has also been shown to sensitize tumour cells to commonly used chemotherapies including [DB00544] and [DB01248] and represents a promising cancer chemopreventive agent. Due to its anticancer effects, geraniol has been found to be effective against a broad range of cancers including breast, lung, colon, prostate, pancreatic, skin, liver, kidney and oral cancers. These pharmacologic effects are clinically important as geraniol is classified as generally-recognized-as-safe (GRAS) by the Flavor and Extract Manufacturers Association (FEMA) and the Food and Drug Administration (FDA) of the United States. Sensitivity to geraniol may be identified with a clinical patch test. Geraniol is a Standardized Chemical Allergen. The physiologic effect of geraniol is by means of Increased Histamine Release, and Cell-mediated Immunity. Geraniol is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. beta-Geraniol is found in almond. beta-Geraniol is found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. beta-Geraniol is a flavouring agent. Geraniol is a monoterpenoid and an alcohol. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type). It also occurs in small quantities in geranium, lemon, and many other essential oils. It has a rose-like odor and is commonly used in perfumes. It is used in flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. It is the isomer of nerol. (Wikipedia) beta-Geraniol belongs to the family of Monoterpenes. These are compounds contaning a chain of two isoprene units. Geraniol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Java citronella oil (part of). beta-Geraniol, also known as (E)-nerol, the isomer of nerol (or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. This could make beta-geraniol a potential biomarker for the consumption of these foods. It is found in as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Geraniol is a monoterpenoid and an alcohol found in cannabis plants (PMID:6991645 ). Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. Geraniol is produced by the scent glands of honeybees to mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. Flavouring agent A monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
Zerumbone
Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. Zerumbone is found in herbs and spices. Zerumbone is a constituent of the rhizomes of wild ginger (Zingiber zerumbet) Constituent of the rhizomes of wild ginger (Zingiber zerumbet). Zerumbone is found in herbs and spices. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].
Safranal
Safranal is found in fig. Safranal is a constituent of saffron (Crocus sativa). Safranal is a flavouring ingredient It is believed that safranal is a degradation product of the carotenoid zeaxanthin via the intermediacy of picrocrocin. Safranal is an effective anticonvulsant shown to act as an agonist at GABAA receptors. Safranal also exhibits high antioxidant and free radical scavenging activity, along with cytotoxicity towards cancer cells in vitro. It has also been shown to have antidepressant properties. Safranal is an organic compound isolated from saffron, the spice consisting of the stigmas of crocus flowers (Crocus sativus). It is the constituent primarily responsible for the aroma of saffron Safranal is a monoterpenoid formally derived from beta-cyclocitral by dehydrogenation. It is functionally related to a beta-cyclocitral. Safranal is a natural product found in Aspalathus linearis, Cistus creticus, and other organisms with data available. Constituent of saffron (Crocus sativa). Flavouring ingredient Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].
Tomentosin
Tomentosin is a sesquiterpene lactone. Tomentosin is a natural product found in Apalochlamys spectabilis, Leucophyta brownii, and other organisms with data available.
Cinnamtannin A2
Cinnamtannin A2 is a proanthocyanidin isolated from Cinnamomum cassia. It has a role as a plant metabolite. Cinnamtannin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. Isolated from Cinnamomum cassia (Chinese cinnamon). Cinnamtannin A2 is found in many foods, some of which are cocoa bean, chinese cinnamon, chocolate, and herbs and spices. Cinnamtannin A2 is found in chinese cinnamon. Cinnamtannin A2 is isolated from Cinnamomum cassia (Chinese cinnamon). A proanthocyanidin isolated from Cinnamomum cassia.
Di-2-propenyl disulfide, 9CI
Di-2-propenyl disulfide, also known as allyl disulfide or 3,3-disulfanediylbis(prop-1-ene), belongs to the class of organic compounds known as allyl sulfur compounds. Allyl sulfur compounds are compounds containing an allylsulfur group, with the general structure H2C(=CH2)CS. Di-2-propenyl disulfide is possibly neutral. An organic disulfide where the organic group specified is allyl. Di-2-propenyl disulfide has been detected, but not quantified, in soft-necked garlics. This could make di-2-propenyl disulfide a potential biomarker for the consumption of these foods. 1,2-(2-propenyl)-disulfane, also known as allyl disulfide or 3,3-disulfanediylbis(prop-1-ene), is a member of the class of compounds known as allyl sulfur compounds. Allyl sulfur compounds are compounds containing an allylsulfur group, with the general structure H2C(=CH2)CS. 1,2-(2-propenyl)-disulfane can be found in soft-necked garlic, which makes 1,2-(2-propenyl)-disulfane a potential biomarker for the consumption of this food product. Diallyl disulfide is an organic disulfide where the organic group specified is allyl. It has been isolated from garlic and other species of the genus Allium. It has a role as an antineoplastic agent, an antifungal agent and a plant metabolite. Diallyl disulfide is a natural product found in Allium vineale, Allium chinense, and other organisms with data available. An organic disulfide where the organic group specified is allyl. It has been isolated from garlic and other species of the genus Allium. D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D000970 - Antineoplastic Agents Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].
2-Methoxy-4-vinylphenol
2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite. 2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available. 4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Moringa oleifera leaf oil (part of). 2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat. A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. Responsible for off-flavour of old fruit in stored orange juice 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
Chalcone
Chalcone is a member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. It has a role as a plant metabolite. It is a member of styrenes and a member of chalcones. Chalcone is a natural product found in Tilia tomentosa, Alpinia hainanensis, and other organisms with data available. An aromatic KETONE that forms the core molecule of CHALCONES. A member of the class of chalcones that is acetophenone in which one of the methyl hydrogens has been replaced by a benzylidene group. Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. Chalcone is isolated from Glycyrrhiza uralensis and used to synthesize chalcone derivatives. Chalcone derivatives possess varied biological and pharmacological activity, including anti-inflammatory, antioxidative, antibacterial, anticancer, and anti-parasitic activities[1]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α-amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity[1][2][3]. Chalcone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=94-41-7 (retrieved 2024-09-27) (CAS RN: 94-41-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Prometryn
CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8564; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8550; ORIGINAL_PRECURSOR_SCAN_NO 8549 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8580; ORIGINAL_PRECURSOR_SCAN_NO 8577 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8544; ORIGINAL_PRECURSOR_SCAN_NO 8542 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8538 CONFIDENCE standard compound; INTERNAL_ID 861; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8686; ORIGINAL_PRECURSOR_SCAN_NO 8681 CONFIDENCE standard compound; INTERNAL_ID 4037 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Adenosine monophosphate
Adenosine monophosphate, also known as adenylic acid or amp, is a member of the class of compounds known as purine ribonucleoside monophosphates. Purine ribonucleoside monophosphates are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine monophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Adenosine monophosphate can be found in a number of food items such as kiwi, taro, alaska wild rhubarb, and skunk currant, which makes adenosine monophosphate a potential biomarker for the consumption of these food products. Adenosine monophosphate can be found primarily in most biofluids, including blood, feces, cerebrospinal fluid (CSF), and urine, as well as throughout all human tissues. Adenosine monophosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine monophosphate is involved in several metabolic pathways, some of which include josamycin action pathway, methacycline action pathway, nevirapine action pathway, and aspartate metabolism. Adenosine monophosphate is also involved in several metabolic disorders, some of which include hyperornithinemia-hyperammonemia-homocitrullinuria [hhh-syndrome], molybdenum cofactor deficiency, xanthinuria type I, and mitochondrial DNA depletion syndrome. Adenosine monophosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine monophosphate, also known as 5-adenylic acid and abbreviated AMP, is a nucleotide that is found in RNA. It is an ester of phosphoric acid with the nucleoside adenosine. AMP consists of the phosphate group, the pentose sugar ribose, and the nucleobase adenine. AMP can be produced during ATP synthesis by the enzyme adenylate kinase. AMP has recently been approved as a Bitter Blocker additive to foodstuffs. When AMP is added to bitter foods or foods with a bitter aftertaste it makes them seem sweeter. This potentially makes lower calorie food products more palatable. [Spectral] AMP (exact mass = 347.06308) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Glutathione disulfide (exact mass = 612.15196) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] AMP (exact mass = 347.06308) and Adenine (exact mass = 135.0545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Adenosine monophosphate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67583-85-1 (retrieved 2024-07-01) (CAS RN: 61-19-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction. Adenosine monophosphate is a key cellular metabolite regulating energy homeostasis and signal transduction.
Acetaminophen
The excellent tolerability of therapeutic doses of paracetamol (acetaminophen) is a major factor in the very wide use of the drug. The major problem in the use of paracetamol is its hepatotoxicity after an overdose. Hepatotoxicity has also been reported after therapeutic doses, but critical analysis indicates that most patients with alleged toxicity from therapeutic doses have taken overdoses. Importantly, prospective studies indicate that therapeutic doses of paracetamol are an unlikely cause of hepatotoxicity in patients who ingest moderate to large amounts of alcohol (PMID: 15733027). Single doses of paracetamol are effective analgesics for acute postoperative pain and give rise to few adverse effects (PMID: 14974073). Acetaminophen (AAP) overdose and the resulting hepatotoxicity is an important clinical problem. In addition, AAP is widely used as a prototype hepatotoxin to study mechanisms of chemical-induced cell injury and to test the hepatoprotective potential of new drugs and herbal medicines. Because of its importance, the mechanisms of AAP-induced liver cell injury have been extensively investigated and controversially discussed for many years (PMID: 16863451). The excellent tolerability of therapeutic doses of paracetamol (acetaminophen) is a major factor in the very wide use of the drug. The major problem in the use of paracetamol is its hepatotoxicity after an overdose. Hepatotoxicity has also been reported after therapeutic doses, but critical analysis indicates that most patients with alleged toxicity from therapeutic doses have taken overdoses. Importantly, prospective studies indicate that therapeutic doses of paracetamol are an unlikely cause of hepatotoxicity in patients who ingest moderate to large amounts of alcohol. (PMID 15733027) N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1126 D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Acetamiprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 2327 CONFIDENCE standard compound; INTERNAL_ID 8448 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2986 Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].
Aflatoxin M1
Aflatoxin M1 is found in milk and milk products. Minor mycotoxin of Aspergillus flavus, also found in the milk of cows and sheep fed toxic meal. Metab. of Aflatoxin B1
Aconitate [cis or trans]
cis-Aconitic acid is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. The enzyme aconitase (aconitate hydratase; EC 4.2.1.3) catalyses the stereo-specific isomerization of citrate to isocitrate via cis-aconitate in the tricarboxylic acid cycle. Present in apple fruits, maple syrup and passion fruit juice cis-Aconitic acid, also known as (Z)-aconitic acid, plays several important biological roles: Intermediate in the Citric Acid Cycle: cis-Aconitic acid is an intermediate in the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle or citric acid cycle. It is formed from citrate by the enzyme aconitase and is rapidly converted into isocitrate, another key intermediate in the cycle. The TCA cycle is central to cellular respiration, generating energy-rich molecules like NADH and FADH2. Regulation of Aconitase Activity: The conversion of citrate to cis-aconitate and then to isocitrate by aconitase is an important regulatory step in the TCA cycle. This conversion helps in maintaining the balance of the cycle and is influenced by factors like the energy status of the cell. Role in Cholesterol Synthesis: cis-Aconitic acid is also involved in the synthesis of cholesterol. It serves as a precursor for the synthesis of mevalonate, a key intermediate in the cholesterol biosynthesis pathway. Potential Involvement in Disease: Altered metabolism or accumulation of cis-aconitic acid has been associated with certain diseases, including neurodegenerative disorders and cancer. Its role in these conditions is an area of ongoing research. Plant Growth and Development: In plants, cis-aconitic acid has been found to play a role in growth and development, including seed germination and leaf senescence. In summary, cis-aconitic acid is a crucial intermediate in the TCA cycle, impacting energy production and various metabolic pathways in cells. Its role extends to cholesterol synthesis and potentially to various disease processes, highlighting its importance in cellular metabolism and physiology. cis-Aconitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=585-84-2 (retrieved 2024-07-01) (CAS RN: 585-84-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Mesaconic acid
Mesaconic acid, also known as 2-methylfumarate or citronic acid, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Mesaconic acid is a dicarboxylic butenoic acid, with a methyl group in position 2 and the double bound between carbons 2 and 3. Mesaconic acid was first studied for its physical properties in 1874 by Jacobus van ‘t Hoff (https://web.archive.org/web/20051117102410/http://dbhs.wvusd.k12.ca.us/webdocs/Chem-History/Van\\%27t-Hoff-1874.html). It is now known to be involved in the biosynthesis of vitamin B12 and it is also a competitor inhibitor of the reduction of fumarate. Mesaconic acid is one of several isomeric carboxylic acids obtained from citric acid. Is used as a fire retardant, recent studies revealed this acid is a competitive inhibitor of fumarate reduction. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. D003879 - Dermatologic Agents
L-Cystine
Cystine is an oxidized dimeric form of cysteine. It is formed by linking two cysteine residues via a disulfide bond (Cys-S-S-Cys) between the -SH groups. Cystine is found in high concentrations in digestive enzymes and in the cells of the immune system, skeletal and connective tissues, skin, and hair. Hair and skin are 10-14\\\% cystine. Cystine is the preferred form of cysteine for the synthesis of glutathione in cells involved in the immune system (e.g. macrophages and astrocytes). Lymphocytes and neurons prefer cysteine for glutathione production. Optimizing glutathione levels in macrophages and astrocytes with cystine allows these cells to provide cysteine to lymphocytes and neurons directly upon demand (Wikipedia). (-)-Cystine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-89-3 (retrieved 2024-06-29) (CAS RN: 56-89-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
N-Acetyl-D-cysteine
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7]. Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7].
Ochratoxin A
Ochratoxin A is found in barley. Mycotoxin. Ochratoxin A is produced by Aspergillus melleus, Aspergillus sulphureus and Penicillium viridicatum.Potential contaminant of foodstuffs, especially cereals. Ochratoxin A is found in stored grain products in UK (1997).Ochratoxin A, a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins in the world. Human exposure occurs mainly through consumption of improperly stored food products, particularly contaminated grain and pork products, as well as coffee, wine grapes and dried grapes. The toxin has been found in the tissues and organs of animals, including human blood and breast milk. Ochratoxin A toxicity has large species- and sex-specific differences Mycotoxin. Production by Aspergillus melleus, Aspergillus sulphureus and Penicillium viridicatum.Potential contaminant of foodstuffs, especially cereals. Found in stored grain products in UK (1997) D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D009676 - Noxae > D011042 - Poisons > D009793 - Ochratoxins D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000077264 - Calcium-Regulating Hormones and Agents D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators
Mefenamic acid
Mefenamic acid is only found in individuals that have used or taken this drug. It is a non-steroidal anti-inflammatory agent with analgesic, anti-inflammatory, and antipyretic properties. It is an inhibitor of cyclooxygenase. [PubChem]Mefenamic acid binds the prostaglandin synthetase receptors COX-1 and COX-2, inhibiting the action of prostaglandin synthetase. As these receptors have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity, the symptoms of pain are temporarily reduced. CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10159; ORIGINAL_PRECURSOR_SCAN_NO 10158 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10220; ORIGINAL_PRECURSOR_SCAN_NO 10219 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10207; ORIGINAL_PRECURSOR_SCAN_NO 10204 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10231; ORIGINAL_PRECURSOR_SCAN_NO 10228 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10194; ORIGINAL_PRECURSOR_SCAN_NO 10192 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10244; ORIGINAL_PRECURSOR_SCAN_NO 10242 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5516; ORIGINAL_PRECURSOR_SCAN_NO 5514 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5591; ORIGINAL_PRECURSOR_SCAN_NO 5590 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5509; ORIGINAL_PRECURSOR_SCAN_NO 5507 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5490; ORIGINAL_PRECURSOR_SCAN_NO 5489 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5522; ORIGINAL_PRECURSOR_SCAN_NO 5520 CONFIDENCE standard compound; INTERNAL_ID 327; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5497; ORIGINAL_PRECURSOR_SCAN_NO 5493 M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 208 EAWAG_UCHEM_ID 208; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 1151 CONFIDENCE standard compound; INTERNAL_ID 2351 CONFIDENCE standard compound; INTERNAL_ID 8570 CONFIDENCE standard compound; INTERNAL_ID 4094 D000893 - Anti-Inflammatory Agents KEIO_ID M089; [MS2] KO009073 D004791 - Enzyme Inhibitors KEIO_ID M089
Thiacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7159; ORIGINAL_PRECURSOR_SCAN_NO 7155 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7152; ORIGINAL_PRECURSOR_SCAN_NO 7150 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7161; ORIGINAL_PRECURSOR_SCAN_NO 7158 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7190; ORIGINAL_PRECURSOR_SCAN_NO 7188 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7200; ORIGINAL_PRECURSOR_SCAN_NO 7197 CONFIDENCE standard compound; INTERNAL_ID 52; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 INTERNAL_ID 52; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7197; ORIGINAL_PRECURSOR_SCAN_NO 7195 CONFIDENCE standard compound; INTERNAL_ID 3024 CONFIDENCE standard compound; INTERNAL_ID 8424 CONFIDENCE standard compound; INTERNAL_ID 4044 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2954 EAWAG_UCHEM_ID 2954; CONFIDENCE standard compound
Itaconic acid
Itaconic acid is a dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. It has a role as a fungal metabolite and a human metabolite. It is a dicarboxylic acid and an olefinic compound. It derives from a succinic acid. It is a conjugate acid of an itaconate(2-). This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid. Itaconic acid, also known as itaconate, belongs to the class of organic compounds known as branched fatty acids. These are fatty acids containing a branched chain. Itaconic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). Itaconic acid is also produced in cells of macrophage lineage. It was shown that itaconate is a covalent inhibitor of the enzyme isocitrate lyase in vitro. As such, itaconate may possess antibacterial activities against bacteria expressing isocitrate lyase (such as Salmonella enterica and Mycobacterium tuberculosis). It is also sythesized in the laboratory, where dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid. Itaconic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=97-65-4 (retrieved 2024-07-01) (CAS RN: 97-65-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].
