Crocin (BioDeep_00000000600)

 

Secondary id: BioDeep_00000406309, BioDeep_00001893891

human metabolite PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy}methyl)tetrahydro-2H-pyran-2-yl] (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate

化学式: C44H64O24 (976.3787)
中文名称: α-藏花素, 西红花苷, 栀子黄色素
谱图信息: 最多检出来源 Viridiplantae(plant) 5.6%

分子结构信息

SMILES: CC(/C=C/C=C(\C)C(=O)O[C@@H]1O[C@H](CO[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@@H](O)[C@H](O)[C@H]1O)=C\C=C\C=C(C)\C=C\C=C(/C)C(=O)O[C@@H]1O[C@H](CO[C@@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@@H](O)[C@H](O)[C@H]1O
InChI: InChI=1S/C44H64O24/c1-19(11-7-13-21(3)39(59)67-43-37(57)33(53)29(49)25(65-43)17-61-41-35(55)31(51)27(47)23(15-45)63-41)9-5-6-10-20(2)12-8-14-22(4)40(60)68-44-38(58)34(54)30(50)26(66-44)18-62-42-36(56)32(52)28(48)24(16-46)64-42/h5-14,23-38,41-58H,15-18H2,1-4H3/b6-5+,11-7+,12-8+,19-9+,20-10+,21-13+,22-14+/t23-,24-,25-,26-,27-,28-,29-,30-,31+,32+,33+,34+,35+,36+,37-,38-,41-,42-,43+,44+/m1/s1

描述信息

Crocin is a water-soluble carotenoid pigment of saffron (Crocus sativus L.) that has been used as a spice for flavoring and coloring food preparations, and in Chinese traditional medicine as an anodyne or tranquilizer. Saffron is now used worldwide in folk medicine and is reputed to be useful in treating various human disorders such as heart and blood disorders. Stroke and heart attack are involved in reputed folkloric uses of saffron. Saffron is orally administrated as a decoction. Saffron extract exerts a protective effect on renal ischemia reperfusion induced oxidative damage in rats. Crocin suppresses tumor necrosis factor (TNF)alpha-induced apoptosis of pheochromocytoma (PC12) cells by modulating mRNA expressions of Bcl-2 family proteins, which trigger downstream signals culminating in caspase-3 activation followed by cell death. Depriving cultured PC12 cells of serum/glucose causes a rapid increase in cellular ceramide levels, followed by an increase in the risk of cell death. The accumulation of ceramide was found to depend on the activation of neutral sphingomyelinase (nSMase). Crocin prevented the activation of nSMase by enhancing the transcription of gamma-glutamylcysteinyl synthase, which contributes to a stable glutathione supply that blocks the activity of nSMase. (PMID: 17215084). Crocetin esters present in saffron stigmas and in Gardenia jasminoides Ellis fruit are the compounds responsible for their color. (PMID: 16448211).
Crocin-1 is a diester that is crocetin in which both of the carboxy groups have been converted to their gentiobiosyl esters. It is one of the water-soluble yellow-red pigments of saffron and is used as a spice for flavouring and colouring food. Note that in India, the term Crocin is also used by GlaxoSmithKline as a brand-name for paracetamol. It has a role as an antioxidant, a food colouring, a plant metabolite and a histological dye. It is a diester, a disaccharide derivative and a diterpenoid. It is functionally related to a beta-D-gentiobiosyl crocetin and a gentiobiose.
Crocin has been investigated for the treatment of Hyperglycemia, Metabolic Syndrome, Hypertriglyceridemia, and Hypercholesterolemia.
Crocin is a natural product found in Gardenia jasminoides, Calycanthus, and other organisms with data available.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
The colouring principle of saffron
Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1].
Crocin (Crocin I) is a nutraceutical and the main constituent isolated from the stigmas of Crocus sativus with immense pharmacological properties as anti-inflammatory, anticancer, antidepressant and anticonvulsant[1].

同义名列表

56 个代谢物同义名

bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]oxy}methyl)tetrahydro-2H-pyran-2-yl] (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; (2E,4E,6E,8E,10E,12E,14E)-Bis((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl) 2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; (2E,4E,6E,8E,10E,12E,14E)-Bis((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl] (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; bis[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl] (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; bis(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; .BETA.-D-GLUCOPYRANOSE, 6-O-.BETA.-D-GLUCOPYRANOSYL-, 1,1-((2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-TETRAMETHYL-2,4,6,8,10,12,14-HEXADECAHEPTAENEDIOATE); beta-D-Glucopyranose, 6-O-beta-D-glucopyranosyl-, 1,1-((2E,4E,6E,8E,10E,12E,14E)-2,6,11,15-tetramethyl-2,4,6,8,10,12,14-hexadecaheptaenedioate); 8,8-Diapo-.psi.,.psi.-carotenedioic acid, bis(6-O-.beta.-D-glucopyranosyl-.beta.-D-glucopyranosyl) ester; 8,8-Diapo-psi,psi-carotenedioic acid, bis(6-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl) ester; Bis(6-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl) 8,8-diapo-psi,psi-carotenedioate; all-trans-Crocetin di-beta-delta-gentiobiosyl ester; ALL-TRANS-CROCETIN DI-.BETA.-D-GENTIOBIOSYL ESTER; all-trans-Crocetin di-beta-D-gentiobiosyl ester; TRANS-CROCETIN DI(.BETA.-D-GENTIOBIOSYL) ESTER; trans-crocetin bis(beta-D-gentiobiosyl) ester; trans-Crocetin di(beta-D-gentiobiosyl) ester; trans-Crocetin bis(β-D-gentiobiosyl) ester; trans-Crocetin bis(b-D-gentiobiosyl) ester; crocetin di-beta-D-gentiobiose ester; Crocetin Di(Beta-Gentiobiosyl)Ester; CROCETIN DI-GENTIOBIOSE ESTER [MI]; Crocetin di-β-D-gentiobiose ester; Crocetin di-b-D-gentiobiose ester; bis(beta-D-gentiobiosyl) crocetin; Crocetin bis(gentiobiosyl) ester; Bis(β-D-gentiobiosyl) crocetin; Bis(b-D-gentiobiosyl) crocetin; crocetin digentiobiosyl ester; crocetin di-gentiobiose ester; Crocetin digentiobiose ester; crocetin digentiobioside; Natural yellow 19; Natural yellow 6; CROCIN [WHO-DD]; UNII-F32BA2H92Z; Gardenia Yellow; .alpha.-crocin; Saffron (JP15); CROCIN [INCI]; Natural red 1; Tox21_111837; alpha-crocin; C.I. 75100; F32BA2H92Z; Crocin-I; crocin-1; Α-crocin; Crocin I; Crocin 1; Crocin A; a-Crocin; Saffron; Crocine; Crocin; Crocin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

