2-Hexenal (BioDeep_00000000697)
Secondary id: BioDeep_00000179761, BioDeep_00000400207, BioDeep_00000861632
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin
描述信息
(2E)-hexenal is a 2-hexenal in which the olefinic double bond has E configuration. It occurs naturally in a wide range of fruits, vegetables, and spices. It has a role as a flavouring agent, an antibacterial agent and a plant metabolite.
2-Hexenal is a natural product found in Lonicera japonica, Origanum sipyleum, and other organisms with data available.
2-Hexenal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. 2-Hexenal is found in allspice. 2-Hexenal is used in perfumery and flavourings. 2-Hexenal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms.
2-Hexenal (CAS: 505-57-7), also known as 2-hexenaldehyde or 3-propylacrolein, belongs to the class of organic compounds known as medium-chain aldehydes. These are aldehydes with a chain length containing between 6 and 12 carbon atoms. Thus, 2-hexenal is considered to be a fatty aldehyde lipid molecule. Outside of the human body, 2-hexenal is found, on average, in the highest concentration within a few different foods, such as corn, tea, and bilberries. 2-Hexenal has also been detected, but not quantified in, several different foods, such as common wheat, ginkgo nuts, spearmints, sunflowers, and watermelons. This could make 2-hexenal a potential biomarker for the consumption of these foods. (E)-2-Hexenal is found in allspice. It is used in perfumery and flavouring. (E)-2-Hexenal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821).
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives
D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators
Acquisition and generation of the data is financially supported in part by CREST/JST.
Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].
同义名列表
75 个代谢物同义名
InChI=1/C6H10O/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+; 4-01-00-03468 (Beilstein Handbook Reference); 3-01-00-02993 (Beilstein Handbook Reference); trans-2-Hexenal (leaf aldehyde) (natural); trans-2-Hexen-1-al, analytical standard; trans-2-Hexen-1-al, natural, >=95\\%, FG; trans-2-Hexen-1-al, >=95\\%, FCC, FG; trans-2-Hexenal (leaf aldehyde); .ALPHA.-.BETA.-HEXYLENEALDEHYDE; alpha,beta-Hexylenaldehyde; MBDOYVRWFFCFHM-SNAWJCMRSA-; alpha.beta-Hexylenaldehyd; trans-2-Hexen-1-al, 98\\%; trans-2-Hexenyl Aldehyde; (E)-2-HEXEN-1-AL [FCC]; trans-3-Propylacrolein; .BETA.-PROPYL ACROLEIN; trans-2-Hexenal, 96\\%; beta-Propyl acrolein; beta-Propylacrolein; GREEN LEAF ALDEHYDE; 2-hexenal, Z-isomer; Α,β-hexylenaldehyde; trans-2-Hexenal-D2; trans-2-Hexen-1-al; Hexylenic aldehyde; trans-2-Hexenal-D4; Β-propyl acrolein; 3-propyl acrolein; b-Propyl acrolein; 3-propyl-acrolein; Trans-2-Hexenal; Trans-?2-?Hexenal; 2-HEXENAL, TRANS-; 3-Propylacrolein; trans-Hex-2-enal; Β-propylacrolein; b-Propylacrolein; 2-HEXENAL [FHFI]; 2-Hexenal, (2E)-; (E)-2-hexen-1-al; UNII-69JX3AIR1I; (E)-hex--2-enal; 2-trans-Hexenal; Trans-2-Hexenal; hexen-2-en-1-al; 2-hexenaldehyde; (2E)-hex-2-enal; trans-2 hexenal; 4-Hexenal,(4E)-; 2-Hexenal, (E)-; (2E)-2-Hexenal; Trans-2-exenal; n-C3H7CH=CHCHO; (E)-Hex-2-enal; (E)-2-HEXENAL; Leaf aldehyde; hex-2-en-1-al; Hexenal, (E)-; Tox21_201286; 2-hexenal, E; 2-Hexen-1-al; (2e)-hexenal; Tox21_303390; Hex-2-enal; 69JX3AIR1I; hexen-2-al; 2-Hexenal; AI3-24649; AI3-35157; FAL 6:1; Hexenal; (E)-2-Hexenal; 2-Hexenal; 2-Hexenal