L-Cysteine
Cysteine (Cys), also known as L-cysteine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-alanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Cysteine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar, sulfur-containing amino acid. Cysteine is an important source of sulfur in human metabolism, and although it is classified as a non-essential amino acid, cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can occasionally be considered as an essential or conditionally essential amino acid. Cysteine is unique amongst the twenty natural amino acids as it contains a thiol group. Thiol groups can undergo oxidation/reduction (redox) reactions; when cysteine is oxidized it can form cystine, which is two cysteine residues joined by a disulfide bond. This reaction is reversible since the reduction of this disulphide bond regenerates two cysteine molecules. The disulphide bonds of cystine are crucial to defining the structures of many proteins. Cysteine is often involved in electron-transfer reactions, and help the enzyme catalyze its reaction. Cysteine is also part of the antioxidant glutathione. N-Acetyl-L-cysteine (NAC) is a form of cysteine where an acetyl group is attached to cysteines nitrogen atom and is sold as a dietary supplement. Cysteine is named after cystine, which comes from the Greek word kustis meaning bladder (cystine was first isolated from kidney stones). Oxidation of cysteine can produce a disulfide bond with another thiol and further oxidation can produce sulphfinic or sulfonic acids. The cysteine thiol group is also a nucleophile and can undergo addition and substitution reactions. Thiol groups become much more reactive when they are ionized, and cysteine residues in proteins have pKa values close to neutrality, so they are often in their reactive thiolate form in the cell. The thiol group also has a high affinity for heavy metals and proteins containing cysteine will bind metals such as mercury, lead, and cadmium tightly. Due to this ability to undergo redox reactions, cysteine has antioxidant properties. Cysteine is important in energy metabolism. As cystine, it is a structural component of many tissues and hormones. Cysteine has clinical uses ranging from treating baldness to psoriasis to preventing smokers hack. In some cases, oral cysteine therapy has proved excellent for treatment of asthmatics, enabling them to stop theophylline and other medications. Cysteine also enhances the effect of topically applied silver, tin, and zinc salts in preventing dental cavities. In the future, cysteine may play a role in the treatment of cobalt toxicity, diabetes, psychosis, cancer, and seizures (http://www.dcnutrition.com/AminoAcids/). Cysteine has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). [Spectral] L-Cysteine (exact mass = 121.01975) and D-2-Aminobutyrate (exact mass = 103.06333) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Cysteine (exact mass = 121.01975) and Creatine (exact mass = 131.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Detoxicant, dietary supplement, dough strengthener, yeast nutrient for leavened bakery products. Flavouring agent. Enzymic browning inhibitor. L-Cysteine is found in many foods, some of which are bilberry, mugwort, cowpea, and sweet bay. L-(+)-Cysteine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52-90-4 (retrieved 2024-07-01) (CAS RN: 52-90-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Equol
Equol is a metabolite of daidzein, a phytoestrogen common in the human diet and abundant in soy. Intestinal bacteria in humans can reduce daidzein to equol, and can be found in normal human urine. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. (PMID: 17579895, 17579894). Equol can be found in Bacteroides, Bifidobacterium, Enterococcus, Lactobacillus and Eggerthella (PMID: 20519412; PMID: 18838805). Equol is a metabolite of daidzein, a phytoestrogen common in the human diet and abundant in soy. Intestinal bacteria in humans can reduce daidzein to equol, and can be found in normal human urine. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. (PMID: 17579895, 17579894) [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (-)-(S)-Equol is a high affinity ligand for estrogen receptor β with a Ki of 0.73 nM. (±)-Equol is the racemate of equol. (±)-equol exhibits EC50s of 200 and 74 nM for human ERα and ERβ, respectively. Equol is a metabolite of the soy isoflavones, daidzin and daidzein.
Edaravone
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers C26170 - Protective Agent > C1509 - Neuroprotective Agent D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank N - Nervous system Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Silibinin
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy Silibinin is found in coffee and coffee products. Silibinin is isolated from Silybum marianum (milk thistle D020011 - Protective Agents > D000975 - Antioxidants [Raw Data] CBA85_Silybin-B_pos_30eV.txt [Raw Data] CBA85_Silybin-B_neg_30eV.txt [Raw Data] CBA85_Silybin-B_pos_50eV.txt [Raw Data] CBA85_Silybin-B_pos_20eV.txt [Raw Data] CBA85_Silybin-B_pos_40eV.txt [Raw Data] CBA85_Silybin-B_pos_10eV.txt [Raw Data] CBA85_Silybin-B_neg_40eV.txt [Raw Data] CBA85_Silybin-B_neg_10eV.txt [Raw Data] CBA85_Silybin-B_neg_50eV.txt [Raw Data] CBA85_Silybin-B_neg_20eV.txt Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration.
Lignans
Podofilox, also called podophyllotoxin, is a purer and more stable form of podophyllin in which only the biologically active portion of the compound is present. Podofilox is used to remove certain types of warts on the outside skin of the genital areas. Lignans is found in arrowroot and flaxseed. Lignans is found in arrowroot. Podofilox, also called podophyllotoxin, is a purer and more stable form of podophyllin in which only the biologically active portion of the compound is present. Podofilox is used to remove certain types of warts on the outside skin of the genital areas Picropodophyllin (AXL1717) is a selective insulin-like growth factor-1 receptor (IGF-1R) inhibitor with an IC50 of 1 nM. Picropodophyllin (AXL1717) is a selective insulin-like growth factor-1 receptor (IGF-1R) inhibitor with an IC50 of 1 nM.
Aflatoxin B1
Aflatoxins are naturally occurring mycotoxins that are produced by many species of Aspergillus, a fungus. At least 13 different types of aflatoxin are produced in nature. Aflatoxin B1 is considered the most toxic and is produced by both Aspergillus flavus and Aspergillus parasiticus. The native habitat of Aspergillus is in soil, decaying vegetation, hay, and grains undergoing microbiological deterioration and it invades all types of organic substrates whenever conditions are favourable for its growth. Favourable conditions include high moisture content (at least 7\\\%) and high temperature. Aflatoxins B1 (AFB1) are contaminants of improperly stored foods; they are potent genotoxic and carcinogenic compounds, exerting their effects through damage to DNA. They can also induce mutations that increase oxidative damage (PMID: 17214555). Crops which are frequently affected by Aspergillus contamination include cereals (maize, sorghum, pearl millet, rice, wheat), oilseeds (peanut, soybean, sunflower, cotton), spices (chile peppers, black pepper, coriander, turmeric, ginger), and tree nuts (almond, pistachio, walnut, coconut, brazil nut). Production by Aspergillus flavus and Aspergillus parasiticus. Toxin causing Turkey X disease. One of the most potent carcinogens known in animals. Potential food contaminant especies in grains and nuts D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].
Xanthohumol
Xanthohumol is a member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4, a methoxy group at position 6 and a prenyl group at position 3. Isolated from Humulus lupulus, it induces apoptosis in human malignant glioblastoma cells. It has a role as a metabolite, an apoptosis inducer, an antineoplastic agent, an antiviral agent, an EC 2.3.1.20 (diacylglycerol O-acyltransferase) inhibitor and an anti-HIV-1 agent. It is a member of chalcones, a polyphenol and an aromatic ether. It is a conjugate acid of a xanthohumol(1-). Xanthohumol is under investigation in clinical trial NCT01367431 (Xanthohumol and Metabolic Syndrome). Xanthohumol is a natural product found in Humulus lupulus and Capsicum annuum with data available. Xanthohumol is a prenylated flavonoid derived from the female flowers of the hops plant (Humulus lupulus L), with potential chemopreventive and antineoplastic activities. Upon administration, xanthohumol scavenges reactive oxygen species (ROS), thereby preventing DNA damage due to oxidative stress. In addition, xanthohumol is able to increase the expression of phase II cytoprotective enzymes, thereby inactivating carcinogens. This agent exerts anti-inflammatory activity, through the inhibition of inflammation-inducing enzymes, inhibits DNA synthesis, and induces apoptosis of susceptible cancer cells. Xanthohumol also decreases the expression of C-X-C chemokine receptor 4 (CXCR4), thereby preventing cancer cell invasion. A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 4, 2 and 4, a methoxy group at position 6 and a prenyl group at position 3. Isolated from Humulus lupulus, it induces apoptosis in human malignant glioblastoma cells. C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist > C107589 - CXCR4 Inhibitor Xanthohumol is found in alcoholic beverages. Xanthohumol is isolated from Humulus lupulus (hops Isolated from Humulus lupulus (hops). Xanthohumol is found in beer and alcoholic beverages. D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors C1892 - Chemopreventive Agent [Raw Data] CBA95_Xanthohumol_pos_50eV.txt [Raw Data] CBA95_Xanthohumol_neg_40eV.txt [Raw Data] CBA95_Xanthohumol_neg_20eV.txt [Raw Data] CBA95_Xanthohumol_neg_30eV.txt [Raw Data] CBA95_Xanthohumol_neg_50eV.txt [Raw Data] CBA95_Xanthohumol_pos_30eV.txt [Raw Data] CBA95_Xanthohumol_pos_10eV.txt [Raw Data] CBA95_Xanthohumol_neg_10eV.txt [Raw Data] CBA95_Xanthohumol_pos_20eV.txt [Raw Data] CBA95_Xanthohumol_pos_40eV.txt Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV).
Tangeritin
Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.
Glucoraphanin
Glucoraphanin belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, glucoraphanin has been detected, but not quantified in, several different foods, such as radish, common cabbages, Brassicas, Chinese cabbages, and cabbages. This could make glucoraphanin a potential biomarker for the consumption of these foods. Isolated from radish (Raphanus sativus) and Brassica species seeds or tops. Glucoraphanin is found in many foods, some of which are broccoli, white cabbage, cauliflower, and chinese cabbage. Acquisition and generation of the data is financially supported in part by CREST/JST. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
(S,E)-Zearalenone
CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4903; ORIGINAL_PRECURSOR_SCAN_NO 4902 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4907; ORIGINAL_PRECURSOR_SCAN_NO 4903 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4915; ORIGINAL_PRECURSOR_SCAN_NO 4913 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4892; ORIGINAL_PRECURSOR_SCAN_NO 4888 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4889; ORIGINAL_PRECURSOR_SCAN_NO 4888 CONFIDENCE standard compound; INTERNAL_ID 211; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4992; ORIGINAL_PRECURSOR_SCAN_NO 4988 Fungal metabolite of Fusarium subspecies and of Gibberella zeae. Potential food mycotoxin. Has weak estrogenic activity and causes physiol. changes when ingested by animals as foodstuffs contaminant. (S,E)-Zearalenone is found in corn. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Acquisition and generation of the data is financially supported in part by CREST/JST. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2248 cis-Zearalenone is a metabolite of Fusarium species. Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2]. Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2].
T2 Toxin
T2 Toxin is isolated from Fusarium species and Trichoderma lignorum. T2 Toxin is an important mycotoxin occurring naturally in various agricultural products. Isolated from Fusarium subspecies and Trichoderma lignorum. Important mycotoxin occurring naturally in various agricultural products D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2].
Sterigmatocystin
Sterigmatocystin is a mycotoxin of Aspergillus versicolor and Chaetomium species Sterigmatocystin is a poison of the type dermatoxin, from the fungi genus Aspergillus. It appears on crusts of cheese with mold. Sterigmatocystin is a toxic metabolite structurally closely related to the aflatoxins (compare general fact sheet number 2), and consists of a xanthone nucleus attached to a bifuran structure. Sterigmatocystin is mainly produced by the fungi Aspergillus nidulans and A. versicolor. It has been reported in mouldy grain, green coffee beans and cheese although information on its occurrence in foods is limited. It appears to occur much less frequently than the aflatoxins, although analytical methods for its determination have not been as sensitive until recently, and so it is possible that small concentrations in food commodities may not always have been detected. Although it is a potent liver carcinogen similar to aflatoxin B1, current knowledge suggests that it is nowhere near as widespread in its occurrence. If this is the true situation it would be justified to consider sterigmatocystin as no more than a risk to consumers in special or unusual circumstances. Sterigmatocystin is a number of closely related compounds such o-methyl sterigmatocystin are known and some may also occur naturally. The IARC-classification of sterigmatocystin is group 2B, which means it is possibly carcinogenic to humans. In practice, the risk is quite low however, because this substance only appears on cheese crusts with mold, and because of that the chance of daily exposure is very low. Sterigmatocystin is a molded crust is best not to be consumed in whole, but after removing the crust, the cheese can still be consumed. Sterigmatocystin is a different kind of mold than that which appears on cheese itself, which can simply be removed before further consumption D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2320
Puerarin
Puerarin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. It has a role as a plant metabolite. It is a C-glycosyl compound and a hydroxyisoflavone. It is functionally related to an isoflavone. Puerarin has been investigated for the treatment of Alcohol Abuse. Puerarin is a natural product found in Neustanthus phaseoloides, Clematis hexapetala, and other organisms with data available. Puerarin, also known as Kakonein, is a member of the class of compounds known as isoflavonoid C-glycosides. These compounds are C-glycosylated derivatives of isoflavonoids, which are natural products derived from 3-phenylchromen-4-one. Puerarin is considered a slightly soluble (in water), acidic compound. Puerarin can be synthesized into puerarin xyloside. Puerarin is found in a number of plants and herbs, such as the root of the kudzu plant. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 7 and 4 and a beta-D-glucopyranosyl residue at position 8 via a C-glycosidic linkage. A polyphenol metabolite detected in biological fluids [PhenolExplorer] D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.
Corilagin
Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].
[8]-Shogaol
1-(3,4-Dimethoxyphenyl)-4-decen-3-one is found in ginger. 1-(3,4-Dimethoxyphenyl)-4-decen-3-one is a constituent of ginger (Zingiber officinale) [DFC] (Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.). Constituent of grains of paradise (Amomum melegueta) and Zingiber officinale (ginger) [DFC] C1907 - Drug, Natural Product > C28269 - Phytochemical D009676 - Noxae > D009153 - Mutagens Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.
7-Hydroxyflavone
[Raw Data] CB049_7-Hydroxyflavone_pos_10eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_30eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_50eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_20eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_pos_40eV_CB000023.txt [Raw Data] CB049_7-Hydroxyflavone_neg_20eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_10eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_40eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_30eV_000015.txt [Raw Data] CB049_7-Hydroxyflavone_neg_50eV_000015.txt 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2].
3,4-Di-O-caffeoylquinic acid
Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Glutathione
Glutathione is a compound synthesized from cysteine, perhaps the most important member of the bodys toxic waste disposal team. Like cysteine, glutathione contains the crucial thiol (-SH) group that makes it an effective antioxidant. There are virtually no living organisms on this planet-animal or plant whose cells dont contain some glutathione. Scientists have speculated that glutathione was essential to the very development of life on earth. glutathione has many roles; in none does it act alone. It is a coenzyme in various enzymatic reactions. The most important of these are redox reactions, in which the thiol grouping on the cysteine portion of cell membranes protects against peroxidation; and conjugation reactions, in which glutathione (especially in the liver) binds with toxic chemicals in order to detoxify them. glutathione is also important in red and white blood cell formation and throughout the immune system. glutathiones clinical uses include the prevention of oxygen toxicity in hyperbaric oxygen therapy, treatment of lead and other heavy metal poisoning, lowering of the toxicity of chemotherapy and radiation in cancer treatments, and reversal of cataracts. (http://www.dcnutrition.com/AminoAcids/) glutathione participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It is also important as a hydrophilic molecule that is added to lipophilic toxins and waste in the liver during biotransformation before they can become part of the bile. glutathione is also needed for the detoxification of methylglyoxal, a toxin produced as a by-product of metabolism. This detoxification reaction is carried out by the glyoxalase system. Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione to S-D-Lactoyl-glutathione. Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoyl-glutathione to glutathione and D-lactate. GSH is known as a substrate in both conjugation reactions and reduction reactions, catalyzed by glutathione S-transferase enzymes in cytosol, microsomes, and mitochondria. However, it is also capable of participating in non-enzymatic conjugation with some chemicals, as in the case of n-acetyl-p-benzoquinone imine (NAPQI), the reactive cytochrome P450-reactive metabolite formed by acetaminophen, that becomes toxic when GSH is depleted by an overdose (of acetaminophen). glutathione in this capacity binds to NAPQI as a suicide substrate and in the process detoxifies it, taking the place of cellular protein thiol groups which would otherwise be covalently modified; when all GSH has been spent, NAPQI begins to react with the cellular proteins, killing the cells in the process. The preferred treatment for an overdose of this painkiller is the administration (usually in atomized form) of N-acetylcysteine, which is used by cells to replace spent GSSG and renew the usable GSH pool. (http://en.wikipedia.org/wiki/glutathione). Glutathione (GSH) - reduced glutathione - is a tripeptide with a gamma peptide linkage between the amine group of cysteine (which is attached by normal peptide linkage to a glycine) and the carboxyl group of the glutamate side-chain. It is an antioxidant, preventing damage to important cellular components caused by reactive oxygen species such as free radicals and peroxides. [Wikipedia]. Glutathione is found in many foods, some of which are cashew nut, epazote, ucuhuba, and canada blueberry. Glutathione. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-18-8 (retrieved 2024-07-15) (CAS RN: 70-18-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Glutathione reduced (GSH; γ-L-Glutamyl-L-cysteinyl-glycine) is an endogenous antioxidant and is capable of scavenging oxygen-derived free radicals.