11 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(1)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(10)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

67 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 16 AKT1, ALB, BCL2, BDNF, CASP3, CAT, CTNNB1, MAPK14, MTOR, NFE2L2, PIK3CA, PTGS2, SIRT1, STAT3, TP53, VEGFA
Peripheral membrane protein 3 ACHE, MTOR, PTGS2
Endoplasmic reticulum membrane 4 BCL2, HMOX1, MTOR, PTGS2
Nucleus 14 ACHE, AKT1, ALB, BCL2, CASP3, CTNNB1, HMOX1, MAPK14, MTOR, NFE2L2, SIRT1, STAT3, TP53, VEGFA
cytosol 14 AKT1, ALB, BCL2, CASP3, CAT, CTNNB1, HMOX1, MAPK14, MTOR, NFE2L2, PIK3CA, SIRT1, STAT3, TP53
dendrite 2 BDNF, MTOR
phagocytic vesicle 1 MTOR
centrosome 4 ALB, CTNNB1, NFE2L2, TP53
nucleoplasm 10 AKT1, CASP3, CTNNB1, HMOX1, MAPK14, MTOR, NFE2L2, SIRT1, STAT3, TP53
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT3
Cell membrane 4 ACHE, AKT1, CTNNB1, TNF
Cytoplasmic side 2 HMOX1, MTOR
lamellipodium 3 AKT1, CTNNB1, PIK3CA
Golgi apparatus membrane 1 MTOR
Synapse 2 ACHE, CTNNB1
cell cortex 2 AKT1, CTNNB1
cell junction 1 CTNNB1
cell surface 3 ACHE, TNF, VEGFA
glutamatergic synapse 4 AKT1, CASP3, CTNNB1, MAPK14
Golgi apparatus 4 ACHE, ALB, NFE2L2, VEGFA
Golgi membrane 1 MTOR
lysosomal membrane 1 MTOR
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
presynaptic membrane 1 CTNNB1
synaptic vesicle 1 BDNF
Cytoplasm, cytosol 1 NFE2L2
Lysosome 1 MTOR
plasma membrane 7 ACHE, AKT1, CTNNB1, NFE2L2, PIK3CA, STAT3, TNF
Membrane 10 ACHE, AKT1, BCL2, BDNF, CAT, CTNNB1, HMOX1, MTOR, TP53, VEGFA
axon 1 BDNF
basolateral plasma membrane 1 CTNNB1
caveola 1 PTGS2
extracellular exosome 4 ALB, BMP3, CAT, CTNNB1
Lysosome membrane 1 MTOR
endoplasmic reticulum 6 ALB, BCL2, HMOX1, PTGS2, TP53, VEGFA
extracellular space 7 ACHE, ALB, BDNF, BMP3, HMOX1, TNF, VEGFA
perinuclear region of cytoplasm 5 ACHE, BDNF, CTNNB1, HMOX1, PIK3CA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 2 CTNNB1, VEGFA
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
intercalated disc 1 PIK3CA
mitochondrion 5 BCL2, CAT, MAPK14, SIRT1, TP53
protein-containing complex 7 AKT1, ALB, BCL2, CAT, CTNNB1, PTGS2, TP53
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 2 MTOR, PTGS2
postsynaptic density 1 CASP3
chromatin silencing complex 1 SIRT1
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Secreted 5 ACHE, ALB, BDNF, BMP3, VEGFA
extracellular region 8 ACHE, ALB, BDNF, BMP3, CAT, MAPK14, TNF, VEGFA
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
Extracellular side 1 ACHE
anchoring junction 1 ALB
transcription regulator complex 3 CTNNB1, STAT3, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
microtubule cytoskeleton 1 AKT1
nucleolus 2 SIRT1, TP53
Wnt signalosome 1 CTNNB1
apical part of cell 1 CTNNB1
cell-cell junction 2 AKT1, CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
postsynaptic membrane 1 CTNNB1
heterochromatin 1 SIRT1
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 2 CTNNB1, TP53
focal adhesion 2 CAT, CTNNB1
spindle 1 AKT1
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
extracellular matrix 1 VEGFA
Peroxisome 1 CAT
basement membrane 1 ACHE
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 3 MTOR, SIRT1, TP53
PML body 3 MTOR, SIRT1, TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 VEGFA
fascia adherens 1 CTNNB1
lateral plasma membrane 1 CTNNB1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SIRT1
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 2 AKT1, ALB
chromatin 4 NFE2L2, SIRT1, STAT3, TP53
mediator complex 1 NFE2L2
phagocytic cup 1 TNF
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
centriole 1 ALB
spindle pole 3 ALB, CTNNB1, MAPK14
blood microparticle 1 ALB
postsynaptic density, intracellular component 1 CTNNB1
Lipid-anchor, GPI-anchor 1 ACHE
microvillus membrane 1 CTNNB1
site of double-strand break 1 TP53
fibrillar center 1 SIRT1
nuclear envelope 2 MTOR, SIRT1
Endomembrane system 2 CTNNB1, MTOR
euchromatin 2 CTNNB1, SIRT1
side of membrane 1 ACHE
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 3 ALB, BDNF, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
platelet alpha granule lumen 2 ALB, VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
beta-catenin-TCF complex 1 CTNNB1
Single-pass type IV membrane protein 1 HMOX1
presynaptic active zone cytoplasmic component 1 CTNNB1
[Isoform 1]: Nucleus 1 TP53
synaptic cleft 1 ACHE
protein-DNA complex 2 CTNNB1, NFE2L2
death-inducing signaling complex 1 CASP3
eNoSc complex 1 SIRT1
rDNA heterochromatin 1 SIRT1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CTNNB1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
BAD-BCL-2 complex 1 BCL2
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
beta-catenin-TCF7L2 complex 1 CTNNB1
[Isoform H]: Cell membrane 1 ACHE
[Neurotrophic factor BDNF precursor form]: Secreted 1 BDNF
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[SirtT1 75 kDa fragment]: Cytoplasm 1 SIRT1