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:19591
- ChEBI: CHEBI:28913
- KEGG: C08497
- PubChem: 5281168
- PubChem: 10460
- HMDB: HMDB0031496
- Metlin: METLIN36524
- ChEMBL: CHEMBL2228570
- Wikipedia: Cis-3-Hexenal
- LipidMAPS: LMFA06000002
- MeSH: Hexobarbital
- MeSH: 2-hexenal
- ChemIDplus: 0000505577
- MetaCyc: TRANS-2-HEXENAL
- KNApSAcK: C00000351
- foodb: FDB004502
- chemspider: 4444608
- CAS: 1335-39-3
- CAS: 6728-26-3
- CAS: 505-57-7
- MoNA: PR100058
- medchemexpress: HY-128429
- PMhub: MS000007971
- PubChem: 10690
- NIKKAJI: J36.838E
- RefMet: 3-Propyl acrolein
- KNApSAcK: 28913
- LOTUS: LTS0207868
- wikidata: Q209405
分类词条
相关代谢途径
Reactome(0)
代谢反应
241 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(236)
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
9(S)-HPOTE ⟶ (2E,6Z)-non-2,6-dienal + 9-oxononanoate
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
NADP+ + allyl alcohol ⟶ H+ + NADPH + acrolein
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
40 个相关的物种来源信息
- 696237 - Aethus indicus: 10.1515/ZNC-1984-3-422
- 68299 - Ageratum conyzoides: 10.1080/10412905.1993.9698184
- 4217 - Arctium lappa: 10.1271/NOGEIKAGAKU1924.59.389
- 158541 - Aristolochia debilis: 10.1021/NP50052A041
- 259893 - Artemisia argyi Lévl.et Vant.: -
- 3589 - Basella alba: 10.1016/0889-1575(91)90017-Z
- 7091 - Bombyx Mori L.: -
- 542762 - Camellia sinensis var. sinensis: 10.1016/0031-9422(73)80435-2
- 79829 - Capillipedium parviflorum: 10.1016/J.PHYTOCHEM.2004.04.003
- 65558 - Capparis spinosa: 10.1016/S0031-6865(97)00023-X
- 1238147 - Corydalis bungeana Turcz.: -
- 202634 - Crateva religiosa: 10.1021/NP50052A041
- 99501 - Echinophora tenuifolia: 10.1002/FFJ.2730040206
- 551215 - Euploea sylvester: 10.1515/ZNC-1988-1-219
- 186951 - Farfugium japonicum: 10.1248/YAKUSHI1947.83.4_422
- 63704 - Gonioctena viminalis: 10.1007/BF01940454
- 9606 - Homo sapiens: -
- 16752 - Houttuynia cordata: 10.3390/MOLECULES200610298
- 105884 - Lonicera japonica: 10.3390/MOLECULES18021368
- 3879 - Medicago sativa: 10.1016/S0031-9422(97)00119-2
- 1945650 - Micromeria maderensis: 10.1002/FFJ.2730100313
- 54731 - Nepeta racemosa: 10.1080/10412905.1993.9698205
- 4146 - Olea europaea: 10.1016/S0031-9422(97)00730-9
- 1132404 - Origanum sipyleum: 10.1080/10412905.1992.9698035
- 39352 - Origanum vulgare: 10.1080/10412905.1993.9698253
- 204151 - Orthosiphon aristatus: 10.1055/S-2007-969136
- 44586 - Panax Notoginseng (Burk.) F. H. Chen Ex C. Chow: -
- 48386 - Perilla Frutescens: -
- 125157 - Peristeria elata: 10.1080/10412905.1992.9698106
- 260139 - Pimenta racemosa: 10.1080/10412905.1991.9697952
- 33090 - Plants: -
- 28511 - Pogostemon Cablin (Blanco) Benth.: -
- 97693 - Quercus agrifolia: 10.1016/S0031-9422(00)84047-9
- 41704 - Riptortus clavatus: 10.1271/BBB.56.1004
- 329032 - Riptortus pedestris: 10.1271/BBB.56.1004
- 35938 - Robinia pseudoacacia: 10.1515/ZNB-1961-0704
- 38869 - Salvia sclarea: 10.1076/PHBI.35.3.218.13295
- 1194133 - Thymus longicaulis: 10.1080/10412905.1993.9698222
- 29760 - Vitis vinifera:
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yue Kong, Zenan Wu, Yanhui Li, Zimeng Kang, Lu Wang, Fengying Xie, Dianyu Yu. Analyzing changes in volatile flavor compounds of soy protein isolate during ultrasonic-thermal synergistic treatments using electronic nose and HS-SPME-GC-MS combined with chemometrics.