4-Methylcatechol
A methylcatechol having a single methyl substituent at the 4-position. It has been isolated from Picea abies. D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D002273 - Carcinogens 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase. 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase.
Isoquinoline
Isoquinoline is a flavouring agent Being an analog of pyridine, isoquinoline is a weak base, with a pKb of 8.6. It protonates to form salts upon treatment with strong acids, such as HCl. It forms adducts with Lewis acids, such as BF3. Isoquinoline is a colorless hygroscopic liquid at room temperature with a penetrating, unpleasant odor. Impure samples can appear brownish, as is typical for nitrogen heterocycles. It crystallizes platelets that have a low solubility in water but dissolve well in ethanol, acetone, diethyl ether, carbon disulfide, and other common organic solvents. It is also soluble in dilute acids as the protonated derivative. Isoquinoline is a heterocyclic aromatic organic compound. It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in naturally occurring alkaloids including papaverine and morphine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine Flavouring agent KEIO_ID I067
Pentazocine
Pentazocine is only found in individuals that have used or taken this drug. It is the first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)The preponderance of evidence suggests that pentazocine antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
AdoMet
[Spectral] S-Adenosyl-L-methionine (exact mass = 398.13724) and L-Histidine (exact mass = 155.06948) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AA - Amino acids and derivatives Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
2-Methylimidazole
CONFIDENCE standard compound; INTERNAL_ID 8017
Naphthalene
Naphthalene, also known as naftaleno or albocarbon, belongs to the class of organic compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. Naphthalene is possibly neutral. Naphthalene is a dry, pungent, and tar tasting compound. Naphthalene is found, on average, in the highest concentration within a few different foods, such as black walnuts, corns, and cloves. Naphthalene has also been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, rices, yellow bell peppers, and red bell peppers. This could make naphthalene a potential biomarker for the consumption of these foods. Naphthalene was once the primary ingredient in mothballs, though its use has largely been replaced in favor of alternatives such as 1,4-dichlorobenzene. Naphthalene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Inhalation of naphthalene vapor has been associated with headaches, nausea, vomiting and dizziness. Naphthalene is the most abundant single component of coal tar so most of it is now industrially derived from coal tar. Aside from coal tar, trace amounts of naphthalene are produced by magnolias and some species of deer, as well as the Formosan subterranean termite, possibly produced by the termite as a repellant against "ants, poisonous fungi and nematode worms."[23] Some strains of the endophytic fungus Muscodor albus produce naphthalene among a range of volatile organic compounds, while Muscodor vitigenus produces naphthalene almost exclusively (PMID:12427963). Found in many essential oils
Amentoflavone
Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
Baicalin
Baicalin is a flavone, a type of flavonoid. It is found in several species in the genus Scutellaria, including Scutellaria lateriflora (blue skullcap). There are 10 mg/g baicalin in Scutellaria galericulata (common skullcap) leaves. Baicalin is the glucuronide of baicalein. It is a component of Chinese medicinal herb Huang-chin (Scutellaria baicalensis) and one of the chemical ingredients of Sho-Saiko-To, an herbal supplement. Acquisition and generation of the data is financially supported in part by CREST/JST. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].
Noroxylin
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM. Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM.
Lampranthin II
Panasenoside, also known as lilyn, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Panasenoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Panasenoside can be found in tea, which makes panasenoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].
Tamarixetin
Tamarixetin is a monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. It has a role as a metabolite and an antioxidant. It is a 7-hydroxyflavonol, a monomethoxyflavone and a tetrahydroxyflavone. It is functionally related to a quercetin. Tamarixetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. See also: Trifolium pratense flower (part of). A monomethoxyflavone that is quercetin methylated at position O-4. Isolated from Cyperus teneriffae. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2]. Tamarixetin (4'-O-Methyl Quercetin) is a natural flavonoid derivative of quercetin, with anti-oxidative and anti-inflammatory effects. Tamarixetin protects against cardiac hypertrophy[1][2].
Forsythiaside
Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspense, has anti-inflammatory and antioxidant effects[1]. Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspense, has anti-inflammatory and antioxidant effects[1].
Isokadsuranin
D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Schisandrin B (γ-Schisandrin) is a biphenylcyclooctadiene derivative isolated from Schisandra chinensis and has been shown to have antioxidant effects on the liver and heart of rodents. Schisandrin B (γ-Schisandrin) is a biphenylcyclooctadiene derivative isolated from Schisandra chinensis and has been shown to have antioxidant effects on the liver and heart of rodents.
Hydroquinone
Hydroquinone, also benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component in most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. [HMDB]. Hydroquinone is found in many foods, some of which are kai-lan, agar, red bell pepper, and jostaberry. Hydroquinone, also known as benzene-1,4-diol, is an aromatic organic compound which is a type of phenol, having the chemical formula C6H4(OH)2. Its chemical structure has two hydroxyl groups bonded to a benzene ring in a para position. Hydroquinone is commonly used as a biomarker for benzene exposure. The presence of hydroquinone in normal individuals stems mainly from direct dietary ingestion, catabolism of tyrosine and other substrates by gut bacteria, ingestion of arbutin-containing foods, cigarette smoking, and the use of some over-the-counter medicines. Hydroquinone is a white granular solid at room temperature and pressure. The hydroxyl groups of hydroquinone are quite weakly acidic. Hydroquinone can lose an H+ from one of the hydroxyls to form a monophenolate ion or lose an H+ from both to form a diphenolate ion. Hydroquinone has a variety of uses principally associated with its action as a reducing agent which is soluble in water. It is a major component of most photographic developers where, with the compound Metol, it reduces silver halides to elemental silver. D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D - Dermatologicals
Chebulinic acid
Chebulinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=18942-26-2 (retrieved 2024-09-27) (CAS RN: 18942-26-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Dehydroabietic acid
Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].
Fraxin
Fraxin is a beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. It has a role as a plant metabolite, an anti-inflammatory agent and a hepatoprotective agent. It is a beta-D-glucoside, a hydroxycoumarin and an aromatic ether. It is functionally related to a fraxetin. Fraxin is a natural product found in Acer nikoense, Prunus prostrata, and other organisms with data available. A beta-D-glucoside that is fraxetin attached to a beta-D-glucopyranosyl group at position 8 via a glycosidic linkage. It is a natural product isolated from the leaves of Fraxinus excelsior and exhibits potent hepatoprotective effects in vitro and in vivo. Origin: Plant, Coumarins Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2]. Fraxin isolated from Cortex Fraxini, is a glucoside of fraxetin and reported to exert potent anti-oxidative stress action[1], anti-inflammatory and antimetastatic properties. Fraxin shows its antioxidative effect through inhibition of cyclo AMP phosphodiesterase enzyme[2].
(-)-Kaur-16-en-19-oic acid
(-)-kaur-16-en-19-oic acid, also known as ent-kaurenoic acid or ent-kaur-16-en-19-oate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D (-)-kaur-16-en-19-oic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). (-)-kaur-16-en-19-oic acid can be found in sugar apple and sunflower, which makes (-)-kaur-16-en-19-oic acid a potential biomarker for the consumption of these food products. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Patulin
Patulin is found in pomes. Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice Patulin is a mycotoxin produced by a variety of molds, particularly Aspergillus and Penicillium. It is commonly found in rotting apples, and the amount of patulin in apple products is generally viewed as a measure of the quality of the apples used in production. It is not a particularly potent toxin, but a number of studies have shown that it is genotoxic, which has led to some theories that it may be a carcinogen, though animal studies have remained inconclusive. Patulin is also an antibiotic. Several countries have instituted patulin restrictions in apple products. The World Health Organization recommends a maximum concentration of 50 µg/L in apple juice Mycotoxin, found as a contaminant of foods, e.g. apple juice. Sometimes detd. in apple juice D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
Piplartine
Piplartine is a member of cinnamamides and a dicarboximide. Piperlongumine is a natural product found in Zanthoxylum gilletii, Macropiper, and other organisms with data available. See also: Long Pepper (part of). Piplartine is found in herbs and spices. Piplartine is an alkaloid from the roots of Piper longum (long pepper Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3]. Piperlongumine is a alkaloid[1], possesses ant-inflammatory, antibacterial, antiangiogenic, antioxidant, antitumor, and antidiabetic activities[2]. Piperlongumine induces ROS, and induces apoptosis in cancer cell lines[1]. Piperlongumine shows anti-cardiac fibrosis activity, suppresses myofibroblast transformation via suppression of the ERK1/2 signaling pathway. Piperlongumin could be used in the study of migrasome[2][3].
Mangiferol
Mangiferol, also known as alpizarin or chinomin, is a member of the class of compounds known as xanthones. Xanthones are polycyclic aromatic compounds containing a xanthene moiety conjugated to a ketone group at carbon 9. Xanthene is a tricyclic compound made up of two benzene rings linearly fused to each other through a pyran ring. Mangiferol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Mangiferol can be found in mango, which makes mangiferol a potential biomarker for the consumption of this food product. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].
toxin HT 2
HT-2 toxin is a trichothecene mycotoxin that is T-2 toxin in which the acetyloxy group at position 4S has been hydrolysed to the corresponding hydroxy group. It is the major metabolite of T-2 toxin. It has a role as a fungal metabolite and an apoptosis inducer. It is a trichothecene, an organic heterotetracyclic compound and an acetate ester. HT-2 Toxin is a natural product found in Fusarium heterosporum, Fusarium sporotrichioides, and other organisms with data available. A trichothecene mycotoxin that is T-2 toxin in which the acetyloxy group at position 4S has been hydrolysed to the corresponding hydroxy group. It is the major metabolite of T-2 toxin. D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
α-Muricholic acid
alpha-Muricholic acid is a hydroxylated bile acid present in normal human urine (PMID: 1629271), and in free glycine-conjugated, taurine-conjugated, and sulfated forms in human feces (PMID: 3667743). Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). a-Muricholic acid is an hydroxylated bile acid present in normal human urine (PMID 1629271), and free, glycine-conjugated, taurine-conjugated and sulphated forms in human feces (PMID 3667743). α-Muricholic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2393-58-0 (retrieved 2024-06-29) (CAS RN: 2393-58-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
7,7',8,8'-Tetrahydrolycopene
7,7,8,8-Tetrahydrolycopene, also known as zeta-carotene, is a carotenoid found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). 7,7,8,8-Tetrahydrolycopene is found in root vegetables and is a constituent of carrot oil and many other natural products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Naphthalene-1,2-diol
This compound belongs to the family of Naphthols and Derivatives. These are hydroxylated naphthalenes.
2-Butenal
(e)-2-butenal, also known as (cis)-crotonaldehyde or (E)-crotonaldehyde (iupac), is a member of the class of compounds known as enals. Enals are an alpha,beta-unsaturated aldehyde of general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position (e)-2-butenal is soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (e)-2-butenal is a flower tasting compound found in fruits, garden tomato, and potato, which makes (e)-2-butenal a potential biomarker for the consumption of these food products (e)-2-butenal can be found primarily in feces and saliva. 2-Butenal (CAS: 4170-30-3), also known as crotonaldehyde, belongs to the class of organic compounds known as enals. These are alpha,beta-unsaturated aldehydes of the general formula RC=C-CH=O in which the aldehydic C=O function is conjugated to a C=C triple bond at the alpha,beta position. The (E)-form of 2-butenal predominates (>95\\%). 2-Butenal can undergo polycondensation with phenols to synthesize phenolic resins. It is an eye, skin, and mucous membrane irritant. (E)-2-Butenal is found in fruits and vegetables (e.g. tomato juice, strawberry aroma).
Proanthocyanidin A2
Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Acrolein
Acrolein (systematic name: propenal) is the simplest unsaturated aldehyde. It is a colourless liquid with a piercing, disagreeable, acrid smell. The smell of burnt fat (i.e. when cooking oil is heated to its smoke point) is caused by glycerol in the burning fat breaking down into acrolein. It is produced industrially from propylene and mainly used as a biocide and a building block to other chemical compounds, such as the amino acid methionine. Acrolein is used as an etherification agent in the preparation of modified food starches. Acrolein is an herbicide and algicide used in water treatment. It is produced by microorganisms, e.g. Clostridium perfringens. Acrolein is a relatively electrophilic compound and a reactive one, hence its high toxicity. It is a good Michael acceptor, hence its useful reaction with thiols. It forms acetals readily, a prominent one being the spirocycle derived from pentaerythritol, diallylidene pentaerythritol. Acrolein participates in many Diels-Alder reactions, even with itself. Via Diels-Alder reactions, it is a precursor to some commercial fragrances, including lyral, norbornene-2-carboxaldehyde, and myrac aldehyde. Acrolein is toxic and is a strong irritant for the skin, eyes, and nasal passages. The main metabolic pathway for acrolein is the alkylation of glutathione. The WHO suggests a tolerable oral acrolein intake of 7.5 µg/day per kilogram of body weight. Although acrolein occurs in French fries, the levels are only a few micrograms per kilogram. Acrolein has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Present in fruit aromas, black tea, carrot, cooked potato, cheeses, white wine, hydrolyzed soy protein, turkey, pork, beef fat and other foods. It is used as an etherification agent in the preparation of modified food starches. Herbicide and algicide used in water treatment. Production by microorganisms, e.g. Clostridium perfringens. 2-Propenal is found in many foods, some of which are napa cabbage, sacred lotus, devilfish, and garlic.
Thiocysteine
The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665) [HMDB] The reactive species in the phosphofructokinase modulation system could be considered thiocysteine (R-S-S-) or cystine trisulfide (R-S-S-S-R) produced from cystine in the presence of gamma-Cystathionase (CST, EC 4.4.1.1). The desulfuration reaction of cystine in vivo produces thiocysteine containing a bound sulfur atom. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Thiocysteine is the reactive (unstable) intermediate of thiocystine which functions as a persulfide in transferring its sulfane sulfur to thiophilic acceptors. Thiocystine conversion to unstable thiocysteine is accelerated by sulfhydryl compounds, or reagents that cleave sulfur-sulfur bonds to yield sulfhydryl groups. Thiocystine is proposed as the storage form of sulfane sulfur in biological systems. Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase in 3 steps: initial oxidation of cysteine to form cystine; desulfurization of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. (PMID: 2903161, 454618, 7287665).
1,2-Benzoquinone
1,2-Benzoquinone is a reactive electrophile that is an intermediate in benzene metabolism. It is substrate for the enzyme Catechol oxidase (EC 1.10.3.1) and can be generated from the oxidation of catechol. 1,2-Benzoquinone is capable of reacting with blood proteins to produce adducts. 1,2-Benzoquinone, also called ortho-benzoquinone or cyclohexa-3,5-diene-1,2-dione, is a ketone, with formula C6H4O2. It is one of the two isomers of quinone, the other being 1,4-benzoquinone. O-Quinone is found in tea.
Perillyl aldehyde
(s)-perillaldehyde, also known as P-mentha-1,8-dien-7-al, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (s)-perillaldehyde is considered to be an isoprenoid lipid molecule (s)-perillaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (s)-perillaldehyde is a cherry, fat, and fatty tasting compound found in herbs and spices, which makes (s)-perillaldehyde a potential biomarker for the consumption of this food product (s)-perillaldehyde can be found primarily in saliva. Perillaldehyde, or perilla aldehyde, is a natural organic compound found most abundantly in the perennial herb perilla, but also in a wide variety of other plants and essential oils. It is a monoterpenoid containing an aldehyde functional group.