文献列表

  • Zeinab Rostami, Mansoore Saharkhiz, Mohsen Khorashadizadeh, Malaksima Ayadilord, Mohsen Naseri. The immunoregulatory property of mesenchymal stem cells in Crocin treatment by expression modulation of microRNA-155, microRNA-21, microRNA-23b, microRNA-126a, and their target inflammatory genes. Gene. 2024 Jul; 916(?):148446. doi: 10.1016/j.gene.2024.148446. [PMID: 38583816]
  • Zahra Nemati, Seyyedeh-Sanam Kazemi-Shahandashti, Adriana Garibay-Hernández, Hans-Peter Mock, Maximilian H-W Schmidt, Björn Usadel, Frank R Blattner. Metabolomic and transcriptomic analyses of yellow-flowered crocuses to infer alternative sources of saffron metabolites. BMC plant biology. 2024 May; 24(1):369. doi: 10.1186/s12870-024-05036-1. [PMID: 38711012]
  • Erjola Bej, Anna Rita Volpe, Patrizia Cesare, Annamaria Cimini, Michele d'Angelo, Vanessa Castelli. Therapeutic potential of saffron in brain disorders: From bench to bedside. Phytotherapy research : PTR. 2024 May; 38(5):2482-2495. doi: 10.1002/ptr.8169. [PMID: 38446350]
  • Hesham A El-Beshbishy, Dania S Waggas, Rabab A Ali. Rats' testicular toxicity induced by bisphenol A is lessened by crocin via an antiapoptotic mechanism and bumped P-glycoprotein expression. Toxicon : official journal of the International Society on Toxinology. 2024 Apr; 241(?):107674. doi: 10.1016/j.toxicon.2024.107674. [PMID: 38458495]
  • Emrah Özcan, Ivana Šímová, David Bína, Radek Litvín, Tomáš Polívka. Ultrafast spectroscopy of the hydrophilic carotenoid crocin at various pH. Physical chemistry chemical physics : PCCP. 2024 Mar; 26(13):10225-10233. doi: 10.1039/d4cp00665h. [PMID: 38497307]
  • Wenjing Su, Anna V Mastova, Maya A Ul'yanova, Polina A Kononova, Olga Yu Selyutina, Veronika I Evseenko, Elizaveta S Meteleva, Alexander V Dushkin, Weike Su, Nikolay E Polyakov. NMR Study of Water-Soluble Carotenoid Crocin: Formation of Mixed Micelles, Interaction with Lipid Membrane and Antioxidant Activity. International journal of molecular sciences. 2024 Mar; 25(6):. doi: 10.3390/ijms25063194. [PMID: 38542168]
  • Atefe Rekabi, Arman Ram, Ahmad Nazari, Reza Arefnezhad, Fatemeh Rezaei-Tazangi. Does crocin create new hope for the treatment of oral problems? A focus on periodontitis. Molecular biology reports. 2024 Jan; 51(1):224. doi: 10.1007/s11033-024-09209-x. [PMID: 38281199]
  • Jun Ho Lee, Seong-Rae Lee, Sang Yup Lee, Pyung Cheon Lee. Complete microbial synthesis of crocetin and crocins from glycerol in Escherichia coli. Microbial cell factories. 2024 Jan; 23(1):10. doi: 10.1186/s12934-023-02287-9. [PMID: 38178149]
  • Ghulam Shabbir Khan, Muhammad Zahid Tahir, Muhammad Yasir Zahoor, Hifz-Ul- Rahman, Amjad Riaz. Ameliorative effect of crocin on post-thaw quality, fertility-associated gene expression and fertilization potential of buffalo (Bubalus bubalis) bull sperm. Reproduction in domestic animals = Zuchthygiene. 2024 Jan; 59(1):e14519. doi: 10.1111/rda.14519. [PMID: 38268214]
  • Junjie Zhou, Danqiong Huang, Chenglong Liu, Zhangli Hu, Hui Li, Sulin Lou. Research Progress in Heterologous Crocin Production. Marine drugs. 2023 Dec; 22(1):. doi: 10.3390/md22010022. [PMID: 38248646]
  • Lucía Morote, Ángela Rubio-Moraga, Alberto José López Jiménez, Verónica Aragonés, Gianfranco Diretto, Olivia Costantina Demurtas, Sarah Frusciante, Oussama Ahrazem, José-Antonio Daròs, Lourdes Gómez-Gómez. Verbascum species as a new source of saffron apocarotenoids and molecular tools for the biotechnological production of crocins and picrocrocin. The Plant journal : for cell and molecular biology. 2023 Dec; ?(?):. doi: 10.1111/tpj.16589. [PMID: 38100533]
  • Alfonso Calabria, Chiara Del Prete, Ciarcia Roberto, Valentina Longobardi, Stefano Spada, Maria Teresa Alfano, Daniela De Felice, Bianca Gasparrini, Natascia Cocchia. Effect of crocin supplementation in the extender on the quality of chilled canine semen. Animal reproduction science. 2023 Dec; 259(?):107374. doi: 10.1016/j.anireprosci.2023.107374. [PMID: 37984312]
  • Wei Chen, Jinhao Su, Yubin Liu, Tianmei Gao, Xiaohui Ji, Hanzhou Li, Huajun Li, Yuansong Wang, Hui Zhang, Shuquan Lv. Crocin Ameliorates Diabetic Nephropathy through Regulating Metabolism, CYP4A11/PPARγ, and TGF-β/Smad Pathways in Mice. Current drug metabolism. 2023 Nov; ?(?):. doi: 10.2174/0113892002257928231031113337. [PMID: 37936469]
  • Yuxin Gan, Chenyu Wang, Chenfeng Xu, Pingping Zhang, Shutong Chen, Lei Tang, Junbing Zhang, Huahao Zhang, Shenhua Jiang. Simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) by probe-type ultrasound-assisted natural deep eutectic solvents and their inhibition effects on low density lipoprotein oxidation. Ultrasonics sonochemistry. 2023 Oct; 101(?):106658. doi: 10.1016/j.ultsonch.2023.106658. [PMID: 37913593]
  • Fatemeh Taghizadeh, Fatemeh Mehryab, Seyed Alireza Mortazavi, Shahram Rabbani, Azadeh Haeri. Thiolated chitosan hydrogel-embedded niosomes: A promising crocin delivery system toward the management of aphthous stomatitis. Carbohydrate polymers. 2023 Oct; 318(?):121068. doi: 10.1016/j.carbpol.2023.121068. [PMID: 37479428]
  • Ying Wang, Siqi Li, Ze Zhou, Lifen Sun, Jing Sun, Chuanpu Shen, Ranran Gao, Jingyuan Song, Xiangdong Pu. The Functional Characteristics and Soluble Expression of Saffron CsCCD2. International journal of molecular sciences. 2023 Oct; 24(20):. doi: 10.3390/ijms242015090. [PMID: 37894770]