Food chemistry.
2024 Jul; 445(?):138795. doi:
10.1016/j.foodchem.2024.138795
. [PMID: 38382257] - Di Ma, Tianbao Lin, Huiyu Zhao, Yougui Li, Xinquan Wang, Shanshan Di, Zhenzhen Liu, Mingqi Liu, Peipei Qi, Suling Zhang, Rui Jiao. Development and comprehensive SBSE-GC/Q-TOF-MS analysis optimization, comparison, and evaluation of different mulberry varieties volatile flavor.
Food chemistry.
2024 Jun; 443(?):138578. doi:
10.1016/j.foodchem.2024.138578
. [PMID: 38301554] - Xin Hao, Shuyao Wang, Yu Fu, Yahui Liu, Hongyu Shen, Libo Jiang, Eric S McLamore, Yingbai Shen. The WRKY46-MYC2 module plays a critical role in E-2-hexenal-induced anti-herbivore responses by promoting flavonoid accumulation.
Plant communications.
2024 Feb; 5(2):100734. doi:
10.1016/j.xplc.2023.100734
. [PMID: 37859344] - Yuhang Deng, Huan Kan, Yonghe Li, Yun Liu, Xu Qiu. Analysis of Volatile Components in Rosa roxburghii Tratt. and Rosa sterilis Using Headspace-Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry.
Molecules (Basel, Switzerland).
2023 Nov; 28(23):. doi:
10.3390/molecules28237879
. [PMID: 38067608] - Yuri Aratani, Takuya Uemura, Takuma Hagihara, Kenji Matsui, Masatsugu Toyota. Green leaf volatile sensory calcium transduction in Arabidopsis.
Nature communications.
2023 10; 14(1):6236. doi:
10.1038/s41467-023-41589-9
. [PMID: 37848440] - Yiping Yan, Wenpeng Lu, Taiping Tian, Nan Shu, Yiming Yang, Shutian Fan, Xianyan Han, Yunhua Ge, Peilei Xu. Analysis of Volatile Components in Dried Fruits and Branch Exudates of Schisandra chinensis with Different Fruit Colors Using GC-IMS Technology.
Molecules (Basel, Switzerland).
2023 Sep; 28(19):. doi:
10.3390/molecules28196865
. [PMID: 37836708] - Yusen Wu, Xiujie Li, Wenwen Zhang, Lei Wang, Bo Li, Shiping Wang. Aroma profiling of Shine Muscat grape provides detailed insights into the regulatory effect of gibberellic acid and N-(2-chloro-4-pyridinyl)-N-phenylurea applications on aroma quality.
Food research international (Ottawa, Ont.).
2023 08; 170(?):112950. doi:
10.1016/j.foodres.2023.112950
. [PMID: 37316003] - Justin George, Gadi V P Reddy, Nathan Little, Sarah E J Arnold, David R Hall. Combining visual cues and pheromone blends for monitoring and management of the tarnished plant bug Lygus lineolaris (Hemiptera: Miridae).
Pest management science.
2023 Jun; 79(6):2163-2171. doi:
10.1002/ps.7395
. [PMID: 36730090] - Chaoyu Zhai, Steven M Lonergan, Elisabeth J Huff-Lonergan, Logan G Johnson, Kitty Brown, Jessica E Prenni, Mahesh N Nair. Lipid Peroxidation Products Influence Calpain-1 Functionality In Vitro by Covalent Binding.
Journal of agricultural and food chemistry.