Buthionine sulfoximine
Buthionine Sulfoximine is a synthetic amino acid. Buthionine sulfoximine irreversibly inhibits gamma-glutamylcysteine synthase, thereby depleting cells of glutathione, a metabolite that plays a critical role in protecting cells against oxidative stress, and resulting in free radical-induced apoptosis. Elevated glutathione levels are associated with tumor cell resistance to alkylating agents and platinum compounds. By depleting cells of glutathione, this agent may enhance the in vitro and in vivo cytotoxicities of various chemotherapeutic agents in drug-resistant tumors. Buthionine sulfoximine may also exhibit antiangiogenesis activity. (NCI04) D020011 - Protective Agents > D011837 - Radiation-Protective Agents D009676 - Noxae > D000963 - Antimetabolites D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Buthionine sulfoximine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5072-26-4 (retrieved 2024-09-04) (CAS RN: 5072-26-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
15-Keto-prostaglandin E2
15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 15-keto-PGE2 is one of the prostaglandin E2 metabolites. (PMID 7190512). It is a degradation product produced by 15-hydroxy prostaglandin dehydrogenase (PGDH or 15-PGDH)
3b,5a,6b-Cholestanetriol
3b,5a,6b-Cholestanetriol is a product of cholesterol oxidation found in human plasma. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
Selenocystine
Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541). Selenocystine is a substrate for glutathione peroxidase 1. [HMDB] D000890 - Anti-Infective Agents > D000998 - Antiviral Agents L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].
Lead
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Lead is a chemical element in the carbon group with symbol Pb and atomic number 82. Like the element mercury, another heavy metal, lead is a neurotoxin that accumulates both in soft tissues and the bones. Lead can be ingested through fruits and vegetables contaminated by high levels of lead in the soils they were grown in. Soil is contaminated through particulate accumulation from lead in pipes, lead paint and residual emissions from leaded gasoline that was used before the Environment Protection Agency issue the regulation around 1980. [Wikipedia]. Lead is found in many foods, some of which are blackcurrant, asparagus, endive, and flaxseed.
Sarmentosin
Sarmentosin is found in fruits. Sarmentosin is isolated from Ribes nigrum (blackcurrant
Coronopilin
Diffutin
A flavan glycoside that is (2S)-flavan substituted by a hydroxy group at position 7, methoxy groups at positions 3 and 4 and a beta-D-glucopyranosyloxy group at position 5 respectively.
Catalpol
Catalpol is an organic molecular entity. It has a role as a metabolite. Catalpol is a natural product found in Verbascum lychnitis, Plantago atrata, and other organisms with data available. See also: Rehmannia glutinosa Root (part of). Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3]. Catalpol (Catalpinoside), an iridoid glycoside found in Rehmannia glutinosa. Catalpol has neuroprotective, hypoglycemic, anti-inflammatory, anti-cancer, anti-spasmodic, anti-oxidant effects and anti-HBV effects[1][2][3].
Perlolyrine
Alkaloid from Korean ginseng and Japanese soy sauce. Perlolyrine is found in saffron, soy bean, and herbs and spices. Perlolyrine is found in herbs and spices. Perlolyrine is an alkaloid from Korean ginseng and Japanese soy sauc
quercetagetin
D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.
Oxyresveratrol
Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].
Rose oxide (cis)
Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].
Methyleugenol
Methyleugenol, also known as 4-allylveratrole or eugenol methyl, belongs to the class of organic compounds known as dimethoxybenzenes. These are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. FDA noted the action was despite its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use. Methyleugenol is a sweet, anise, and apricot tasting compound. Methyleugenol is found, on average, in the highest concentration within a few different foods, such as allspices, tarragons, and sweet bay and in a lower concentration in sweet basils, rosemaries, and hyssops. Methyleugenol has also been detected, but not quantified, in several different foods, such as soy beans, evergreen blackberries, muskmelons, citrus, and pomes. This could make methyleugenol a potential biomarker for the consumption of these foods. As of October 2018, the US FDA withdrew authorization for the use of methyl eugenol as a synthetic flavoring substance for use in food because petitioners provided data demonstrating that these additives induce cancer in laboratory animals. Methyleugenol is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Methyl eugenol (allylveratrol) is a natural chemical compound classified as a phenylpropene, a type of phenylpropanoid. It is the methyl ether of eugenol and is important to insect behavior and pollination. Their ability to attract insects, particularly Bactrocera fruit flies was first noticed in 1915 by F. M. Howlett. The compound may have evolved in response to pathogens, as methyl eugenol has some antifungal activity. Methyl eugenol is found in a number of plants (over 450 species from 80 families including both angiosperm and gymnosperm families) and has a role in attracting pollinators. About 350 plant species have them as a component of floral fragrance. Methyleugenol is a clear colorless to pale yellow liquid with a spicy earthy odor. Bitter burning taste. (NTP, 1992) O-methyleugenol is a phenylpropanoid. It is functionally related to a eugenol. Methyleugenol is a natural product found in Vitis rotundifolia, Elettaria cardamomum, and other organisms with data available. Methyleugenol is a yellowish, oily, naturally occurring liquid with a clove-like aroma and is present in many essential oils. Methyleugenol is used as a flavoring agent, as a fragrance and as an anesthetic in rodents. Methyleugenol is mutagenic in animals and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in animals. (NCI05) Methyleugenol is found in allspice. Methyleugenol is present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberryMethyleugenol has been shown to exhibit anti-nociceptive function (A7914).Methyleugenol belongs to the family of Anisoles. These are organic compounds contaiing a methoxybenzene or a derivative thereof. Present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberry. Methyleugenol is found in many foods, some of which are wild carrot, sweet basil, citrus, and fruits. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
Caffeic acid ester
Caffeic acid ester, also known as caffeic acid phenethyl ester or cape, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Caffeic acid ester is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Caffeic acid ester can be found in corn, flaxseed, oat, and peach, which makes caffeic acid ester a potential biomarker for the consumption of these food products. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor Caffeic acid phenethyl ester is a NF-κB inhibitor. Caffeic acid phenethyl ester is a NF-κB inhibitor.
wuweizisu C
schisandrin C is a natural product found in Schisandra sphenanthera and Schisandra chinensis with data available. Schisandrin C (Schizandrin-C) is a phytochemical lignan isolated from Schizandra chinensis[1]. Schisandrin C has diverse biological activities, including anticancer, anti-inflammatory?and antioxidant effects. Schisandrin C is a molecular glue. Schisandrin C can be used for cancer, alzheimer’s disease, and liver diseases?research[2][3]. Schisandrin C induces cell apoptosis[1]. Schisandrin C (Schizandrin-C) is a phytochemical lignan isolated from Schizandra chinensis[1]. Schisandrin C has diverse biological activities, including anticancer, anti-inflammatory?and antioxidant effects. Schisandrin C is a molecular glue. Schisandrin C can be used for cancer, alzheimer’s disease, and liver diseases?research[2][3]. Schisandrin C induces cell apoptosis[1].
2-Nitrofluorene
D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D009153 - Mutagens
Deltamethrin
Deltamethrin is a pyrethroid ester insecticide. Deltamethrin plays key role in controlling malaria vectors, and is used in the manufacture of long-lasting insecticidal mosquito nets. It is used as one of a battery of pyrethroid insecticides in control of malarial vectors, particularly Anopheles gambiae, and whilst being the most employed pyrethroid insecticide, can be used in conjunction with, or as an alternative to, permethrin, cypermethrin and other organophosphate-based insecticides, such as malathion and fenthion. Resistance to deltamethrin (and its counterparts) is now extremely widespread and threatens the success of worldwide vector control programmes. Deltamethrin products are among the most popular and widely used insecticides in the world[citation needed] and have become very popular with pest control operators and individuals in the United States. This material is a member of one of the safest classes of pesticides: synthetic pyrethroids. This pesticide is highly toxic to aquatic life, particularly fish, and therefore must be used with extreme caution around water. It is neurotoxic to humans and has been found in human breast milk. Since deltamethrin is a neurotoxin, it attacks the nervous system. Skin contact can lead to tingling or reddening of the skin local to the application. If taken in through the eyes or mouth, a common symptom is facial paraesthesia, which can feel like many different abnormal sensations, including burning, partial numbness, pins and needles, skin crawling, etc. There are no reports indicating that chronic intoxication from pyrethroid insecticides causes motor neuron damage or motor neuron disease. However, in 2011, a case report was published demonstrating pathologically proven motor neuron death in a Japanese woman after acute massive ingestion of pesticides containing pyrethroids and organochlorine. There are many uses for deltamethrin, ranging from agricultural uses to home pest control. Deltamethrin has been instrumental in preventing the spread of diseases carried by tick-infested prairie dogs, rodents and other burrowing animals[citation needed]. It is helpful in eliminating and preventing a wide variety of household pests, especially spiders, fleas, ticks, carpenter ants, carpenter bees, cockroaches and bedbugs. Deltamethrin is also one of the primary ingredients in ant chalk. P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07785
BROMOBENZENE
The simplest member of the class of bromobenzenes, that is benzene in which a single hydrogen has been substituted by a bromine. A liquid at room temperature (m.p. -30degreeC; b.p.760 156degreeC), it is used as a solvent, particularly for large-scale crystallisations, and for the introduction of phenyl groups in organic synthesis.
Ticrynafen
C - Cardiovascular system > C03 - Diuretics > C03C - High-ceiling diuretics > C03CC - Aryloxyacetic acid derivatives D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49184 - Loop Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C26170 - Protective Agent > C921 - Uricosuric Agent D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D02386
Bromisoval
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Same as: D01391
Mercury chloride
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants Same as: D01905
4-Hydroxyestradiol
4-Hydroxyestradiol is an oncogenic catechol estrogen produced by metabolism of Estrogen. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A human metabolite taken as a putative food compound of mammalian origin [HMDB]
(Chloromethyl)oxirane
(Chloromethyl)oxirane is used for cross-linking dextrose units in food starc It is used for cross-linking dextrose units in food starch.
2-Bromophenol
2-Bromophenol is found in crustaceans. 2-Bromophenol is a flavour component of marine fish, molluscs and crustaceans. Imparts and intense shrimp-like flavou
Pyrocatechol
Pyrocatechol, often known as catechol or benzene-1,2-diol, is a benzenediol, with formula C6H4(OH)2. It was first prepared in 1839 by H. Reinsch by distilling catechin (the juice of Mimosa catechu). This colourless compound occurs naturally, but about 20000 tons are manufactured each year, mainly as precursors to pesticides, flavors, and fragrances. Its sulfonic acid is often present in the urine of many mammals. Small amounts of catechol occur naturally in fruits and vegetables, along with the enzyme polyphenol oxidase. Upon mixing the enzyme with the substrate and exposure to oxygen (as when a potato or apple is cut), the colorless catechol oxidizes to reddish-brown benzoquinone derivatives. The enzyme is inactivated by adding an acid, such as lemon juice, or by refrigeration. Excluding oxygen also prevents the browning reaction. Catechol melts at 28 °C and boils at 250 °C. It is employed in medicine as an expectorant. The dimethyl ether or veratrol is also used in medicine. Many other pyrocatechin derivatives have been suggested for therapeutic application. Pyrocatechol has also been found to be a microbial metabolite in Escherichia, Mycobacterium and Pseudomonas (PMID:19300498; PMID:25281236). Constituent of variety foodstuffs especies coffee, cocoa, bread crust, roasted malt and beer; Isolated from various plant sources and by hydrolysis of tannins (CCD). 1,2-Benzenediol is found in many foods, some of which are chervil, black raspberry, swede, and wasabi. CONFIDENCE standard compound; INTERNAL_ID 120
Cystine
Flavouring ingredient. (±)-Cystine is found in many foods, some of which are green bell pepper, green zucchini, italian sweet red pepper, and red bell pepper.
Cnidin
Isoimperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as a metabolite and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. Isoimperatorin is a natural product found in Ferulago sylvatica, Prangos trifida, and other organisms with data available. Isoimperatorin is a tumor necrosis factor antagonist isolated from Glehniae root or from Poncirus trifoliate Raf (L579). Furocoumarins, are phototoxic and photocarcinogenic. They intercalate DNA and photochemically induce mutations. Furocoumarins are botanical phytoalexins found to varying extents in a variety of vegetables and fruits, notably citrus fruits. The levels of furocoumarins present in our diets, while normally well below that causing evident acute phototoxicity, do cause pharmacologically relevant drug interactions. Some are particularly active against cytochrome P450s. For example, in humans, bergamottin and dihydroxybergamottin are responsible for the grapefruit juice effect, in which these furanocoumarins affect the metabolism of certain drugs. See also: Angelica archangelica root (part of). A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 5. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.
Neochlorogenic_acid
Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate. Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
Lipoic_acid
Lipoic acid is a heterocyclic thia fatty acid comprising pentanoic acid with a 1,2-dithiolan-3-yl group at the 5-position. It has a role as a fundamental metabolite and a geroprotector. It is a member of dithiolanes, a heterocyclic fatty acid and a thia fatty acid. It is functionally related to an octanoic acid. It is a conjugate acid of a lipoate. lipoate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Thioctic acid is a natural product found in Arabidopsis thaliana, Trypanosoma brucei, and other organisms with data available. Alpha-Lipoic Acid is a naturally occurring micronutrient, synthesized in small amounts by plants and animals (including humans), with antioxidant and potential chemopreventive activities. Alpha-lipoic acid acts as a free radical scavenger and assists in repairing oxidative damage and regenerates endogenous antioxidants, including vitamins C and E and glutathione. This agent also promotes glutathione synthesis. In addition, alpha-lipoic acid exerts metal chelating capacities and functions as a cofactor in various mitochondrial enzyme complexes involved in the decarboxylation of alpha-keto acids. An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
Genkwanin
Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.
Isoorientin
Isoorientin is a flavone C-glycoside consisting of luteolin having a beta-D-glucosyl residue at the 6-position. It has a role as a radical scavenger and an antineoplastic agent. It is a tetrahydroxyflavone and a flavone C-glycoside. It is functionally related to a luteolin. It is a conjugate acid of an isoorientin(1-). Isoorientin is a natural product found in Carex fraseriana, Itea chinensis, and other organisms with data available. See also: Acai fruit pulp (part of). A C-glycosyl compound consisting of luteolin having a beta-D-glucosyl residue at the 6-position. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.
Vitexin
Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].
Sho-saiko-to
2-[3,5-Dihydroxy-2-[[2-hydroxy-9-(hydroxymethyl)-4,5,9,13,20,20-hexamethyl-24-oxahexacyclo[15.5.2.01,18.04,17.05,14.08,13]tetracos-15-en-10-yl]oxy]-6-methyloxan-4-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol is a natural product found in Clinopodium vulgare, Bupleurum angustissimum, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β. Saikosaponin D is a triterpene saponin isolated from Bupleurum, with anti-inflammatory, anti-bacterial, anti-tumor, and anti-allergic activities; Saikosaponin D inhibits selectin, STAT3 and NF-kB and activates estrogen receptor-β.
Equol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens 3-(4-Hydroxyphenyl)chroman-7-ol is a member of hydroxyisoflavans. (±)-Equol is the racemate of equol. (±)-equol exhibits EC50s of 200 and 74 nM for human ERα and ERβ, respectively. Equol is a metabolite of the soy isoflavones, daidzin and daidzein.
Visnagin
Visnagin is a furanochromone that is furo[3,2-g]chromen-5-one which is substituted at positions 4 and 7 by methoxy and methyl groups, respectively. Found in the toothpick-plant, Ammi visnaga. It has a role as a phytotoxin, an EC 1.1.1.37 (malate dehydrogenase) inhibitor, a vasodilator agent, an antihypertensive agent, an anti-inflammatory agent and a plant metabolite. It is a furanochromone, an aromatic ether and a polyketide. It is functionally related to a 5H-furo[3,2-g]chromen-5-one. Visnagin is a natural product found in Ammi visnaga, Musineon divaricatum, and Actaea dahurica with data available. A furanochromone that is furo[3,2-g]chromen-5-one which is substituted at positions 4 and 7 by methoxy and methyl groups, respectively. Found in the toothpick-plant, Ammi visnaga. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2]. Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Seselin
Seselin is a member of coumarins. It has a role as a metabolite. Seselin is a natural product found in Haplophyllum cappadocicum, Haplophyllum dshungaricum, and other organisms with data available. Constituent of Carum roxburghianum (Bishops weed). Seselin is found in many foods, some of which are sweet orange, herbs and spices, anise, and wild celery. Seselin is found in anise. Seselin is a constituent of Carum roxburghianum (Bishops weed) A natural product found in Citropsis articulata.
Aflatoxin G
Aflatoxin G is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticu D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins
Acetylcysteine
N-Acetyl-L-cysteine (NAC) or N-Acetylcysteine is the N-acetyl derivative of the amino acid L-cysteine and is a precursor in the formation of the antioxidant glutathione in the body. N-Acetylcysteine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyl-L-cysteine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyl-L-cysteine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-cysteine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\% of all human proteins and 68\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. . N-acetylated amino acids, such as N-acetylcysteine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free cysteine can also occur. The enzyme known as cysteine-S-conjugate N-acetyltransferase (EC 2.3.1.80) catalyzes the transfer of the acetyl group of acetyl CoA to the amino group of cysteine. This enzyme is an important participant in glutathione metabolism and the production of glutathione. The thiol (sulfhydryl) group in N-Acetylcysteine confers antioxidant effects and is able to reduce free radicals. N-Acetylcysteine is a pharmacological agent used in the management of paracetamol (acetaminophen) overdoses. When acetaminophen is taken in large quantities, a minor metabolite called N-acetyl-p-benzoquinone imine (NAPQI) accumulates within the body. NAPQI is normally conjugated by glutathione, but when taken in excess, the bodys glutathione reserves are not sufficient to deactivate the toxic NAPQI. In the treatment of acetaminophen overdose, N-acetylcysteine acts to maintain or replenish depleted glutathione reserves in the liver and enhance non-toxic metabolism of acetaminophen. These actions serve to protect liver cells from NAPQI toxicity. For this particular indication, N-acetylcysteine is available under the trade names Mucomyst (Bristol-Myers Squibb) and Parvolex (GSK). N-Acetylcysteine is also used as a mucolytic agent to reduce the viscosity of mucous secretions. It has also been shown to have antiviral effects in patients with HIV due to inhibition of viral stimulation by reactive oxygen intermediates. Acetylcysteine has been studied for a number of psychiatric disorders. There is tentative evidence for N-acetylcysteine being useful in the treatment of Alzheimers disease, autism, bipolar disorder, drug-induced neuropathy, major depressive disorder, obsessive-compulsive disord... R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers Effective inhibitor of enzymic browning in foods [DFC] D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7]. Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7].