  • Pedro de Padua G Amatto, Lucas Chaves, Giovana Graça Braga, Fábio Carmona, Ana Maria Soares Pereira. Effect of Crocus sativus L. (saffron) and crocin in the treatment of patients with type-2 diabetes mellitus: A systematic review and meta-analysis. Journal of ethnopharmacology. 2023 Sep; 319(Pt 2):117255. doi: 10.1016/j.jep.2023.117255. [PMID: 37778521]
  • Lei Xie, Zuliang Luo, Xunli Jia, Changming Mo, Xiyang Huang, Yaran Suo, Shengrong Cui, Yimei Zang, Jingjing Liao, Xiaojun Ma. Synthesis of Crocin I and Crocin II by Multigene Stacking in Nicotiana benthamiana. International journal of molecular sciences. 2023 Sep; 24(18):. doi: 10.3390/ijms241814139. [PMID: 37762441]
  • Xuan Zhang, Xiangyi Su, Xiaoyue Yu, Xinyue Zhang, Xuelin Guo, Guige Hou, Chunhua Wang, Hongjuan Li. Preparative separation of iridoid glucosides and crocins from Gardeniae Fructus using sequential macroporous resin column chromatography and evaluation of their anti-inflammatory and antioxidant activities. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2023 Sep; 1229(?):123887. doi: 10.1016/j.jchromb.2023.123887. [PMID: 37714051]
  • Jennifer K Frediani, Asim A Lal, Esther Kim, Sharon L Leslie, David W Boorman, Vinita Singh. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review. Pain practice : the official journal of World Institute of Pain. 2023 Aug; ?(?):. doi: 10.1111/papr.13291. [PMID: 37654090]
  • Namita Muduli, Sai Aparna, Manorama Patri, Khirod Kumar Sahoo. Saffron stigma extract and crocin play an important neuroprotective role in therapeutic measures against benzo[a]pyrene-induced behavioral alterations in zebrafish. Drug and chemical toxicology. 2023 Aug; ?(?):1-12. doi: 10.1080/01480545.2023.2250576. [PMID: 37649374]
  • Fatemeh Anaeigoudari, Akbar Anaeigoudari, Aliasghar Kheirkhah-Vakilabad. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiological reports. 2023 08; 11(15):e15785. doi: 10.14814/phy2.15785. [PMID: 37537722]
  • Lijiao Wen, Chen Fan, Xi Zhao, Xueli Cao. Rapid extraction of bioactive compounds from gardenia fruit using new and recyclable deep eutectic solvents. Journal of separation science. 2023 Jul; ?(?):e2300163. doi: 10.1002/jssc.202300163. [PMID: 37496306]
  • M Demir, E Altinoz, O Koca, H Elbe, M O Onal, Y Bicer, M Karayakali. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue & cell. 2023 Jul; 84(?):102182. doi: 10.1016/j.tice.2023.102182. [PMID: 37523948]
  • Xinyu Xu, Bihua Chen, Juan Zhang, Siren Lan, Shasha Wu, Weiwei Xie. Transcriptome and metabolome analysis revealed the changes of Geniposide and Crocin content in Gardenia jasminoides fruit. Molecular biology reports. 2023 Jul; ?(?):. doi: 10.1007/s11033-023-08613-z. [PMID: 37392282]
  • Mohd Junaid Wani, Khushtar Anwar Salman, Shagufta Moin, Amin Arif. Effect of crocin on glycated human low-density lipoprotein: A protective and mechanistic approach. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2023 Feb; 286(?):121958. doi: 10.1016/j.saa.2022.121958. [PMID: 36244155]
  • Jiemiao Lu, Jie Wang, Jiahao Zhang, Yichun Zhu, Lupin Qin, Bo Zhu. Diversity of Culturable Endophytic Fungi in Crocus sativus and Their Correlation with Crocin Content. Current microbiology. 2023 Jan; 80(2):73. doi: 10.1007/s00284-023-03177-4. [PMID: 36622432]
  • Hongyan Liu, Hong Cheng, Hongyun Wang, Qiong Wang, Jun Yuan. Crocin improves the renal autophagy in rat experimental membranous nephropathy via regulating the SIRT1/Nrf2/HO-1 signaling pathway. Renal failure. 2023; 45(2):2253924. doi: 10.1080/0886022x.2023.2253924. [PMID: 37724538]
  • Xingxun Bao, Jinhua Hu, Yan Zhao, Ruixue Jia, Hairong Zhang, Lei Xia. Advances on the anti-tumor mechanisms of the carotenoid Crocin. PeerJ. 2023; 11(?):e15535. doi: 10.7717/peerj.15535. [PMID: 37404473]
  • Fatemeh Ghafari, Zohre Sadeghian, Akram Oftadeh Harsin, Sodabe Khodabandelo, Akram Ranjbar. Anti-oxidative properties of nanocrocin in Zearalenone induced toxicity on Hek293 cell; The novel formulation and cellular assessment. Human & experimental toxicology. 2023 Jan; 42(?):9603271231169911. doi: 10.1177/09603271231169911. [PMID: 37072122]
  • Laleh Pourmousavi, Rasoul Hashemkandi Asadi, Farzad Zehsaz, Roghayeh Pouzesh Jadidi. Effect of crocin and treadmill exercise on oxidative stress and heart damage in diabetic rats. PloS one. 2023; 18(12):e0281692. doi: 10.1371/journal.pone.0281692. [PMID: 38113243]
  • Xinyu Xu, Bihua Chen, Juan Zhang, Siren Lan, Shasha Wu. Whole-genome resequencing analysis of the medicinal plant Gardenia jasminoides. PeerJ. 2023; 11(?):e16056. doi: 10.7717/peerj.16056. [PMID: 37744244]
  • Michele Spinelli, Alessandra Biancolillo, Gennaro Battaglia, Martina Foschi, Angela Amoresano, Maria Anna Maggi. Saffron Characterization by a Multidisciplinary Approach. Molecules (Basel, Switzerland). 2022 Dec; 28(1):. doi: 10.3390/molecules28010042. [PMID: 36615243]
  • Jun Gao, Feng Zhao, Shaona Yi, Shuhang Li, Aiqing Zhu, Yingxiu Tang, Aiqun Li. Protective role of crocin against sepsis-induced injury in the liver, kidney and lungs via inhibition of p38 MAPK/NF-κB and Bax/Bcl-2 signalling pathways. Pharmaceutical biology. 2022 Dec; 60(1):543-552. doi: 10.1080/13880209.2022.2042328. [PMID: 35225146]