2023 May; 71(20):7836-7846. doi:
10.1021/acs.jafc.3c01225
. [PMID: 37167568] - Maciej Jakobina, Jacek Łyczko, Kinga Zydorowicz, Renata Galek, Antoni Szumny. The Potential Use of Plant Growth Regulators for Modification of the Industrially Valuable Volatile Compounds Synthesis in Hylocreus undatus Stems.
Molecules (Basel, Switzerland).
2023 May; 28(9):. doi:
10.3390/molecules28093843
. [PMID: 37175252] - Lei Sun, Ann Van Loey, Carolien Buvé, Chris W Michiels. Experimental Evolution Reveals a Novel Ene Reductase That Detoxifies α,β-Unsaturated Aldehydes in Listeria monocytogenes.
Microbiology spectrum.
2023 Apr; ?(?):e0487722. doi:
10.1128/spectrum.04877-22
. [PMID: 37036358] - Jihong Zhang, Yuqiong Li, Shenglong Du, Zhiping Deng, Quanwu Liang, Ge Song, Haihua Wang, Mingli Yan, Xuewen Wang. Transcriptomic and proteomic analysis reveals (E)-2-hexenal modulates tomato resistance against Botrytis cinerea by regulating plant defense mechanism.
Plant molecular biology.
2023 Apr; ?(?):. doi:
10.1007/s11103-023-01339-3
. [PMID: 37027117] - Serkan Selli, Rosa Perestrelo, Hasim Kelebek, Onur Sevindik, Fabiano Travaglia, Jean Daniel Coïsson, José S Câmara, Matteo Bordiga. Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties (Nebbiolo and Erbaluce) grown in Italy.
Food research international (Ottawa, Ont.).
2023 Mar; 165(?):112575. doi:
10.1016/j.foodres.2023.112575
. [PMID: 36869554] - Jihong Zhang, Quanwu Liang, Yuqiong Li, Zhiping Deng, Ge Song, Haihua Wang, Mingli Yan, Xuewen Wang. Integrated transcriptome and metabolome analyses shed light on the defense mechanisms in tomato plants after (E)-2-hexenal fumigation.
Genomics.
2023 Feb; 115(2):110592. doi:
10.1016/j.ygeno.2023.110592
. [PMID: 36854356] - Xin Liang, Ruyi Qian, Yiqun Ou, Dan Wang, Xianyong Lin, Chengliang Sun. Lipid peroxide-derived short-chain aldehydes promote programmed cell death in wheat roots under aluminum stress.
Journal of hazardous materials.
2023 02; 443(Pt A):130142. doi:
10.1016/j.jhazmat.2022.130142
. [PMID: 36265378] - Guo-Zhi Ji, Xiao-Min Li, Yang Dong, Yu-Dong Shi. Composition, formation mechanism, and removal method of off-odor in soymilk products.
Journal of food science.
2022 Dec; 87(12):5175-5190. doi:
10.1111/1750-3841.16370
. [PMID: 36353794] - Rongrong Yue, Zhong Zhang, Qianqian Shi, Xiaoshan Duan, Cuiping Wen, Bingqi Shen, Xingang Li. Identification of the key genes contributing to the LOX-HPL volatile aldehyde biosynthesis pathway in jujube fruit.
International journal of biological macromolecules.
2022 Dec; 222(Pt A):285-294. doi:
10.1016/j.ijbiomac.2022.09.155
. [PMID: 36150569] - Qinghua Wang, Fan Gao, Xuexue Chen, Wenjiang Wu, Lei Wang, Jiangli Shi, Yun Huang, Yuanyue Shen, Guoliang Wu, Jiaxuan Guo. Characterization of key aroma compounds and regulation mechanism of aroma formation in local Binzi (Malus pumila × Malus asiatica) fruit.
BMC plant biology.
2022 Nov; 22(1):532. doi:
10.1186/s12870-022-03896-z
. [PMID: 36380276] - Dariusz Piesik, Jan Bocianowski, Karol Kotwica, Grzegorz Lemańczyk, Magdalena Piesik, Veronika Ruzsanyi, Chris A Mayhew. Responses of Adult Hypera rumicis L. to Synthetic Plant Volatile Blends.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196290
. [PMID: 36234827] - Dicheng Ma, Haiyan Yu, Guangrui Cui, Jiamei Zhu, Bingyu Zhu, Wei Mu, Feng Liu. Exposure of zebrafish (Danio rerio) to trans-2-hexenal induces oxidative stress and protein degeneration of the gill.