Limonin
Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Vitexin
Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].
Isoorientin
Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.
Ligustilide
Constituent of Angelica subspecies Ligustilide is found in wild celery, lovage, and herbs and spices. Ligustilide is found in herbs and spices. Ligustilide is a constituent of Angelica specie
5-cis-Lycopene
5-cis-Lycopene is a carotenoid found in human fluids. Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents
8-iso-15-keto-PGE2
8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states (PMID: 14504139). Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, to induce uterine contractions and to activate platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1alpha and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID: 16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 8-iso-15-keto-PGE2 is an isoprostane. Isoprostanes are arachidonic acid metabolites produced by peroxidative attack of membrane lipids. These accumulate to substantial levels in many clinical conditions characterized in part by accumulation of free radicals and reactive oxygen species, including asthma, hypertension and ischemia reperfusion injury. For this reason, they are frequently used as markers of oxidative stress; however, many are now finding that these molecules are not inert, but in fact evoke powerful biological responses in an increasing array of cell types. In many cases, these biological effects can account in part for the various features and manifestations of those clinical conditions. Thus, it may be possible that the isoprostanes are playing somewhat of a causal role in those disease states. (PMID: 14504139)
cis-Caffeic acid
Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Astragaloside A
Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells. Astragaloside IV, an active component isolated from Astragalus membranaceus, suppresses the activation of ERK1/2 and JNK, and downregulates matrix metalloproteases (MMP)-2, (MMP)-9 in MDA-MB-231 breast cancer cells.
1,9-Heptadecadiene-4,6-diyne-3,8-diol, (3S,8S,9Z)-
(1R,4R,5S,9R,10S,13R)-5,9-Dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid
Kaurenoic acid, also known as kaur-16-en-18-oic acid or kaurenoate, is a member of the class of compounds known as kaurane diterpenoids. Kaurane diterpenoids are diterpene alkaloids with a structure that is based on the kaurane skeleton. Kaurane is a tetracyclic compound that arises by cyclisation of a pimarane precursor followed by rearrangement. It possesses a [3,2,1]-bicyclic ring system with C15-C16 bridge connected to C13, forming the five-membered ring D. Kaurenoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Kaurenoic acid can be found in sunflower, which makes kaurenoic acid a potential biomarker for the consumption of this food product. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Acetamiprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals Acetamiprid is a neonicotinoid insecticide used worldwide. Acetamiprid is a nicotinic acetylcholine receptor (nAChR) agonist, and is shown to be associated with neuromuscular and reproductive disorders[1][2].
Hexenal
Constituent of many foods. Flavouring ingredient. 2-Hexenal is found in many foods, some of which are black elderberry, ginkgo nuts, cucumber, and burdock. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
Thiacloprid
D010575 - Pesticides > D007306 - Insecticides > D000073943 - Neonicotinoids D016573 - Agrochemicals
beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)
Curzerenone C
Curzerenone c is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. Curzerenone c is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Curzerenone c can be found in turmeric, which makes curzerenone c a potential biomarker for the consumption of this food product. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Procyanidin A1
Procyanidin a1 is a member of the class of compounds known as biflavonoids and polyflavonoids. Biflavonoids and polyflavonoids are organic compounds containing at least two flavan/flavone units. These units are usually linked through CC or C-O-C bonds. Some examples include C2-O-C3, C2-O-C4, C3-C3, and C6-C8. Procyanidin a1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Procyanidin a1 can be found in bilberry, which makes procyanidin a1 a potential biomarker for the consumption of this food product. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1].
Paracetamol
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 243 D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
cis-Aconitic acid
(Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Resveratrol
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3241 C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].
Curdione
Curdione is a germacrane sesquiterpenoid. Germacr-1(10)-ene-5,8-dione is a natural product found in Curcuma aromatica, Curcuma wenyujin, and other organisms with data available. (3R,6E,10S)-6,10-Dimethyl-3-propan-2-ylcyclodec-6-ene-1,4-dione is a natural product found in Curcuma aromatica and Curcuma wenyujin with data available. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2]. Curdione, one of the major sesquiterpene compounds from Curcuma zedoaria, has been shown to exhibit multiple bioactive properties. IC50 value: 60–80 μM Target: In vitro: The study of the influence of curdione on the hemorheological changes in blood stasis model rats and thrombolysis in vitro showed that curdione only possessed thrombolytic effect in dose of 0.235 g·L-1 and 2.35 g·L-1, but has not the notable activity of thrombolysis [1]. The effects of curdione on human platelet aggregation induced by thrombin (0.3 U/ml) were tested in vitro. Curdione preferentially inhibited PAF- and thrombin- induced platelet aggregation in a concentration-dependent manner (IC50: 60–80 μM), whereas much higher concentrations of curdione were required to inhibit platelet aggregation induced by ADP and AA. Curdione also inhibited P-selectin expression in PAF-activated platelets. Moreover, curdione caused an increase in cAMP levels and attenuated intracellular Ca2+ mobilization in PAF-activated platelets. In vivo: Curdione showed significant antithrombotic activity [2].
Baicalein
Baicalein is a trihydroxyflavone with the hydroxy groups at positions C-5, -6 and -7. It has a role as an antioxidant, a hormone antagonist, a prostaglandin antagonist, an EC 1.13.11.31 (arachidonate 12-lipoxygenase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a radical scavenger, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an anti-inflammatory agent, a plant metabolite, a ferroptosis inhibitor, an anticoronaviral agent, an EC 3.4.22.69 (SARS coronavirus main proteinase) inhibitor, an angiogenesis inhibitor, an antineoplastic agent, an EC 4.1.1.17 (ornithine decarboxylase) inhibitor, an antibacterial agent, an antifungal agent, an apoptosis inducer and a geroprotector. It is a conjugate acid of a baicalein(1-). Baicalein is under investigation in clinical trial NCT03830684 (A Randomized, Double-blind, Placebo-controlled, Multicenter and Phase ⅡA Clinical Trial for the Effectiveness and Safety of Baicalein Tablets in the Treatment of Improve Other Aspects of Healthy Adult With Influenza Fever). Baicalein is a natural product found in Stachys annua, Stellera chamaejasme, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists A trihydroxyflavone with the hydroxy groups at positions C-5, -6 and -7. D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Baicalein, also known as 5,6,7-trihydroxyflavone or baicalein (old), is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, baicalein is considered to be a flavonoid lipid molecule. Baicalein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Baicalein can be found in welsh onion, which makes baicalein a potential biomarker for the consumption of this food product. Baicalein, along with its analogue baicalin, is a positive allosteric modulator of the benzodiazepine site and/or a non-benzodiazepine site of the GABAA receptor. It displays subtype selectivity for α2 and α3 subunit-containing GABAA receptors. In accordance, baicalein shows anxiolytic effects in mice without incidence of sedation or myorelaxation. It is thought that baicalein, along with other flavonoids, may underlie the anxiolytic effects of S. baicalensis and S. lateriflora. Baicalein is also an antagonist of the estrogen receptor, or an antiestrogen . Annotation level-1 Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM. Baicalein. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=491-67-8 (retrieved 2024-12-12) (CAS RN: 491-67-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Shogaol
[6]-Shogaol is a monomethoxybenzene, a member of phenols and an enone. Shogaol is a natural product found in Flueggea suffruticosa, Zingiber zerumbet, and other organisms with data available. See also: Ginger (part of). C1907 - Drug, Natural Product > C28269 - Phytochemical D009676 - Noxae > D009153 - Mutagens Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. Shogaol ([6]-Shogaol), an active compound isolated from Ginger (Zingiber officinale Rosc), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.
Farrerol
Farrerol is an organic molecular entity. It has a role as a metabolite. (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available. Farrerol is a natural product found in Daphne aurantiaca, Rhododendron farrerae, and Rhododendron dauricum with data available. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6]. Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].
Dehydroabietic acid
Dehydroabietic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted at position 18 by a carboxy group. It has a role as a metabolite and an allergen. It is an abietane diterpenoid, a monocarboxylic acid and a carbotricyclic compound. It is functionally related to an abietic acid. It is a conjugate acid of a dehydroabietate. Dehydroabietic acid is a natural product found in Nostoc, Relhania corymbosa, and other organisms with data available. Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. An abietane diterpenoid that is abieta-8,11,13-triene substituted at position 18 by a carboxy group. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].
Febrifugine
Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1]. Febrifugine is a quinazolinone alkaloid found in the roots and leaves of Dichroa febrifuga, with antimalarial activity [1].
Kaurenoic_acid
Ent-kaur-16-en-19-oic acid is an ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. It has a role as an anti-HIV-1 agent, an antineoplastic agent and a plant metabolite. It is a conjugate acid of an ent-kaur-16-en-19-oate. Kaurenoic acid is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. An ent-kaurane diterpenoid that is ent-kauran-19-oic acid in which a double bond is present at position 16(17); exhibits anticancer and anti-HIV 1 activity. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1]. Kaurenoic acid is a diterpene from Sphagneticola trilobata, inhibits Inflammatory Pain by the inhibition of cytokine production and activation of the NO–cyclic GMP–PKG–ATP-sensitive potassium channel signaling pathway[1].
Tangeritin
Tangeretin is a pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. It has a role as an antineoplastic agent and a plant metabolite. Tangeretin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica A pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.
AC1L9DW8
Wuweizisu C is a tannin. Schizandrin C is a natural product found in Kadsura heteroclita, Schisandra bicolor, and other organisms with data available. See also: Schisandra chinensis fruit (part of). Schisandrin C (Schizandrin-C) is a phytochemical lignan isolated from Schizandra chinensis[1]. Schisandrin C has diverse biological activities, including anticancer, anti-inflammatory?and antioxidant effects. Schisandrin C is a molecular glue. Schisandrin C can be used for cancer, alzheimer’s disease, and liver diseases?research[2][3]. Schisandrin C induces cell apoptosis[1]. Schisandrin C (Schizandrin-C) is a phytochemical lignan isolated from Schizandra chinensis[1]. Schisandrin C has diverse biological activities, including anticancer, anti-inflammatory?and antioxidant effects. Schisandrin C is a molecular glue. Schisandrin C can be used for cancer, alzheimer’s disease, and liver diseases?research[2][3]. Schisandrin C induces cell apoptosis[1].
Mangiferin
Mangiferin is a C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. It has a role as a hypoglycemic agent, an antioxidant, an anti-inflammatory agent and a plant metabolite. It is a C-glycosyl compound and a member of xanthones. It is functionally related to a xanthone. It is a conjugate acid of a mangiferin(1-). Mangiferin is a natural product found in Salacia chinensis, Smilax bracteata, and other organisms with data available. See also: Mangifera indica bark (part of). A C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. Origin: Plant Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].
Glucoraphanin
A thia-glucosinolic acid that is glucoerucin in which the sulfur atom of the methyl thioether group has been oxidised to the corresponding sulfoxide. Acquisition and generation of the data is financially supported by the Max-Planck-Society Glucoraphanin is under investigation in clinical trial NCT01879878 (Pilot Study Evaluating Broccoli Sprouts in Advanced Pancreatic Cancer [POUDER Trial]). Glucoraphanin is a natural product found in Arabidopsis thaliana, Brassica, and Raphanus sativus with data available. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects. Glucoraphanin, a natural glucosinolate found in cruciferous vegetable, is a stable precursor of the Nrf2 inducer sulforaphane, which possesses antioxidant, anti-inflammatory, and anti-carcinogenic effects.
Baicalin
Baicalin is the glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has a role as a non-steroidal anti-inflammatory drug, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, a prodrug, a plant metabolite, a ferroptosis inhibitor, a neuroprotective agent, an antineoplastic agent, a cardioprotective agent, an antiatherosclerotic agent, an antioxidant, an EC 2.7.7.48 (RNA-directed RNA polymerase) inhibitor, an anticoronaviral agent and an antibacterial agent. It is a glucosiduronic acid, a glycosyloxyflavone, a dihydroxyflavone and a monosaccharide derivative. It is functionally related to a baicalein. It is a conjugate acid of a baicalin(1-). Baicalin is a natural product found in Scutellaria amoena, Thalictrum baicalense, and other organisms with data available. See also: Scutellaria baicalensis Root (part of). The glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Sophoraflavonoloside
Kaempferol 3-O-beta-D-glucosyl-(1->2)-beta-D-glucoside is a sophoroside that is kaempferol attached to a beta-D-sophorosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a trihydroxyflavone and a sophoroside. Sophoraflavonoloside is a natural product found in Equisetum palustre, Vigna subterranea, and other organisms with data available. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].
Forsythoside
Forsythiaside is a hydroxycinnamic acid. Forsythiaside is a natural product found in Forsythia suspensa, Veronica stricta, and other organisms with data available. Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspense, has anti-inflammatory and antioxidant effects[1]. Forsythiaside A, a phenylethanoside product isolated from air-dried fruits of Forsythia suspense, has anti-inflammatory and antioxidant effects[1].
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Rhaponticin
Trans-rhaponticin is a rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. It has a role as an anti-inflammatory agent, a plant metabolite, a neuroprotective agent, an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a hypoglycemic agent, an anti-allergic agent and an antilipemic drug. Rhapontin is a natural product found in Rheum compactum, Rheum hotaoense, and other organisms with data available. A rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].
Oxyresveratrol
Oxyresveratrol is a stilbenoid. Oxyresveratrol is a natural product found in Spirotropis longifolia, Melaleuca leucadendra, and other organisms with data available. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].
Caffeic_acid_phenethyl_ester
Phenethyl caffeate is an alkyl caffeate ester in which 2-phenylethyl is the alkyl component. It has a role as an antineoplastic agent, an anti-inflammatory agent, an immunomodulator, a metabolite, an antioxidant, a neuroprotective agent, an antiviral agent and an antibacterial agent. Caffeic acid phenethyl ester is a natural product found in Baccharis sarothroides, Populus deltoides, and other organisms with data available. Caffeic Acid Phenethyl Ester is the phenethyl alcohol ester of caffeic acid and a bioactive component of honeybee hive propolis, with antineoplastic, cytoprotective and immunomodulating activities. Upon administration, caffeic acid phenethyl ester (CAPE) inhibits the activation of nuclear transcription factor NF-kappa B and may suppress p70S6K and Akt-driven signaling pathways. In addition, CAPE inhibits PDGF-induced proliferation of vascular smooth muscle cells through the activation of p38 mitogen-activated protein kinase (MAPK) and hypoxia-inducible factor (HIF)-1alpha and subsequent induction of heme oxygenase-1 (HO-1). An alkyl caffeate ester in which 2-phenylethyl is the alkyl component. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor Caffeic acid phenethyl ester is a NF-κB inhibitor. Caffeic acid phenethyl ester is a NF-κB inhibitor.
Asiatic Acid
Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].
Maslinic Acid
A pentacyclic triterpenoid that is 3alpha-hydroxy epimer of maslinic acid. Isolated from Prunella vulgaris and Isodon japonicus, it exhibits anti-inflammatory activity. Annotation level-1 Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation. Maslinic acid can inhibit the DNA-binding activity of NF-κB p65 and abolish the phosphorylation of IκB-α, which is required for p65 activation.
Acacetin
5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].
Astaxanthin
Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids C308 - Immunotherapeutic Agent > C210 - Immunoadjuvant C2140 - Adjuvant
Xanthohumol
C308 - Immunotherapeutic Agent > C63817 - Chemokine Receptor Antagonist > C107589 - CXCR4 Inhibitor Acquisition and generation of the data is financially supported by the Max-Planck-Society D006133 - Growth Substances > D043924 - Angiogenesis Modulating Agents D000970 - Antineoplastic Agents > D020533 - Angiogenesis Inhibitors D006133 - Growth Substances > D006131 - Growth Inhibitors C1892 - Chemopreventive Agent IPB_RECORD: 2221; CONFIDENCE confident structure IPB_RECORD: 4121; CONFIDENCE confident structure IPB_RECORD: 4101; CONFIDENCE confident structure Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV). Xanthohumol is one of the principal flavonoids isolated from hops, the inhibitor of diacylglycerol acetyltransferase (DGAT), COX-1 and COX-2, and shows anti-cancer and anti-angiogenic activities. Xanthohumol also has antiviral activity against bovine viral diarrhea virus (BVDV), rhinovirus, HSV-1, HSV-2 and cytomegalovirus (CMV).