  • Xiongjie Zheng, Jianing Mi, Aparna Balakrishna, Kit Xi Liew, Abdugaffor Ablazov, Rachid Sougrat, Salim Al-Babili. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Plant biotechnology journal. 2022 11; 20(11):2202-2216. doi: 10.1111/pbi.13901. [PMID: 35997958]
  • Benjamin Moras, Camille Pouchieu, David Gaudout, Stéphane Rey, Anthony Anchisi, Xavier Saupin, Patrick Jame. Authentication of Iranian Saffron (Crocus sativus) Using Stable Isotopes δ13C and δ2H and Metabolites Quantification. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206801. [PMID: 36296396]
  • Qichao Yin, Hua Xiong. Chemotherapy-induced nephrotoxicity was improved by crocin in mouse model. European journal of histochemistry : EJH. 2022 Oct; 66(4):. doi: 10.4081/ejh.2022.3541. [PMID: 36190398]
  • Eman M Khalaf, Hanan M Hassan, Ahmed M El-Baz, Ahmed Shata, Ahmed E Khodir, Mahmoud E Yousef, Rehab Mohamed Elgharabawy, Nehal A Nouh, Safaa Saleh, Mashael M Bin-Meferij, Attalla F El-Kott, Mohamed M A El-Sokkary, Hanan Eissa. A novel therapeutic combination of dapagliflozin, Lactobacillus and crocin attenuates diabetic cardiomyopathy in rats: Role of oxidative stress, gut microbiota, and PPARγ activation. European journal of pharmacology. 2022 Sep; 931(?):175172. doi: 10.1016/j.ejphar.2022.175172. [PMID: 35944619]
  • Sepideh Bastani, Vahid Vahedian, Mohsen Rashidi, Amirabbas Mir, Sepideh Mirzaei, Iraj Alipourfard, Farhad Pouremamali, Hamidreza Nejabati, Jamileh Kadkhoda, Nazila Fathi Maroufi, Maryam Akbarzadeh. An evaluation on potential anti-oxidant and anti-inflammatory effects of Crocin. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Sep; 153(?):113297. doi: 10.1016/j.biopha.2022.113297. [PMID: 35738178]
  • Fatemeh Jafari, Seyed Ahmad Emami, Behjat Javadi, Zahra Salmasi, Mona Tayarani-Najjaran, Zahra Tayarani-Najaran. Inhibitory effect of saffron, crocin, crocetin, and safranal against adipocyte differentiation in human adipose-derived stem cells. Journal of ethnopharmacology. 2022 Aug; 294(?):115340. doi: 10.1016/j.jep.2022.115340. [PMID: 35551973]
  • Samaneh Sepahi, Mona Golfakhrabadi, Shokoufeh Bonakdaran, Homa Lotfi, Seyed Ahmad Mohajeri. Effect of crocin on diabetic patients: A placebo-controlled, triple-blinded clinical trial. Clinical nutrition ESPEN. 2022 08; 50(?):255-263. doi: 10.1016/j.clnesp.2022.05.006. [PMID: 35871933]
  • Xiao Ye, Dong Zhang, Wei-Hong Feng, Yao-Hua Liang, Xiao-Qian Liu, Chun Li, Zhi-Min Wang. [Qualitative and quantitative analysis on crocins in fruits of Gardenia species]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2022 Aug; 47(16):4377-4384. doi: 10.19540/j.cnki.cjcmm.20220214.301. [PMID: 36046865]
  • Peng Wang, Maoxing Li, Ziliang Guo, Weigang Wang, Xiaolin Li, Na Yan, Tianlong Liu. Comparison of the pharmacokinetics of Crocin-I in normoxic and hypoxic rats. Toxicology and applied pharmacology. 2022 07; 447(?):116088. doi: 10.1016/j.taap.2022.116088. [PMID: 35644267]
  • Laurynas Jarukas, Konradas Vitkevicius, Olha Mykhailenko, Ivan Bezruk, Victoriya Georgiyants, Liudas Ivanauskas. Effective Isolation of Picrocrocin and Crocins from Saffron: From HPTLC to Working Standard Obtaining. Molecules (Basel, Switzerland). 2022 Jul; 27(13):. doi: 10.3390/molecules27134286. [PMID: 35807531]
  • Giti Rahimi, Saeideh Shams, Mohammad Reza Aslani. Effects of crocin supplementation on inflammatory markers, lipid profiles, insulin and cardioprotective indices in women with PCOS: A randomized, double-blind, placebo-controlled trial. Phytotherapy research : PTR. 2022 Jun; 36(6):2605-2615. doi: 10.1002/ptr.7474. [PMID: 35470916]
  • Babak Roshanravan, Saeed Samarghandian, Milad Ashrafizadeh, Alireza Amirabadizadeh, Farhad Saeedi, Tahereh Farkhondeh. Metabolic impact of saffron and crocin: an updated systematic and meta-analysis of randomised clinical trials. Archives of physiology and biochemistry. 2022 Jun; 128(3):666-678. doi: 10.1080/13813455.2020.1716020. [PMID: 32013614]
  • Seyyed Ali Mard, Feryal Savari, Anahita Rezaie, Maryam Khosravi. Therapeutic Effect of Crocin on the NASH Model by Targeting the Fas Receptor Signaling Pathway. The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology. 2022 06; 33(6):505-514. doi: 10.5152/tjg.2022.21088. [PMID: 35786619]
  • Lu Wang, Yu Cao, Xiaoyi Zhang, Chang Liu, Jia Yin, Liangju Kuang, Weiwei He, Daoben Hua. Reactive oxygen species-responsive nanodrug of natural crocin-i with prolonged circulation for effective radioprotection. Colloids and surfaces. B, Biointerfaces. 2022 May; 213(?):112441. doi: 10.1016/j.colsurfb.2022.112441. [PMID: 35272253]
  • Messiah Sarfarazi, Qadir Rajabzadeh, Razieh Tavakoli, Salam A Ibrahim, Seid Mahdi Jafari. Ultrasound-assisted extraction of saffron bioactive compounds; separation of crocins, picrocrocin, and safranal optimized by artificial bee colony. Ultrasonics sonochemistry. 2022 May; 86(?):105971. doi: 10.1016/j.ultsonch.2022.105971. [PMID: 35429897]
  • Marwa Salem, Mariam Shaheen, Abeer Tabbara, Jamilah Borjac. Saffron extract and crocin exert anti-inflammatory and anti-oxidative effects in a repetitive mild traumatic brain injury mouse model. Scientific reports. 2022 03; 12(1):5004. doi: 10.1038/s41598-022-09109-9. [PMID: 35322143]