The Science of the total environment.
2022 Sep; 854(?):158813. doi:
10.1016/j.scitotenv.2022.158813
. [PMID: 36113795] - Rajinikanth Mohan, Sara Spells, Daowen Wang, Zheng Qing Fu. Caffeoylputrescine-hexenal-mediated nonhost resistance against leafhoppers.
Trends in plant science.
2022 09; 27(9):837-839. doi:
10.1016/j.tplants.2022.05.009
. [PMID: 35660343] - Cong Chen, Fei Yu, Xinli Wen, Shuna Chen, Kaixi Wang, Feiquan Wang, Jianming Zhang, Yuanyuan Wu, Puming He, Youying Tu, Bo Li. Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal.
Food chemistry.
2022 Jul; 383(?):132463. doi:
10.1016/j.foodchem.2022.132463
. [PMID: 35183969] - Dicheng Ma, Guoxian Wang, Jiamei Zhu, Wei Mu, Daolong Dou, Feng Liu. Green Leaf Volatile Trans-2-Hexenal Inhibits the Growth of Fusarium graminearum by Inducing Membrane Damage, ROS Accumulation, and Cell Dysfunction.
Journal of agricultural and food chemistry.
2022 May; 70(18):5646-5657. doi:
10.1021/acs.jafc.2c00942
. [PMID: 35481379] - Haifeng Sun, Xinyu Zuo, Qingqing Zhang, Jianping Gao, Guoyin Kai. Elicitation of (E)-2-Hexenal and 2,3-Butanediol on the Bioactive Compounds in Adventitious Roots of Astragalus membranaceus var. mongholicus.
Journal of agricultural and food chemistry.
2022 Jan; 70(2):470-479. doi:
10.1021/acs.jafc.1c05813
. [PMID: 34985895] - Victoria L Korn, Kayla K Pennerman, Sally Padhi, Joan W Bennett. Trans-2-hexenal downregulates several pathogenicity genes of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats.
Journal of industrial microbiology & biotechnology.
2021 Dec; 48(9-10):. doi:
10.1093/jimb/kuab060
. [PMID: 34415032] - Yanqun Xu, Zhichao Tong, Xiaochen Zhang, Xing Zhang, Zisheng Luo, Wenyong Shao, Li Li, Quan Ma, Xiaodong Zheng, Weiguo Fang. Plant volatile organic compound (E)-2-hexenal facilitates Botrytis cinerea infection of fruits by inducing sulfate assimilation.
The New phytologist.
2021 07; 231(1):432-446. doi:
10.1111/nph.17378
. [PMID: 33792940] - Kaidi Cui, Leiming He, Guangrui Cui, Tao Zhang, Yue Chen, Tao Zhang, Wei Mu, Feng Liu. Biological Activity of trans-2-Hexenal Against the Storage Insect Pest Tribolium castaneum (Coleoptera: Tenebrionidae) and Mycotoxigenic Storage Fungi.
Journal of economic entomology.
2021 04; 114(2):979-987. doi:
10.1093/jee/toab001
. [PMID: 33511401] - Huimin Zhang, Hongguang Yan, Quan Li, Hui Lin, Xiaopeng Wen. Identification of VOCs in essential oils extracted using ultrasound- and microwave-assisted methods from sweet cherry flower.
Scientific reports.
2021 01; 11(1):1167. doi:
10.1038/s41598-020-80891-0
. [PMID: 33441964] - Jianwei Chen, Yaojia Lu, Xinyi Ye, Mahmoud Emam, Huawei Zhang, Hong Wang. Current advances in Vibrio harveyi quorum sensing as drug discovery targets.
European journal of medicinal chemistry.
2020 Dec; 207(?):112741. doi:
10.1016/j.ejmech.2020.112741
. [PMID: 32871343] - Shuangling Hu, Qinghua Chen, Fei Guo, Mingle Wang, Hua Zhao, Yu Wang, Dejiang Ni, Pu Wang. (Z)-3-Hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis.
Plant molecular biology.