Vitexin
Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].
olmelin
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.
ampelopsin
Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Liquiritigenin
Origin: Plant; Formula(Parent): C15H12O4; Bottle Name:Liquiritigenin; PRIME Parent Name:4,7-Dihydroxyflavanone; PRIME in-house No.:T0084, Pyrans Bottle Name:Liquiritigenin; Origin: Plant; Formula(Parent): C15H12O4; PRIME Parent Name:4,7-Dihydroxyflavanone; PRIME in-house No.:T0084, Pyrans Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.
Diosmetin
Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.
Biochanin B
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].
Lutexin
Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
Isoorientin
Isolated from wheat leaves (Triticum species). Isoorientin 6-diglucoside is found in wheat and cereals and cereal products. Isoorientin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin can be found in a number of food items such as oat, prairie turnip, common buckwheat, and common salsify, which makes isoorientin a potential biomarker for the consumption of these food products. Isoorientin (or homoorientin) is a flavone, a chemical flavonoid-like compound. It is the luteolin-6-C-glucoside. Bioassay-directed fractionation techniques led to isolation of isoorientin as the main hypoglycaemic component in Gentiana olivieri . Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). A flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.697 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.694 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.693 Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
6-Prenylnaringenin
6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. A trihydroxyflavanone having a structure of naringenin prenylated at C-6. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].
Quercetin
Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Tangeretin
Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.
Irigenin
Irigenin is a hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. It has a role as a plant metabolite. It is a hydroxyisoflavone and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. Irigenin is a natural product found in Iris milesii, Iris tectorum, and other organisms with data available. A hydroxyisoflavone that is isoflavone substituted by hydroxy groups at positions 5, 7 and 3 and methoxy groups at positions 6, 4 and 5 respectively. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1]. Irigenin is a is a lead compound, and mediates its anti-metastatic effect by specifically and selectively blocking α9β1 and α4β1 integrins binding sites on C-C loop of Extra Domain A (EDA). Irigenin shows anti-cancer properties. It sensitizes TRAIL-induced apoptosis via enhancing pro-apoptotic molecules in gastric cancer cells[1].
Thioctic acid
CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3996; ORIGINAL_PRECURSOR_SCAN_NO 3992 A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4005; ORIGINAL_PRECURSOR_SCAN_NO 4002 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3980; ORIGINAL_PRECURSOR_SCAN_NO 3976 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3993; ORIGINAL_PRECURSOR_SCAN_NO 3989 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4012; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 1015; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3990; ORIGINAL_PRECURSOR_SCAN_NO 3988 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.890 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.888 α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5]. α-Lipoic Acid (Thioctic acid) is an antioxidant, which is an essential cofactor of mitochondrial enzyme complexes. α-Lipoic Acid inhibits NF-κB-dependent HIV-1 LTR activation[1][2][3]. α-Lipoic Acid induces endoplasmic reticulum (ER) stress-mediated apoptosis in hepatoma cells[4]. α-Lipoic Acid can be used with CPUL1 (HY-151802) to construct the self-assembled nanoaggregate CPUL1-LA NA, which has improved antitumor efficacy than CPUL1[5].
Mesaconic acid
A dicarboxylic acid consisting of fumaric acid having a methyl substituent at the 2-position. D003879 - Dermatologic Agents
Gedunin
A natural product found in Azadirachta indica. Gedunin is a pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata. It has a role as an antimalarial, an antineoplastic agent, a Hsp90 inhibitor and a plant metabolite. It is a limonoid, an acetate ester, an epoxide, an enone, a member of furans, a pentacyclic triterpenoid, an organic heteropentacyclic compound and a lactone. Gedunin is a natural product found in Azadirachta indica, Cedrela odorata, and other organisms with data available. A pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata.
7,8-Dihydroxyflavone
7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1]. 7,8-Dihydroxyflavone is a potent and selective TrkB agonist that mimics the physiological actions of Brain-derived neurotrophic factor (BDNF). Displays therapeutic efficacy toward various neurological diseases[1].
citrol
C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1].
alpha-muricholic acid
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids [Analytical] Sample of 1 micorL methanol solution was flow injected.; [Mass_spectrometry] Sampling interval 1 Hz; In-suorce decay
zeta-Carotene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 5 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Capsanthin
Capsanthin is a carotenone. It has a role as a plant metabolite. Capsanthin is a natural product found in Capsicum annuum, Lilium lancifolium, and Gallus gallus with data available. See also: Red Pepper (part of). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Chlorogenic Acid
IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.
Ochratoxin A
A phenylalanine derivative resulting from the formal condensation of the amino group of L-phenylalanine with the carboxy group of (3R)-5-chloro-8-hydroxy-3-methyl-1-oxo-3,4-dihydro-1H-2-benzopyran-7-carboxylic acid (ochratoxin alpha). It is among the most widely occurring food-contaminating mycotoxins, produced by Aspergillus ochraceus, Aspergillus carbonarius and Penicillium verrucosum. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D009676 - Noxae > D011042 - Poisons > D009793 - Ochratoxins D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D000077264 - Calcium-Regulating Hormones and Agents D009676 - Noxae > D002273 - Carcinogens D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 5966 CONFIDENCE Reference Standard (Level 1)
Piperine
Constituent of pepper (Piper nigrum) (Piperaceae). Isopiperine is found in herbs and spices and pepper (spice). C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Origin: Plant; SubCategory_DNP: Alkaloids derived from lysine, Piperidine alkaloids D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors Annotation level-1 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; MXXWOMGUGJBKIW-YPCIICBESA-N_STSL_0203_Piperine_0031fmol_180831_S2_L02M02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.245 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.243 Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.
Ginsenoside Rg1
Isolated from ginseng. (20E)-Ginsenoside F4 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.
Obacunone
Obacunone is a limonoid. Obacunone is a natural product found in Limonia acidissima, Citrus latipes, and other organisms with data available. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1]. Obacunone, isolated from Citrus fruits, exhibits anti-tumor activity by the induction of apoptosis[1].
Cynaropicrin
Cynaropicrin is a sesquiterpene lactone. Cynaropicrin is a natural product found in Pleiotaxis rugosa, Pseudostifftia kingii, and other organisms with data available. See also: Cynara scolymus leaf (part of). D009676 - Noxae > D003603 - Cytotoxins Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling. Cynaropicrin is a sesquiterpene lactone which can inhibit tumor necrosis factor (TNF-α) release with IC50s of 8.24 and 3.18 μM for murine and human macrophage cells, respectively. Cynaropicrin also inhibits the increase of cartilage degradation factor (MMP13) and suppresses NF-κB signaling.
Amentoflavone
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].
Osthol
Osthole is a member of coumarins and a botanical anti-fungal agent. It has a role as a metabolite. Osthole is a natural product found in Murraya alata, Pentaceras australe, and other organisms with data available. See also: Angelica pubescens root (part of). A natural product found in Peucedanum ostruthium and Angelica pubescens. D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Origin: Plant, Coumarins Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
Hesperidin
Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). A disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
Costunolide
Costunolide is a germacranolide with anthelminthic, antiparasitic and antiviral activities. It has a role as an anthelminthic drug, an antiinfective agent, an antineoplastic agent, an antiparasitic agent, an antiviral drug and a metabolite. It is a germacranolide and a heterobicyclic compound. (+)-Costunolide is a natural product found in Magnolia garrettii, Critonia morifolia, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics A germacranolide with anthelminthic, antiparasitic and antiviral activities. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3]. Costunolide ((+)-Costunolide) is a naturally occurring sesquiterpene lactone, with antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Costunolide can induce cell cycle arrest and apoptosis on breast cancer cells[1][2][3].
Limonin
Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.
Sterigmatocystin
An organic heteropentacyclic compound whose skeleton comprises a xanthene ring system ortho-fused to a dihydrofuranofuran moiety. The parent of the class of sterigmatocystins. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
Quercetagetin
Quercetagetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. It has a role as an antioxidant, an antiviral agent and a plant metabolite. It is a member of flavonols and a hexahydroxyflavone. It is functionally related to a quercetin. Quercetagetin is a natural product found in Calanticaria bicolor, Tagetes subulata, and other organisms with data available. See also: Chaste tree fruit (part of). A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.
Lagosa
Silibinin B is a natural product found in Nymphaea alba, Aspergillus iizukae, and other organisms with data available. The major active component of silymarin flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum; it is used in the treatment of HEPATITIS; LIVER CIRRHOSIS; and CHEMICAL AND DRUG INDUCED LIVER INJURY, and has antineoplastic activity; silybins A and B are diastereomers. See also: Milk Thistle (part of).
Milk Thistle Extract
A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy D020011 - Protective Agents > D000975 - Antioxidants (±)-Silybin is the racemate of Silybin (HY-N0779A). Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin is a flavonolignan isolated from milk thistle (Silybum marianum) seeds. Silybin induces apoptosis and exhibits hepatoprotective, antioxidant, anti-inflammatory, anti-cancer activity[1][2]. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration. Silybin A (Silibinin A), an effective anti-cancer and chemopreventive agent, has been shown to exert multiple effects on cancer cells, including inhibition of both cell proliferation and migration.
7-Hydroxy-2-phenyl-4H-1-benzopyran-4-one
7-hydroxyflavone is a hydroxyflavonoid in which the flavone nucleus is substituted at position 7 by a hydroxy group. 7-Hydroxyflavone is a natural product found in Lawsonia inermis, Berberis dictyota, and other organisms with data available. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone is a flavonoid isolated from Clerodendrum phlomidis, with anti-inflammatory activity. 7-Hydroxyflavone protects renal cells from nicotine (NIC)-associated cytotoxicity via the ERK/Nrf2/HO-1 pathway[1][2]. 7-Hydroxyflavone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6665-86-7 (retrieved 2024-10-18) (CAS RN: 6665-86-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Berberine
Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2521; CONFIDENCE confident structure IPB_RECORD: 821; CONFIDENCE confident structure
sanguinarine
Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids D020011 - Protective Agents > D002316 - Cardiotonic Agents D000890 - Anti-Infective Agents D002317 - Cardiovascular Agents Annotation level-1 IPB_RECORD: 1581; CONFIDENCE confident structure
Scopoletin
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
Resveratrol
Resveratrol, also known as 3,4,5-trihydroxystilbene or trans-resveratrol, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Thus, resveratrol is considered to be an aromatic polyketide lipid molecule. Resveratrol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Resveratrol is a bitter tasting compound and can be found in a number of food items such as broccoli, yellow wax bean, bilberry, and turnip, which makes resveratrol a potential biomarker for the consumption of these food products. Resveratrol can be found primarily in urine, as well as throughout most human tissues. Resveratrol exists in all eukaryotes, ranging from yeast to humans. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or, when the plant is under attack by pathogens such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries . Resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [PMID: 9705914] (DrugBank). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.730 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.733 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2101; CONFIDENCE confident structure IPB_RECORD: 2901; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].
Biochanin A
Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.140 D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.141 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.139 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.137 IPB_RECORD: 2161; CONFIDENCE confident structure Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively. Biochanin A is a naturally occurring fatty acid amide hydrolase (FAAH) inhibitor, which inhibits FAAH with IC50s of 1.8, 1.4 and 2.4 μM for mouse, rat, and human FAAH, respectively.
Caffeate
D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Cystine
A sulfur-containing amino acid obtained by the oxidation of two cysteine molecules which are then linked via a disulfide bond. Acquisition and generation of the data is financially supported by the Max-Planck-Society
2,5-Dihydroxybenzoic acid
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00007.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00006.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00002.jpg 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Caffeic Acid
A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Acetaminophen
N - Nervous system > N02 - Analgesics > N02B - Other analgesics and antipyretics > N02BE - Anilides C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D058633 - Antipyretics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2697; ORIGINAL_PRECURSOR_SCAN_NO 2695 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2693; ORIGINAL_PRECURSOR_SCAN_NO 2690 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2673; ORIGINAL_PRECURSOR_SCAN_NO 2671 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2686; ORIGINAL_PRECURSOR_SCAN_NO 2684 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2692; ORIGINAL_PRECURSOR_SCAN_NO 2689 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4204; ORIGINAL_PRECURSOR_SCAN_NO 4203 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4211; ORIGINAL_PRECURSOR_SCAN_NO 4209 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4223; ORIGINAL_PRECURSOR_SCAN_NO 4221 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4232; ORIGINAL_PRECURSOR_SCAN_NO 4231 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4241; ORIGINAL_PRECURSOR_SCAN_NO 4238 CONFIDENCE standard compound; INTERNAL_ID 820; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4234; ORIGINAL_PRECURSOR_SCAN_NO 4232 CONFIDENCE standard compound; INTERNAL_ID 2767 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RZVAJINKPMORJF-UHFFFAOYSA-N_STSL_0199_Acetaminophen_0125fmol_180831_S2_L02M02_53; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 8667 CONFIDENCE standard compound; INTERNAL_ID 8050 CONFIDENCE standard compound; INTERNAL_ID 4091 INTERNAL_ID 4091; CONFIDENCE standard compound
Gingerol
Gingerol is a beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. It has a role as an antineoplastic agent and a plant metabolite. It is a beta-hydroxy ketone and a member of guaiacols. Gingerol is a natural product found in Illicium verum, Piper nigrum, and other organisms with data available. See also: Ginger (part of). A beta-hydroxy ketone that is 5-hydroxydecan-3-one substituted by a 4-hydroxy-3-methoxyphenyl moiety at position 1; believed to inhibit adipogenesis. It is a constituent of fresh ginger. Annotation level-1 [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation. [6]-Gingerol is an active compound isolated from Ginger (Zingiber officinale), exhibits a variety of biological activities including anticancer, anti-inflammation, and anti-oxidation.
Saikosaponin A
Annotation level-1 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents D018501 - Antirheumatic Agents Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1]. Saikosaponin A is an active component of Bupleurum chinensis, up-regulates LXRα expression, with potent anti-inflammatory activity[1].
Puerarin
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist. Puerarin, an isoflavone extracted from Radix puerariae, is a 5-HT2C receptor antagonist.
syringin
Syringin, also known as eleutheroside b or beta-terpineol, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Syringin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Syringin can be found in caraway, fennel, and lemon, which makes syringin a potential biomarker for the consumption of these food products. Syringin is a natural chemical compound first isolated from the bark of lilac (Syringa vulgaris) by Meillet in 1841. It has since been found to be distributed widely throughout many types of plants. It is also called eleutheroside B, and is found in Eleutherococcus senticosus (Siberian ginseng). It is also found in dandelion coffee . Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].
Formononetin
Annotation level-1 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1]. Formononetin is a potent FGFR2 inhibitor with an IC50 of ~4.31 μM. Formononetin potently inhibits angiogenesis and tumor growth[1].
Hesperetin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.958 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.957 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.955 (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.
Rosin
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.569 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.570 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.573 Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2]. Abietic acid, a diterpene isolated from Colophony, possesses antiproliferative, antibacterial, and anti-obesity properties. Abietic acid inhibits lipoxygenase activity for allergy treatment[1][2].
Esculetin
D020011 - Protective Agents > D000975 - Antioxidants relative retention time with respect to 9-anthracene Carboxylic Acid is 0.434 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.428 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.430 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].
Verbenone
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.872 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.873 Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].
triptolide
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.848 D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000988 - Antispermatogenic Agents D009676 - Noxae > D000477 - Alkylating Agents D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.842 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.835 Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6]. Triptolide is a diterpenoid triepoxide extracted from the root of Tripterygium wilfordii with immunosuppressive, anti-inflammatory, antiproliferative and antitumour effects. Triptolide is a NF-κB activation inhibitor[1][2][3][4][5][6].
edaravone
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers C26170 - Protective Agent > C1509 - Neuroprotective Agent D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank N - Nervous system Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
mefenamic acid
M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors
Orientin
Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].
Aflatoxin B1
An aflatoxin having a tetrahydrocyclopenta[c]furo[3,2:4,5]furo[2,3-h]chromene skeleton with oxygen functionality at positions 1, 4 and 11. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000348 - Aflatoxins CONFIDENCE standard compound; INTERNAL_ID 5962 CONFIDENCE Reference Standard (Level 1) Aflatoxin B1 (AFB1) is a Class 1A carcinogen, which is a secondary metabolite of Aspergillus flavus and A. parasiticus. Aflatoxin B1 (AFB1) mainly induces the transversion of G-->T in the third position of codon 249 of the p53 tumor suppressor gene, resulting in mutation[1][2].