  • Shahida Anusha Siddiqui, Ali Ali Redha, Edgar Remmet Snoeck, Shubhra Singh, Jesus Simal-Gandara, Salam A Ibrahim, Seid Mahdi Jafari. Anti-Depressant Properties of Crocin Molecules in Saffron. Molecules (Basel, Switzerland). 2022 Mar; 27(7):. doi: 10.3390/molecules27072076. [PMID: 35408474]
  • Vasiliki Sapanidou, Sophia N Lavrentiadou, Michela Errico, Ioannis Panagiotidis, Dimitrios Fletouris, Ioannis Efraimidis, Ioannis Zervos, Ioannis Taitzoglou, Bianca Gasparrini, Maria Tsantarliotou. The addition of crocin in the freezing medium extender improves post-thaw semen quality. Reproduction in domestic animals = Zuchthygiene. 2022 Mar; 57(3):269-276. doi: 10.1111/rda.14049. [PMID: 34825745]
  • Mojtaba Heydari, Mousa Zare, Mohammad Reza Badie, Ronald Ross Watson, Mohammad Reza Talebnejad, Mehrdad Afarid. Crocin as a vision supplement. Clinical & experimental optometry. 2022 Mar; ?(?):1-8. doi: 10.1080/08164622.2022.2039554. [PMID: 35231199]
  • José R Colina, Mario Suwalsky, Karla Petit, David Contreras, Marcela Manrique-Moreno, Malgorzata Jemiola-Rzeminska, Kazimierz Strzalka. In vitro evaluation of the protective effect of crocin on human erythrocytes. Biophysical chemistry. 2022 02; 281(?):106738. doi: 10.1016/j.bpc.2021.106738. [PMID: 34920397]
  • Rihab Mudhafar Ali Hammood Keelo, Hulya Elbe, Yasemin Bicer, Gurkan Yigitturk, Oguzhan Koca, Melike Karayakali, Derya Acar, Eyup Altinoz. Treatment with crocin suppresses diabetic nephropathy progression via modulating TGF-β1 and oxidative stress in an experimental model of pinealectomized diabetic rats. Chemico-biological interactions. 2022 Jan; 351(?):109733. doi: 10.1016/j.cbi.2021.109733. [PMID: 34743986]
  • Débora Cerdá-Bernad, Estefanía Valero-Cases, Joaquín-Julián Pastor, María José Frutos. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. Critical reviews in food science and nutrition. 2022; 62(12):3232-3249. doi: 10.1080/10408398.2020.1864279. [PMID: 33356506]
  • Mozhdeh Taheri-Amlashi, Shahin Hassanpour, Bita Vazir. Effects of the prenatal exposure to crocin in the expression of withdrawal syndrome on reflexive motor behaviors in mice offspring's. Neuroscience letters. 2022 01; 766(?):136352. doi: 10.1016/j.neulet.2021.136352. [PMID: 34788677]
  • Feng Zhang, Peng Liu, Zhaopeng He, Like Zhang, Xinqi He, Feng Liu, Jinsheng Qi. Crocin ameliorates atherosclerosis by promoting the reverse cholesterol transport and inhibiting the foam cell formation via regulating PPARγ/LXR-α. Cell cycle (Georgetown, Tex.). 2022 01; 21(2):202-218. doi: 10.1080/15384101.2021.2015669. [PMID: 34978526]
  • Reyhaneh Naderi, Abbas Pardakhty, Mohammad Farajli Abbasi, Mehdi Ranjbar, Maryam Iranpour. Preparation and evaluation of crocin loaded in nanoniosomes and their effects on ischemia-reperfusion injuries in rat kidney. Scientific reports. 2021 12; 11(1):23525. doi: 10.1038/s41598-021-02073-w. [PMID: 34876613]
  • Sara Asaad Abdulkareem Aljumaily, Mehmet Demir, Hulya Elbe, Gurkan Yigitturk, Yasemin Bicer, Eyup Altinoz. Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. Environmental science and pollution research international. 2021 Dec; 28(46):65802-65813. doi: 10.1007/s11356-021-15409-w. [PMID: 34322808]
  • Marlène Suchareau, Alexandra Bordes, Laurent Lemée. Improved quantification method of crocins in saffron extract using HPLC-DAD after qualification by HPLC-DAD-MS. Food chemistry. 2021 Nov; 362(?):130199. doi: 10.1016/j.foodchem.2021.130199. [PMID: 34091167]
  • Bibi Marzieh Razavizadeh, Noora Arabshahi Delooei. Quantification of crocin, picrocrocin and safranal in saffron stigmas obtained from sounded corms with acoustic waves. Phytochemical analysis : PCA. 2021 Nov; 32(6):1059-1066. doi: 10.1002/pca.3047. [PMID: 33884676]
  • Maryam Saberi-Karimian, Hamideh Safarian-Bana, Elham Mohammadzadeh, Tooba Kazemi, Amin Mansoori, Hamideh Ghazizadeh, Sara Samadi, Irandokht Nikbakht-Jam, Mina Nosrati, Gordon A Ferns, Habibollah Esmaily, Malihe Aghasizadeh, Majid Ghayour-Mobarhan. A pilot study of the effects of crocin on high-density lipoprotein cholesterol uptake capacity in patients with metabolic syndrome: A randomized clinical trial. BioFactors (Oxford, England). 2021 Nov; 47(6):1032-1041. doi: 10.1002/biof.1783. [PMID: 34609029]
  • Mastoureh Naddafi, Mohammad Ali Eghbal, Mahmoud Ghazi-Khansari, Mohammad Reza Sattari, Yadollah Azarmi. Study of the cardioprotective effects of crocin on Human Cardiac Myocyte cells and reduction of oxidative stress produced by aluminum phosphide poisoning. The Journal of pharmacy and pharmacology. 2021 Oct; 73(11):1539-1546. doi: 10.1093/jpp/rgaa066. [PMID: 33793778]
  • Jikun Du, Yuanhua Li, Daibo Song, Jierong Liu, Qunfa Huang, Jinwen Li, Baohong Li, Li Li. Protective effects of crocin against endogenous Aβ-induced neurotoxicity in N2a/APP695swe cells. Psychopharmacology. 2021 Oct; 238(10):2839-2847. doi: 10.1007/s00213-021-05899-4. [PMID: 34191112]
  • Zahid Yaqoob Bhat, Tabasum Mohiuddin, Amit Kumar, Alberto José López-Jiménez, Nasheeman Ashraf. Crocus transcription factors CstMYB1 and CstMYB1R2 modulate apocarotenoid metabolism by regulating carotenogenic genes. Plant molecular biology. 2021 Sep; 107(1-2):49-62. doi: 10.1007/s11103-021-01180-6. [PMID: 34417937]