2020 Jun; 103(3):287-302. doi:
10.1007/s11103-020-00992-2
. [PMID: 32240472] - Jianqiu Chen, Jiahong Lü, Zishun He, Feng Zhang, Shaoling Zhang, Huping Zhang. Investigations into the production of volatile compounds in Korla fragrant pears (Pyrus sinkiangensis Yu).
Food chemistry.
2020 Jan; 302(?):125337. doi:
10.1016/j.foodchem.2019.125337
. [PMID: 31419770] - Renata Zawirska-Wojtasiak, Beata Jankowska, Paulina Piechowska, Sylwia Mildner-Szkudlarz. Vitamin C and aroma composition of fresh leaves from Kalanchoe pinnata and Kalanchoe daigremontiana.
Scientific reports.
2019 12; 9(1):19786. doi:
10.1038/s41598-019-56359-1
. [PMID: 31875020] - Lilia Zago, Giacomo Squeo, Edna Ivani Bertoncini, Graziana Difonzo, Francesco Caponio. Chemical and sensory characterization of Brazilian virgin olive oils.
Food research international (Ottawa, Ont.).
2019 12; 126(?):108588. doi:
10.1016/j.foodres.2019.108588
. [PMID: 31732048] - Junko Wakai, Shoko Kusama, Kosuke Nakajima, Shikiho Kawai, Yasuaki Okumura, Kaori Shiojiri. Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry.
Scientific reports.
2019 07; 9(1):10112. doi:
10.1038/s41598-019-46307-4
. [PMID: 31300659] - Lisa Yen Wen Chua, Bee Lin Chua, Adam Figiel, Chien Hwa Chong, Aneta Wojdyło, Antoni Szumny, Krzysztof Lech. Characterisation of the Convective Hot-Air Drying and Vacuum Microwave Drying of Cassia alata: Antioxidant Activity, Essential Oil Volatile Composition and Quality Studies.
Molecules (Basel, Switzerland).
2019 Apr; 24(8):. doi:
10.3390/molecules24081625
. [PMID: 31022967] - Kai Chen, Mao-Xi Huang, Qing-Cai Shi, Xin Xie, Lin-Hong Jin, Wei-Ming Xu, Xiang-Yang Li. Screening of a potential leafhopper attractants and their applications in tea plantations.
Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes.
2019; 54(10):858-865. doi:
10.1080/03601234.2019.1633856
. [PMID: 31264923] - Toshiyuki Tanaka, Ayana Ikeda, Kaori Shiojiri, Rika Ozawa, Kazumi Shiki, Naoko Nagai-Kunihiro, Kenya Fujita, Koichi Sugimoto, Katsuyuki T Yamato, Hideo Dohra, Toshiyuki Ohnishi, Takao Koeduka, Kenji Matsui. Identification of a Hexenal Reductase That Modulates the Composition of Green Leaf Volatiles.
Plant physiology.
2018 10; 178(2):552-564. doi:
10.1104/pp.18.00632
. [PMID: 30126866] - Yan-Lun Ju, Xiao-Feng Yue, Xian-Fang Zhao, Hui Zhao, Yu-Lin Fang. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress.
Plant physiology and biochemistry : PPB.
2018 Sep; 130(?):501-510. doi:
10.1016/j.plaphy.2018.07.036
. [PMID: 30096685] - Li-Jun Ju, Chong Zhang, Jing-Jing Liao, Yue-Peng Li, Hong-Yan Qi. An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances.
Journal of Zhejiang University. Science. B.
2018 Aug; 19(8):596-609. doi:
10.1631/jzus.b1700388
. [PMID: 30070083] - Rui Xin, Xiaohong Liu, Chunyan Wei, Chong Yang, Hongru Liu, Xiangmei Cao, Di Wu, Bo Zhang, Kunsong Chen. E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit.
Sensors (Basel, Switzerland).
2018 Mar; 18(3):. doi:
10.3390/s18030765
. [PMID: 29498705] - Francisco J Hidalgo, Isabel Aguilar, Rosario Zamora. Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals.
Food chemistry.