Selenomethionine
A selenoamino acid that is the selenium analogue of methionine. C26170 - Protective Agent > C275 - Antioxidant Selenomethionine, also known as (2s)-2-amino-4-(methylseleno)butanoate or 2-amino-4-(methylselenyl)butyric acid, is a member of the class of compounds known as alpha amino acids. Alpha amino acids are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Selenomethionine is soluble (in water) and a moderately acidic compound (based on its pKa). Selenomethionine can be found in a number of food items such as shiitake, canada blueberry, sesbania flower, and spearmint, which makes selenomethionine a potential biomarker for the consumption of these food products. Selenomethionine can be found primarily in blood and urine, as well as throughout most human tissues. Selenomethionine exists in all eukaryotes, ranging from yeast to humans. In humans, selenomethionine is involved in the selenoamino acid metabolism. Moreover, selenomethionine is found to be associated with prostate cancer. Selenomethionine is a naturally occurring amino acid. The L-selenomethionine enantiomer is the main form of selenium found in Brazil nuts, cereal grains, soybeans, and grassland legumes, while Se-methylselenocysteine, or its γ-glutamyl derivative, is the major form of selenium found in Astragalus, Allium, and Brassica species. In vivo, selenomethionine is randomly incorporated instead of methionine. Selenomethionine is readily oxidized . L-SelenoMethionine, an L-isomer of Selenomethionine, is a major natural food-form of selenium. L-SelenoMethionin is a cancer chemopreventive agent that can reduce cancer incidence by dietary supplementation and induce apoptosis of cancer cells. L-SelenoMethionine also can increase expression of glutathione peroxidase[1][2][3]. Selenomethionine is a naturally occurring amino acid containing selenium and is a common natural food source.
Hydroquinone sulfate
A benzenediol comprising benzene core carrying two hydroxy substituents para to each other. Hydroquinone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=123-31-9 (retrieved 2024-07-16) (CAS RN: 123-31-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Reduced glutathione
A tripeptide compound consisting of glutamic acid attached via its side chain to the N-terminus of cysteinylglycine. L-Glutathione reduced (GSH; γ-L-Glutamyl-L-cysteinyl-glycine) is an endogenous antioxidant and is capable of scavenging oxygen-derived free radicals.
ferulate
Ferulic acid, also known as 4-hydroxy-3-methoxycinnamic acid or 3-methoxy-4-hydroxy-trans-cinnamic acid, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Ferulic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Ferulic acid can be found in a number of food items such as flaxseed, pepper (c. chinense), chinese cinnamon, and wakame, which makes ferulic acid a potential biomarker for the consumption of these food products. Ferulic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and stratum corneum tissues. Ferulic acid exists in all eukaryotes, ranging from yeast to humans. Ferulic acid is a hydroxycinnamic acid, a type of organic compound. It is an abundant phenolic phytochemical found in plant cell walls, covalently bonded as side chains to molecules such as arabinoxylans. As a component of lignin, ferulic acid is a precursor in the manufacture of other aromatic compounds. The name is derived from the genus Ferula, referring to the giant fennel (Ferula communis) . D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Isovitexin
Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.
Zearalenone
A macrolide comprising a fourteen-membered lactone fused to 1,3-dihydroxybenzene; a potent estrogenic metabolite produced by some Giberella species. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE standard compound; INTERNAL_ID 5970 Origin: Microbe; Formula(Parent): C18H22O5; Bottle Name:zearalenone; PRIME Parent Name:Zearalenone; PRIME in-house No.:V0033 CONFIDENCE Reference Standard (Level 1) Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2]. Zearalenone is a mycotoxin produced mainly by fungi belonging to the genus Fusarium in foods and feeds. Possess oestrogenic activity in pigs, cattle and sheep, with low acute toxicity. Causes precocious development of mammae and other estrogenic effects in young gilts[1][2].
Daphnetin
7,8-dihydroxy-2h-chromen-2-one, also known as daphnetin or 7,8-dihydroxycoumarin, is a member of the class of compounds known as 7,8-dihydroxycoumarins. 7,8-dihydroxycoumarins are coumarins bearing two hydroxyl groups at the C7- and C8-positions of the coumarin skeleton, respectively. 7,8-dihydroxy-2h-chromen-2-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 7,8-dihydroxy-2h-chromen-2-one can be found in chickpea and watermelon, which makes 7,8-dihydroxy-2h-chromen-2-one a potential biomarker for the consumption of these food products. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 15 INTERNAL_ID 15; CONFIDENCE Reference Standard (Level 1) Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].
cis-Aconitic acid
The cis-isomer of aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid. (Z)-Aconitic acid (cis-Aconitic acid) is the cis-isomer of Aconitic acid. (Z)-Aconitic acid (cis-Aconitic acid) is an intermediate in the tricarboxylic acid cycle produced by the dehydration of citric acid.
Itaconic acid
A dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].
Neohesperidin
Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. A flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.
Acetylcysteine
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes An N-acetyl-L-amino acid that is the N-acetylated derivative of the natural amino acid L-cysteine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D005100 - Expectorants D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7]. Acetylcysteine (N-Acetylcysteine) is a mucolytic agent which reduces the thickness of the mucus. Acetylcysteine is a ROS inhibitor[1]. Acetylcysteine is a cysteine precursor, prevents hemin-induced ferroptosis by neutralizing toxic lipids generated by arachidonate-dependent activity of 5-lipoxygenases[5]. Acetylcysteine induces cell apoptosis[2][3]. Acetylcysteine also has anti-influenza virus activities[7].
Calycosin
Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.
Betulin
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Cafestol
Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol. Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available. An organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1]. Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
4β,15-Diacetoxy-8α-(3-methylbutyryloxy)-12,13-epoxytrichothec-9-en-3α-ol
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins T-2 Toxin (T-2 Mycotoxin) is a toxic trichothecene mycotoxin produced by various Fusarium species in feedstuffs and cereal grains, LD50 values of T-2 Toxin in mice and rats are 5.2 and 1.5 mg/kg BWa,respectively [1]. T-2 Toxin (T-2 Mycotoxin) can be transformed into a variety of metabolite, the typical metabolites of T-2 toxin in animals are HT-2 toxin and T-2-triol, which are hydrolysates[1]. T-2 Toxin (T-2 Mycotoxin) is an inhibitor of protein synthesis resulting from binding peptidyltransferase, which is an integral part of the 60s ribosomal subunit. T-2 Toxin (T-2 Mycotoxin) inhibits the synthesis of DNA and RNA, interferes with the metabolism of membrane phospholipids, and increases the level of liver lipid peroxides[1]. T-2 Toxin (T-2 Mycotoxin) induces apoptosis in the immune system, gastrointestinal tissues, and fetal tissues[2]. T 2 Toxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=21259-20-1 (retrieved 2024-09-06) (CAS RN: 21259-20-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Cysteine
A sulfur-containing amino acid that is propanoic acid with an amino group at position 2 and a sulfanyl group at position 3. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 18 L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1]. L-Cysteine is a conditionally essential amino acid, which acts as a precursor for biologically active molecules such as hydrogen sulphide (H2S), glutathione and taurine. L-Cysteine suppresses ghrelin and reduces appetite in rodents and humans[1].
Fucoxanthin
Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. An epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.
Pentazocine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AD - Benzomorphan derivatives D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics
Crocin
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1]. Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1].
Methysticin
Methysticin is a member of 2-pyranones and an aromatic ether. Methysticin is a natural product found in Piper methysticum and Piper majusculum with data available. See also: Piper methysticum root (part of). Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1]. Methylsticin is a kavalactone isolated from the Piper methysticum . Methylsticin exhibit osteoclast formation inhibitory activity[1].
Carnosic acid
D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents
Visnagin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2]. Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Isoimperatorin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Origin: Plant, Coumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.
falcarindiol
(+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. (+)-(3R,8S)-Falcarindiol is a polyacetylene found in carrots, has antimycobacterial activity, with an IC50 of 6 μM and MIC of 24 μM against Mycobacterium tuberculosis H37Ra[1][2]. Antineoplastic and anti-inflammatory activity[2]. (+)-(3R,8S)-Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Falcarindiol, an orally active polyacetylenic oxylipin, activates PPARγ and increases the expression of the cholesterol transporter ABCA1 in cells. Falcarindiol induces apoptosis and autophagy. Falcarindiol has anti-inflammatory, antifungal, anticancer and antidiabetic properties[1][2]. Falcarindiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
patulin
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE standard compound; INTERNAL_ID 5971 D009676 - Noxae > D009153 - Mutagens CONFIDENCE Reference Standard (Level 1) Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
Ligustilide
HT-2 Toxin
D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins CONFIDENCE Reference Standard (Level 1)
Tienilic acid
C - Cardiovascular system > C03 - Diuretics > C03C - High-ceiling diuretics > C03CC - Aryloxyacetic acid derivatives D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49184 - Loop Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C26170 - Protective Agent > C921 - Uricosuric Agent D045283 - Natriuretic Agents > D004232 - Diuretics
Crocetin
Crocetin is a 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. It has a role as a nutraceutical, a metabolite and an antioxidant. It is a carotenoic acid, a diterpenoid and a polyunsaturated dicarboxylic acid. It is a conjugate acid of a crocetin(2-). Vitamin A-analog that increases diffusivity of oxygen in aqueous solutions, including plasma. Crocetin is a natural product found in Verbascum lychnitis, Gardenia jasminoides, and other organisms with data available. A 20-carbon dicarboxylic acid which is a diterpenoid and natural carotenoid. Found in the crocus flower, it has been administered as an anti-fatigue dietary supplement. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crocetin is a natural carotenoid dicarboxylic acid that is found in the crocus flower and Gardenia jasminoides (fruits).
Lycopene
Lycopene, also known as all-trans-lycopene or e160d, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Thus, lycopene is considered to be an isoprenoid lipid molecule. Lycopene can be found in a number of food items such as american butterfish, babassu palm, scup, and condensed milk, which makes lycopene a potential biomarker for the consumption of these food products. Lycopene can be found primarily in blood and breast milk, as well as throughout most human tissues. Moreover, lycopene is found to be associated with endometrial cancer. In plants, algae, and other photosynthetic organisms, lycopene is an intermediate in the biosynthesis of many carotenoids, including beta-carotene, which is responsible for yellow, orange, or red pigmentation, photosynthesis, and photoprotection. Like all carotenoids, lycopene is a tetraterpene. It is insoluble in water. Eleven conjugated double bonds give lycopene its deep red color. Owing to the strong color, lycopene is a useful as a food coloring (registered as E160d) and is approved for use in the USA, Australia and New Zealand (registered as 160d) and the European Union . D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D011837 - Radiation-Protective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
kukoline
Origin: Plant; Formula(Parent): C19H23NO4; Bottle Name:Sinomenine; PRIME Parent Name:Sinomenine; PRIME in-house No.:V0298; SubCategory_DNP: Isoquinoline alkaloids, Morphine alkaloids D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C308 - Immunotherapeutic Agent > C2139 - Immunostimulant D018501 - Antirheumatic Agents Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2]. Sinomenine, an alkaloid extracted from?Sinomenium acutum, is a blocker of the NF-κB activation[1]. Sinomenine also is an activator of μ-opioid receptor[2].
Piperin
C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell. Piperine, a natural alkaloid isolated from Piper nigrum L, inhibits P-glycoprotein and CYP3A4 activities with an IC50 value of 61.94±0.054 μg/mL in HeLa cell.
Rhapontin
Rhapontin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Rhapontin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhapontin can be found in garden rhubarb, which makes rhapontin a potential biomarker for the consumption of this food product. Rhapontin has beneficial effects on diabetic mice, and in vitro results suggest it may be relevant to Alzheimers disease with an action on beta amyloid . Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1]. Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].
Zerumbone
Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].
Falcarinol
Panaxynol is a long-chain fatty alcohol. It has a role as a metabolite. Falcarinol is a natural product found in Chaerophyllum aureum, Cussonia arborea, and other organisms with data available. A natural product found in Panax ginseng and Angelica japonica.
ST 18:3;O3
A 4-hydroxy steroid that consists of 17beta-estradiol having an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen
ST 24:1;O5
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids β-Muricholic acid is a potent and orally active biliary cholesterol-desaturating agent. β-Muricholic acid prevents cholesterol gallstones. β-Muricholic acid inhibits lipid accumulation. β-Muricholic acid has the potential for the research of nonalcoholic fatty liver disease (NAFLD)[1][2].
naphthalene
An aromatic hydrocarbon comprising two fused benzene rings. It occurs in the essential oils of numerous plant species e.g. magnolia.
Mercury chloride
D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AK - Mercurial products D000890 - Anti-Infective Agents D004202 - Disinfectants
Scopoletol
Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).
Quertin
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Piral
D020011 - Protective Agents > D000975 - Antioxidants Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions. Pyrogallol is a polyphenol compound, which has anti-fungal and anti-psoriatic properties. Pyrogallol is a reductant that is able to generate free radicals, in particular superoxide anions.
93-15-2
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
AI3-63211
D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
AIDS-224739
Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.
Antioxine
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
Caryophyllin
Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
Ostol
D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D007155 - Immunologic Factors Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells. Osthole (Osthol) is a natural antihistamine alternative. Osthole may be a potential inhibitor of histamine H1 receptor activity. Osthole also suppresses the secretion of HBV in cells.
Safranal
Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1]. Safranal is an orally active main component of Saffron (Crocus sativus) and is responsible for the unique aroma of this spice. Safranal has neuroprotective and anti-inflammatory effects and has the potential for Parkinson’s disease research[1].
Curzerenone
Curzerenone is a monoterpenoid. 4(5H)-Benzofuranone, 6-ethenyl-6,7-dihydro-3,6-dimethyl-5-(1-methylethenyl)-, trans- is a natural product found in Prumnopitys andina, Curcuma aeruginosa, and other organisms with data available. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1]. Curzerenone is one of constituents of leaf essential oil extracted from L. pulcherrima. Shows slight inhibitory effective against E. coli[1].
Cinnamal
D020011 - Protective Agents > D016587 - Antimutagenic Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D000970 - Antineoplastic Agents trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2]. trans-Cinnamaldehyde can be used to prepare highly polyfunctionalized furan ring by reaction of alkyl isocyanides with dialkyl acetylenedicarboxylate[1]. trans-Cinnamaldehyde can be used to synthesize trans-cinnamaldehyde -β-cyclodextrin complex, an antimicrobial edible coating that increases the shelf life of fresh-cut fruits[2].
LS-2530
2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].
Liquiritigenin
Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc. Liquiritigenin, a flavanone isolated from Glycyrrhiza uralensis, is a highly selective estrogen receptor β (ERβ) agonist with an EC50 of 36.5 nM for activation of the ERE tk-Luc.
Ammidin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.
482-45-1
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM. Isoimperatorin is a methanolic extract of the roots of Angelica dahurica shows significant inhibitory effects on acetylcholinesterase (AChE) with the IC50 of 74.6 μM.
Heriguard
Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.
Perlolyrine
Senkyunolide A
Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2]. Senkyunolide A, isolated from Ligusticum chuanxiong Hort, has cytoprotective and antiproliferative activities. Anti-tumor activity[1][2].
8-methoxy-6-nitronaphtho[2,1-g][1,3]benzodioxole-5-carboxylic acid
D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Skimmetin
COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.
Hexenal
Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
Biacalein
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D011448 - Prostaglandin Antagonists D020011 - Protective Agents > D000975 - Antioxidants COVID info from PDB, Protein Data Bank D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM. Baicalein (5,6,7-Trihydroxyflavone) is a xanthine oxidase inhibitor with an IC50 value of 3.12 μM.
90-18-6
D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.
30373-88-7
Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1]. Kaempferol 3-O-sophoroside, a derivative of Kaempferol, is isolated from the leaves of cultivated mountain ginseng (Panax ginseng) with anti-inflammatory effects[1].
GENOP
D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Prangenidin
Alloimperatorin is a member of psoralens. Alloimperatorin is a natural product found in Campylotropis hirtella, Saposhnikovia divaricata, and other organisms with data available. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2]. Alloimperatorin (Prangenidin), a coumarin compound, is extracted from Angelica dahurica. Alloimperatorin (Prangenidin) has antitumor activity[1][2].
XS-89
D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3]. Strophanthidin is a naturally available cardiac glycoside[1]. Strophanthidin 0.1 and 1 nmol/L increases and 1~100 μmol/L inhibits the Na+/K+-ATPase activities, but Strophanthidin 10 and 100 nmol/L does not affect Na+/K+-ATPase activities in cardiac sarcolemmal[2]. Strophanthidin increases both diastolic and systolic intracellular Ca2+ concentration[3].
Urogran
Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2]. Benzyl isothiocyanate is a member of natural isothiocyanates with antimicrobial activity[1][2]. Benzyl isothiocyanate potent inhibits cell mobility, migration and invasion nature and matrix metalloproteinase-2 (MMP-2) activity of murine melanoma cells[2].
Escosyl
Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].
Chinoinin
Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].
likviritin
Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Daphnetol
7,8-dihydroxycoumarin is a hydroxycoumarin. Daphnetin is a natural product found in Euphorbia dracunculoides, Rhododendron lepidotum, and other organisms with data available. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4]. Daphnetin (7,8-dihydroxycoumarin), one coumarin derivative can be found in plants of the Genus Daphne, is a potent, oral active protein kinase inhibitor, with IC50s of 7.67 μM, 9.33 μM and 25.01 μM for EGFR, PKA and PKC in vitro, respectively. Daphnetin triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Daphnetin has anti-inflammation activitity and inhibits TNF-α, IL-1?, ROS, and MDA production. Daphnetin has schizontocidal activity against malaria parasites. Daphnetin can be used for rheumatoid arthritis , cancer and anti-malarian research[1][2][3][4].