  • Behzad Mesbahzadeh, Mohammadmehdi Hassanzadeh-Taheri, Mohadese-Sadat Aliparast, Pardis Baniasadi, Mehran Hosseini. The protective effect of crocin on cisplatin-induced testicular impairment in rats. BMC urology. 2021 Sep; 21(1):117. doi: 10.1186/s12894-021-00889-2. [PMID: 34470647]
  • Alberto José López-Jimenez, Sarah Frusciante, Enrique Niza, Oussama Ahrazem, Ángela Rubio-Moraga, Gianfranco Diretto, Lourdes Gómez-Gómez. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (Crocus sativus L.). International journal of molecular sciences. 2021 Aug; 22(16):. doi: 10.3390/ijms22168815. [PMID: 34445522]
  • Mansoore Saharkhiz, Fariba Emadian Razavi, Seyed Mohammad Riahi, Malaksima Ayadilord, Zeinab Rostami, Mohsen Naseri. An In Vitro Study of the Effects of Crocin on the Modulation of DSPP, VEGF-A, HLA-G5, STAT3 and CD200 Expression in Human Dental Pulp Stem Cells. Cellular reprogramming. 2021 08; 23(4):239-249. doi: 10.1089/cell.2021.0032. [PMID: 34348036]
  • Linjuan Zhang, Mengmeng Jing, Quan Liu. Crocin alleviates the inflammation and oxidative stress responses associated with diabetic nephropathy in rats via NLRP3 inflammasomes. Life sciences. 2021 Aug; 278(?):119542. doi: 10.1016/j.lfs.2021.119542. [PMID: 33915128]
  • Sarah Mohamed Mowafy, Abdelmonem Awad Hegazy, Dalia A Mandour, Samaa Salah Abd El-Fatah. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastructural pathology. 2021 Jul; 45(4-5):307-318. doi: 10.1080/01913123.2021.1970660. [PMID: 34459708]
  • Vahideh Behrouz, Golbon Sohrab, Mehdi Hedayati, Meghdad Sedaghat. Inflammatory markers response to crocin supplementation in patients with type 2 diabetes mellitus: A randomized controlled trial. Phytotherapy research : PTR. 2021 Jul; 35(7):4022-4031. doi: 10.1002/ptr.7124. [PMID: 33856733]
  • Fatemeh Kazemi, Iraj Vosough, Samaneh Sepahi, Seyed Ahmad Mohajeri. Effect of crocin versus fluoxetine in treatment of mild to moderate obsessive-compulsive disorder: A double blind randomized clinical trial. Human psychopharmacology. 2021 07; 36(4):e2780. doi: 10.1002/hup.2780. [PMID: 33599345]
  • Xuan Chen, Jingying Huang, Yuchun Lv, Youfang Chen, Jinghong Rao. Crocin exhibits an antihypertensive effect in a rat model of gestational hypertension and activates the Nrf-2/HO-1 signaling pathway. Hypertension research : official journal of the Japanese Society of Hypertension. 2021 Jun; 44(6):642-650. doi: 10.1038/s41440-020-00609-7. [PMID: 33442028]
  • Yang Liu, Caoyuan Yao, Yuan Wang, Xiaolin Liu, Shanggang Xu, Longbin Liang. Protective Effect of Crocin on Liver Function and Survival in Rats With Traumatic Hemorrhagic Shock. The Journal of surgical research. 2021 05; 261(?):301-309. doi: 10.1016/j.jss.2020.12.027. [PMID: 33482612]
  • Mina Gholami, Rozhan Nozarnezhad, Majid Motaghinejad. Hypothetical Protective Effects of Crocin Carotenoid against Coronavirus-Induced Organ Damage: The Possible Role of the NF-κB Signaling Pathway. Iranian journal of medical sciences. 2021 05; 46(3):228-229. doi: 10.30476/ijms.2021.88513.1921. [PMID: 34083855]
  • Morteza Ghasemnejad-Berenji. Immunomodulatory and anti-inflammatory potential of crocin in COVID-19 treatment. Journal of food biochemistry. 2021 05; 45(5):e13718. doi: 10.1111/jfbc.13718. [PMID: 33817822]
  • Gianfranco Diretto, Alberto José López-Jiménez, Oussama Ahrazem, Sarah Frusciante, Jingyuan Song, Ángela Rubio-Moraga, Lourdes Gómez-Gómez. Identification and characterization of apocarotenoid modifiers and carotenogenic enzymes for biosynthesis of crocins in Buddleja davidii flowers. Journal of experimental botany. 2021 04; 72(8):3200-3218. doi: 10.1093/jxb/erab053. [PMID: 33544822]
  • Ling-Lin Lai, Hui-Qin Lu, Wen-Na Li, Hui-Ping Huang, He-Ying Zhou, En-Nian Leng, Yue-Yue Zhang. Protective effects of quercetin and crocin in the kidneys and liver of obese Sprague-Dawley rats with Type 2 diabetes: Effects of quercetin and crocin on T2DM rats. Human & experimental toxicology. 2021 Apr; 40(4):661-672. doi: 10.1177/0960327120954521. [PMID: 33021114]
  • Guangchun Gao, Jiming Wu, Bai Li, Qi Jiang, Ping Wang, Jun Li. Transcriptomic analysis of saffron at different flowering stages using RNA sequencing uncovers cytochrome P450 genes involved in crocin biosynthesis. Molecular biology reports. 2021 Apr; 48(4):3451-3461. doi: 10.1007/s11033-021-06374-1. [PMID: 33934248]
  • Mohadeseh Ghalandari-Shamami, Shahla Nourizade, Mehdi Barati, Behpour Yousefi, Mehrnush Pashayi, Abbas Ali Vafaei, Parviz Kokhaei, Ali Rashidy-Pour. Exercise and crocin prevent adolescent-stress induced impairment of spatial navigation and dendritic retraction in the hippocampal CA3 area in adult male rats. Brain research. 2021 03; 1754(?):147274. doi: 10.1016/j.brainres.2020.147274. [PMID: 33422526]
  • Samareh Babaei, Vahid Niknam, Mehrdad Behmanesh. Nitric oxide induced carotenoid contents in Crocus sativus under salinity. Natural product research. 2021 Mar; 35(5):888-892. doi: 10.1080/14786419.2019.1608544. [PMID: 31084371]
  • Nikolaos Pitsikas. Crocus sativus L. Extracts and Its Constituents Crocins and Safranal; Potential Candidates for Schizophrenia Treatment?. Molecules (Basel, Switzerland). 2021 Feb; 26(5):. doi: 10.3390/molecules26051237. [PMID: 33669124]
  • Fateme Sadat Moslemi, Atousa Vaziri, Golandam Sharifi, Javad Gharechahi. The effect of salt stress on the production of apocarotenoids and the expression of genes related to their biosynthesis in saffron. Molecular biology reports. 2021 Feb; 48(2):1707-1715. doi: 10.1007/s11033-021-06219-x. [PMID: 33611780]
  • Natalia Moratalla-López, Shirin Parizad, Mina Koohi Habibi, Stephan Winter, Siamak Kalantari, Sayanta Bera, Candida Lorenzo, M Valle García-Rodríguez, Akbar Dizadji, Gonzalo L Alonso. Impact of two different dehydration methods on saffron quality, concerning the prevalence of Saffron latent virus (SaLV) in Iran. Food chemistry. 2021 Feb; 337(?):127786. doi: 10.1016/j.foodchem.2020.127786. [PMID: 32795861]
  • Nikolaos Pitsikas, Petros A Tarantilis. Crocins, the Bioactive Components of Crocus sativus L., Counteract the Disrupting Effects of Anesthetic Ketamine on Memory in Rats. Molecules (Basel, Switzerland). 2021 Jan; 26(3):. doi: 10.3390/molecules26030528. [PMID: 33498440]
  • Yuan Pan, Xiao Zhao, Yu Wang, Jun Tan, Da-Xia Chen. Metabolomics integrated with transcriptomics reveals the distribution of iridoid and crocin metabolic flux in Gardenia jasminoides Ellis. PloS one. 2021; 16(9):e0256802. doi: 10.1371/journal.pone.0256802. [PMID: 34506519]
  • Forouzan Yousefi, Fahimeh L Arab, Maryam Rastin, Nafiseh S Tabasi, Karim Nikkhah, Mahmoud Mahmoudi. Comparative assessment of immunomodulatory, proliferative, and antioxidant activities of crocin and crocetin on mesenchymal stem cells. Journal of cellular biochemistry. 2021 01; 122(1):29-42. doi: 10.1002/jcb.29826. [PMID: 32951264]
  • Parisa Esmaili Motlagh, Arefeh Ghafari Novin, Fatemeh Ghahari, Amin Nikzad, Mohadeseh Khoshandam, Saba Mardani, Hashem Khanbabaei, Alireza Farsinejad, Thozhukat Sathyapalan, Amirhossein Sahebkar, Hossein Pourghadamyari. Evaluation of the Effect of Crocin on Doxorubicin-Induced Cardiotoxicity. Advances in experimental medicine and biology. 2021; 1328(?):143-153. doi: 10.1007/978-3-030-73234-9_10. [PMID: 34981476]
  • Habib Yaribeygi, Mina Maleki, Mohammad Taghi Mohammadi, Thozhukat Sathyapalan, Tannaz Jamialahmadi, Amirhossein Sahebkar. Crocin Improves Diabetes-Induced Oxidative Stress via Downregulating the Nox-4 in Myocardium of Diabetic Rats. Advances in experimental medicine and biology. 2021; 1328(?):275-285. doi: 10.1007/978-3-030-73234-9_18. [PMID: 34981484]
  • Yonggang Zhang, Meng Zhu, Surapaneni Krishna Mohan, Zhi Hao. Crocin treatment promotes the oxidative stress and apoptosis in human thyroid cancer cells FTC-133 through the inhibition of STAT/JAK signaling pathway. Journal of biochemical and molecular toxicology. 2021 Jan; 35(1):e22608. doi: 10.1002/jbt.22608. [PMID: 32886819]
  • Mona A Hussain, Noha M Abogresha, Ghada AbdelKader, Ranya Hassan, Eman Z Abdelaziz, Sahar M Greish. Antioxidant and Anti-Inflammatory Effects of Crocin Ameliorate Doxorubicin-Induced Nephrotoxicity in Rats. Oxidative medicine and cellular longevity. 2021; 2021(?):8841726. doi: 10.1155/2021/8841726. [PMID: 33628387]
  • V K D Krishnaswamy, Phaniendra Alugoju, Latha Periyasamy. Effect of short-term oral supplementation of crocin on age-related oxidative stress, cholinergic, and mitochondrial dysfunction in rat cerebral cortex. Life sciences. 2020 Dec; 263(?):118545. doi: 10.1016/j.lfs.2020.118545. [PMID: 33038382]
  • Ji Xuan, Dongmei Zhu, Zhengyuan Cheng, Yuping Qiu, Mei Shao, Ya Yang, Qi Zhai, Fangyu Wang, Feng Qin. Crocin inhibits the activation of mouse hepatic stellate cells via the lnc-LFAR1/MTF-1/GDNF pathway. Cell cycle (Georgetown, Tex.). 2020 12; 19(24):3480-3490. doi: 10.1080/15384101.2020.1848064. [PMID: 33295246]
  • J Chhimwal, S Sharma, P Kulurkar, V Patial. Crocin attenuates CCl4-induced liver fibrosis via PPAR-γ mediated modulation of inflammation and fibrogenesis in rats. Human & experimental toxicology. 2020 Dec; 39(12):1639-1649. doi: 10.1177/0960327120937048. [PMID: 32633567]
  • Nikolaos Pitsikas, Petros A Tarantilis. The GABAA-Benzodiazepine Receptor Antagonist Flumazenil Abolishes the Anxiolytic Effects of the Active Constituents of Crocus sativus L. Crocins in Rats. Molecules (Basel, Switzerland). 2020 Nov; 25(23):. doi: 10.3390/molecules25235647. [PMID: 33266149]
  • Maria Anna Maggi, Silvia Bisti, Cristiana Picco. Saffron: Chemical Composition and Neuroprotective Activity. Molecules (Basel, Switzerland). 2020 Nov; 25(23):. doi: 10.3390/molecules25235618. [PMID: 33260389]
  • Eleni Kakouri, Adamantia Agalou, Charalabos Kanakis, Dimitris Beis, Petros A Tarantilis. Crocins from Crocus sativus L. in the Management of Hyperglycemia. In Vivo Evidence from Zebrafish. Molecules (Basel, Switzerland). 2020 Nov; 25(22):. doi: 10.3390/molecules25225223. [PMID: 33182581]
  • Qingfeng Xiao, Ruonan Shu, Chenlu Wu, Yingpeng Tong, Ze Xiong, Jiafeng Zhou, Chunan Yu, Xiaoxian Xie, Zhengwei Fu. Crocin-I alleviates the depression-like behaviors probably via modulating "microbiota-gut-brain" axis in mice exposed to chronic restraint stress. Journal of affective disorders. 2020 11; 276(?):476-486. doi: 10.1016/j.jad.2020.07.041. [PMID: 32871679]