Teavigo
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants D000970 - Antineoplastic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4]. (-)-Epigallocatechin Gallate (EGCG) is a major polyphenol in green tea, which can inhibit cell proliferation and induce cell apoptosis. (-)-Epigallocatechin Gallate inhibits glutamate dehydrogenase 1/2 (GDH1/2, GLUD1/2) activity. (-)-Epigallocatechin Gallate has a potent anticancer, antioxidant and anti-inflammatory properties against various types of cancers such as colorectal cancer, myeloid leukemia, thyroid carcinoma[1][2][3][4].
AI3-35128
D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D020011 - Protective Agents > D016587 - Antimutagenic Agents D000970 - Antineoplastic Agents Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1]. Diallyl disulfide inhibits human squalene monooxygenase with an IC50 of 400 μM for squalene epoxidation[1].
Ciratin
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
Monotropein
Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
c0126
D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D002273 - Carcinogens 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase. 4-Methylcatechol, a metabolite of p-toluate, is a substrate as well as a suicide inhibitor of Catechol 2,3-Dioxygenase.
AIDS-026336
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
Cudranin
Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4]. Oxyresveratrol (trans-Oxyresveratrol) is a potent naturally occurring antioxidant and free radical scavenger (IC50 of 28.9 μM against DPPH free radicals). Oxyresveratrol is potent and noncompetitive tyrosinase inhibitor with an IC50 value of 1.2 μM for mushroom tyrosinase. Oxyresveratrol is effective against HSV-1, HSV-2 and varicella-zoster virus, and has neuroprotective effects[1][2][3][4].
SRT-501
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].
beta-D-Glucopyranose, 1-thio-, 1-(5-(methylsulfinyl)-N-(sulfooxy)pentanimidate)
4-methylsulfinylbutyl glucosinolate is a member of the class of compounds known as alkylglucosinolates. Alkylglucosinolates are organic compounds containing a glucosinolate moiety that carries an alkyl chain. 4-methylsulfinylbutyl glucosinolate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 4-methylsulfinylbutyl glucosinolate can be found in a number of food items such as sweet cherry, japanese chestnut, macadamia nut (m. tetraphylla), and oriental wheat, which makes 4-methylsulfinylbutyl glucosinolate a potential biomarker for the consumption of these food products.
Ginsenoside_Rb1
Ginsenoside Rb1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. It has a role as a neuroprotective agent, an anti-obesity agent, an anti-inflammatory drug, an apoptosis inhibitor, a radical scavenger and a plant metabolite. It is a ginsenoside, a glycoside and a tetracyclic triterpenoid. It is functionally related to a ginsenoside Rd. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rb1 appears to be most abundant in Panax quinquefolius (American Ginseng). Rb1 seems to affect the reproductive system in animal testicles. Recent research shows that Rb1 affects rat embryo development and has teratogenic effects, causing birth defects. Another study shows that Rb1 may increase testosterone production in male rats indirectly through the stimulation of the luteinizing hormone. Ginsenoside rb1 is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng and Panax japonicus var. major that is ginsenoside Rd in which the beta-D-glucopyranoside group at position 20 is replaced by a beta-D-glucopyranosyl-beta-D-glucopyranoside group. Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 . Ginsenoside Rb1, a main constituent of the root of Panax ginseng, inhibits Na+, K+-ATPase activity with an IC50 of 6.3±1.0 μM. Ginsenoside also inhibits IRAK-1 activation and phosphorylation of NF-κB p65 .
Berberine
Berberine is an organic heteropentacyclic compound, an alkaloid antibiotic, a botanical anti-fungal agent and a berberine alkaloid. It has a role as an antilipemic drug, a hypoglycemic agent, an antioxidant, a potassium channel blocker, an antineoplastic agent, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.1.1.141 [15-hydroxyprostaglandin dehydrogenase (NAD(+))] inhibitor, an EC 1.13.11.52 (indoleamine 2,3-dioxygenase) inhibitor, an EC 1.21.3.3 (reticuline oxidase) inhibitor, an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor, an EC 3.1.1.4 (phospholipase A2) inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an EC 3.4.14.5 (dipeptidyl-peptidase IV) inhibitor, an EC 3.1.3.48 (protein-tyrosine-phosphatase) inhibitor, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.1.1.8 (cholinesterase) inhibitor, an EC 2.7.11.10 (IkappaB kinase) inhibitor, an EC 2.1.1.122 [(S)-tetrahydroprotoberberine N-methyltransferase] inhibitor, a geroprotector and a metabolite. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. Berberine is a quaternary ammonia compound found in many botanical products, including goldenseal, barberry and Oregon grape, which is used for its purported antioxidant and antimicrobial properties for a host of conditions, including obesity, diabetes, hyperlipidemia, heart failure, H. pylori infection and colonic adenoma prevention. Berberine has not been linked to serum aminotransferase elevations during therapy nor to instances of clinically apparent liver injury. Berberine is a natural product found in Berberis poiretii, Thalictrum delavayi, and other organisms with data available. Berberine is a quaternary ammonium salt of an isoquinoline alkaloid and active component of various Chinese herbs, with potential antineoplastic, radiosensitizing, anti-inflammatory, anti-lipidemic and antidiabetic activities. Although the mechanisms of action through which berberine exerts its effects are not yet fully elucidated, upon administration this agent appears to suppress the activation of various proteins and/or modulate the expression of a variety of genes involved in tumorigenesis and inflammation, including, but not limited to transcription factor nuclear factor-kappa B (NF-kB), myeloid cell leukemia 1 (Mcl-1), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xl), cyclooxygenase (COX)-2, tumor necrosis factor (TNF), interleukin (IL)-6, IL-12, inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), E-selectin, monocyte chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 2 (CXCL2), cyclin D1, activator protein (AP-1), hypoxia-inducible factor 1 (HIF-1), signal transducer and activator of transcription 3 (STAT3), peroxisome proliferator-activated receptor (PPAR), arylamine N-acetyltransferase (NAT), and DNA topoisomerase I and II. The modulation of gene expression may induce cell cycle arrest and apoptosis, and inhibit cancer cell proliferation. In addition, berberine modulates lipid and glucose metabolism. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. See also: Goldenseal (part of); Berberis aristata stem (part of). Berberine is a quaternary ammonium salt that belongs to the protoberberine group of benzylisoquinoline alkaloids. Chemically, berberine is classified as an isoquinoline alkaloid. More specifically, berberine is a plant alkaloid derived from tyrosine through a complex 8 step biosynthetic process. Berberine is found in plants such as Berberis vulgaris (barberry), Berberis aristata (tree turmeric), Mahonia aquifolium (Oregon grape) and Hydrastis canadensis (goldenseal). Two other known berberine-containing plants are Phellodendron chinense and Phellodendron amurense. Berberine is usually found in the roots, rhizomes, stems, and bark of Berberis plants. Due to berberines intense yellow color, plants that contain berberine were traditionally used to dye wool, leather, and wood. Under ultraviolet light, berberine shows a strong yellow fluorescence, making it useful in histology for staining heparin in mast cells. Berberine is a bioactive plant compound that has been frequently used in traditional medicine. Among the known physiological effects or bioactivities are: 1) Antimicrobial action against bacteria, fungi, protozoa, viruses, helminthes, and Chlamydia; 2) Antagonism against the effects of cholera and E coli heat-stable enterotoxin; 3) Inhibition of intestinal ion secretion and of smooth muscle contraction; 4) Reduction of inflammation and 5) Stimulation of bile secretion and bilirubin discharge (PMID:32335802). Berberine can inhibit bacterial growth in the gut, including Helicobacter pylori, protect the intestinal epithelial barrier from injury, and ameliorate liver injury. Currently, berberine is sold as an Over-the-Counter (OTC) drug for treating gastrointestinal infections in China (PMID:18442638). Berberine also inhibits the proliferation of various types of cancer cells and impedes invasion and metastasis (PMID:32335802). Recent evidence has also confirmed that berberine improves the efficacy and safety of both chemo and radiotherapies for cancer treatment (PMID:32335802). Berberine has also been shown to regulate glucose and lipid metabolism in vitro and in vivo (PMID:18442638). In fact, berberine is the main active component of an ancient Chinese herb Coptis chinensis French, which has been used to treat diabetes for thousands of years. As an anti-diabetic, berberine increases glucose uptake by muscle fibers independent of insulin levels. It triggers AMPK activation and increases glycolysis, leading to decreased insulin resistance and decreased oxygen respiration. The same mechanism leads to a reduction in gluconeogenesis in the liver. AMPK activation by berberine also leads to an antiatherosclerotic effect in mice. Berberines AMPK activation may also underlie berberines anti-obesity effects and favorable influence on weight loss (PMID:18442638). While its use as a medication is widely touted, it is important to remember that berberine inhibits CYP2D6 and CYP3A4 enzymes, both of which are involved in the metabolism of many endogenous substances and xenobiotics, including a number of prescription drugs. An alkaloid from Hydrastis canadensis L., Berberidaceae. It is also found in many other plants. It is relatively toxic parenterally, but has been used orally for various parasitic and fungal infections and as antidiarrheal. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Aristolochic_acid
Aristolochic acid A is an aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. It has a role as a nephrotoxin, a carcinogenic agent, a mutagen, a toxin and a metabolite. It is a monocarboxylic acid, a C-nitro compound, a cyclic acetal, an organic heterotetracyclic compound, an aromatic ether and a member of aristolochic acids. Aristolochic acid is a natural product found in Thottea duchartrei, Aristolochia, and other organisms with data available. Aristolochic acids are a family of carcinogenic, mutagenic, and nephrotoxic compounds commonly found in the Aristolochiaceae family of plants, including Aristolochia and Asarum (wild ginger), which are commonly used in Chinese herbal medicine. Aristolochic acid I is the most abundant of the aristolochic acids and is found in almost all Aristolochia species. Aristolochic acids are often accompanied by aristolactams. See also: Aristolochia fangchi root (part of). An aristolochic acid that is phenanthrene-1-carboxylic acid that is substituted by a methylenedioxy group at the 3,4 positions, by a methoxy group at position 8, and by a nitro group at position 10. It is the most abundant of the aristolochic acids and is found in almost all Aristolochia (birthworts or pipevines) species. It has been tried in a number of treatments for inflammatory disorders, mainly in Chinese and folk medicine. However, there is concern over their use as aristolochic acid is both carcinogenic and nephrotoxic. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1]. Aristolochic acid A (Aristolochic acid I; TR 1736) is the main component of plant extract Aristolochic acids, which are found in various herbal plants of genus Aristolochia and Asarum. Aristolochic acid A significantly reduces both activator protein 1 (AP-1) and NF-κB activities. Aristolochic acid A reduces BLCAP gene expression in human cell lines[1].
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
GP-17
Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.
Nomilin
Nomilin is a limonoid. 1-(Acetyloxy)-1,2-dihydroobacunoic acid e-lactone is a natural product found in Citrus latipes, Citrus hystrix, and other organisms with data available. Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2]. Nomilin is a limonoid compound obtained from the extracts of citrus fruits. Nomilin is an anti-obesity and anti-hyperglycemic agent [1][2].
Ginsenoside
(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. A ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. D000970 - Antineoplastic Agents Ginsenoside F2 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent and a plant metabolite. It is a ginsenoside, a tetracyclic triterpenoid, a 12beta-hydroxy steroid and a beta-D-glucoside. It derives from a hydride of a dammarane. ginsenoside F2 is a natural product found in Panax ginseng, Panax notoginseng, and Aralia elata with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1]. Ginsenoside F2, a metabolite from Ginsenoside Rb1, induces apoptosis accompanied by protective autophagy in breast cancer stem cells[1].
Ampelopsin
(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. An optically active form of dihydromyricetin having (2R,3R)-configuration. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.
Ligusticide
(Z)-ligustilide is a butenolide. It has a role as a metabolite. Ligustilide is a natural product found in Ligusticum striatum, Angelica sinensis, and other organisms with data available. A natural product found in Ligusticum porteri.
Asiatic
Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].
Nootkatone
(+)-nootkatone is a sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). It has a role as a plant metabolite, a fragrance and an insect repellent. It is a sesquiterpenoid, an enone and a carbobicyclic compound. Nootkatone is a natural product found in Teucrium asiaticum, Teucrium oxylepis, and other organisms with data available. A sesquiterpenoid that is 4,4a,5,6,7,8-hexahydronaphthalen-2(3H)-one which is substituted by methyl groups at positions 4 and 4a, and by an isopropenyl group at position 6 (the 4R,4aS,6R stereoisomer). Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2]. Nootkatone, a neuroprotective agent from Vitis vinifera, has antioxidant and anti-inflammatory effects[1]. Nootkatone improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer's disease[2].
Silychristin
A flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].
Pseudochelerythrine
Sanguinarine is a benzophenanthridine alkaloid, an alkaloid antibiotic and a botanical anti-fungal agent. Sanguinarine is a natural product found in Fumaria capreolata, Fumaria kralikii, and other organisms with data available. Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule. Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine. Sanguinarine has been shown to exhibit antibiotic, anti-apoptotic, anti-fungal, anti-inflammatory and anti-angiogenic functions Sanguinarine belongs to the family of Benzoquinolines. These are organic compounds containing a benzene fused to a quinoline ring system. (A3208, A3209, A3208, A3208, A3208). See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). Sanguinarine is found in opium poppy. Consumption of Sanguinarine, present in poppy seeds and in the oil of Argemone mexicana which has been used as an adulterant for mustard oil in India, has been linked to development of glaucoma. Sanguinarine is banned by FDA. Sanguinarine is a quaternary ammonium salt from the group of benzylisoquinoline alkaloids. It is extracted from some plants, including bloodroot (Sanguinaria canadensis), Mexican prickly poppy Argemone mexicana, Chelidonium majus and Macleaya cordata. It is also found in the root, stem and leaves of the opium poppy but not in the capsule.[citation needed]; Sanguinarine is a toxin that kills animal cells through its action on the Na+-K+-ATPase transmembrane protein. Epidemic dropsy is a disease that results from ingesting sanguinarine Sanguinarine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2447-54-3 (retrieved 2024-06-29) (CAS RN: 2447-54-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Monotropein
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative. Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available. See also: Galium aparine whole (part of). An iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1]. Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
dehydroeburicoicacid
Dehydroeburicoic acid is a bile acid. Dehydroeburicoic acid is a natural product found in Gloeophyllum odoratum, Taiwanofungus camphoratus, and other organisms with data available.
Picrocrocin
Picrocrocin is a beta-D-glucoside of beta-cyclocitral; the precursor of safranal. It is the compound most responsible for the bitter taste of saffron. It is functionally related to a beta-cyclocitral. Picrocrocin is a natural product found in Crocus tommasinianus, Crocus sativus, and Crocus vernus with data available. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1]. Picrocrocin, an apocarotenoid found in Saffron. Picrocrocin shows anticancer effect. Picrocrocin exhibits growth inhibitory effects against SKMEL-2 human malignant melanoma cells[1].
erumbone
Zerumbone is a sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. It has a role as an anti-inflammatory agent, a plant metabolite and a glioma-associated oncogene inhibitor. It is a sesquiterpenoid and a cyclic ketone. It derives from a hydride of an alpha-humulene. Zerumbone is a natural product found in Curcuma amada, Curcuma longa, and other organisms with data available. A sesquiterpenoid and cyclic ketone that is (1E,4E,8E)-alpha-humulene which is substituted by an oxo group at the carbon atom attached to two double bonds. It is obtained by steam distillation from a type of edible ginger, Zingiber zerumbet Smith, grown particularly in southeast Asia. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2]. Zerumbone is a monocyclic sesquiterpene compound isolated from the rhizomes of Zingiber zerumbet Smith. Zerumbone potently inhibits the activation of Epstein-Barr virus with an IC50 of 0.14 mM. Zerumbone has anti-cancer, antioxidant, anti-inflammatory and anti-proliferative activity[1][2].
BUTHIONINE SULFOXIMINE
D020011 - Protective Agents > D011837 - Radiation-Protective Agents D009676 - Noxae > D000963 - Antimetabolites D011838 - Radiation-Sensitizing Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors
3β,5α,6β-Trihydroxycholestane
D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites
Mycoin
A furopyran and lactone that is (2H-pyran-3(6H)-ylidene)acetic acid which is substituted by hydroxy groups at positions 2 and 4 and in which the hydroxy group at position 4 has condensed with the carboxy group to give the corresponding bicyclic lactone. A mycotoxin produced by several species of Aspergillus and Penicillium, it has antibiotic properties but has been shown to be carcinogenic and mutagenic. D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D009153 - Mutagens Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
Decamethrin
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents > P03BA - Pyrethrines D010575 - Pesticides > D007306 - Insecticides > D011722 - Pyrethrins D016573 - Agrochemicals Same as: D07785
Ticrynafen
C - Cardiovascular system > C03 - Diuretics > C03C - High-ceiling diuretics > C03CC - Aryloxyacetic acid derivatives D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49184 - Loop Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents C26170 - Protective Agent > C921 - Uricosuric Agent D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D02386
2-Nitrofluorene
D004785 - Environmental Pollutants > D000393 - Air Pollutants D009676 - Noxae > D009153 - Mutagens
Talwin
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000700 - Analgesics