2018 Feb; 240(?):822-830. doi:
10.1016/j.foodchem.2017.08.027
. [PMID: 28946347] - Missihoun D Tagnon, Kotchoni O Simeon. Aldehyde dehydrogenases may modulate signaling by lipid peroxidation-derived bioactive aldehydes.
Plant signaling & behavior.
2017 Nov; 12(11):e1387707. doi:
10.1080/15592324.2017.1387707
. [PMID: 28990846] - Alessandra Scala, Rossana Mirabella, Joachim Goedhart, Michel de Vries, Michel A Haring, Robert C Schuurink. Forward genetic screens identify a role for the mitochondrial HER2 in E-2-hexenal responsiveness.
Plant molecular biology.
2017 Nov; 95(4-5):399-409. doi:
10.1007/s11103-017-0659-8
. [PMID: 28918565] - Yunhe Zhao, Shuangyu Xu, Hongbao Lu, Daxia Zhang, Feng Liu, Jin Lin, Chenggang Zhou, Wei Mu. Effects of the plant volatile trans‑2-hexenal on the dispersal ability, nutrient metabolism and enzymatic activities of Bursaphelenchus xylophilus.
Pesticide biochemistry and physiology.
2017 Nov; 143(?):147-153. doi:
10.1016/j.pestbp.2017.08.004
. [PMID: 29183585] - Carolina Contreras, Wilfried Schwab, Mechthild Mayershofer, Mauricio González-Agüero, Bruno G Defilippi. Volatile Compound and Gene Expression Analyses Reveal Temporal and Spatial Production of LOX-Derived Volatiles in Pepino (Solanum muricatum Aiton) Fruit and LOX Specificity.
Journal of agricultural and food chemistry.
2017 Jul; 65(29):6049-6057. doi:
10.1021/acs.jafc.7b01569
. [PMID: 28669186] - Mehrnaz Riasat, Ali Ashraf Jafari, Atefeh Bahmanzadegan, Ahmad Hatami, Faraneh Zareiyan. The constituents of essential oil in leaves of Karaj accession of Trigonella foenum graecum.
Natural product research.
2017 Jul; 31(14):1709-1712. doi:
10.1080/14786419.2017.1286484
. [PMID: 28278666] - Eşref Demir, Ricard Marcos. Assessing the genotoxic effects of two lipid peroxidation products (4-oxo-2-nonenal and 4-hydroxy-hexenal) in haemocytes and midgut cells of Drosophila melanogaster larvae.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2017 Jul; 105(?):1-7. doi:
10.1016/j.fct.2017.03.036
. [PMID: 28343031] - Petr Grúz, Masatomi Shimizu, Kei-Ichi Sugiyama, Masamitsu Honma. Mutagenicity of ω-3 fatty acid peroxidation products in the Ames test.
Mutation research. Genetic toxicology and environmental mutagenesis.
2017 Jul; 819(?):14-19. doi:
10.1016/j.mrgentox.2017.05.004
. [PMID: 28622825] - Le Cheng, Shuangyu Xu, Chunmei Xu, Hongbao Lu, Zhengqun Zhang, Daxia Zhang, Wei Mu, Feng Liu. Effects of trans-2-hexenal on reproduction, growth and behaviour and efficacy against the pinewood nematode, Bursaphelenchus xylophilus.
Pest management science.
2017 May; 73(5):888-895. doi:
10.1002/ps.4360
. [PMID: 27414986] - John F Anderson, Francis J Ferrandino, Michael P Vasil, Robert H Bedoukian, Marie Maher, Karen Mckenzie. Relatively Small Quantities of CO2, Ammonium Bicarbonate, and a Blend of (E)-2-Hexenal Plus (E)-2-Octenal Attract Bed Bugs (Hemiptera: Cimicidae).
Journal of medical entomology.
2017 03; 54(2):362-367. doi:
10.1093/jme/tjw189
. [PMID: 28399295] - Z-J Xin, X-W Li, L Bian, X-L Sun. Tea green leafhopper, Empoasca vitis, chooses suitable host plants by detecting the emission level of (3Z)-hexenyl acetate.
Bulletin of entomological research.
2017 Feb; 107(1):77-84. doi:
10.1017/s000748531600064x
. [PMID: 27444230] - Hongbao Lu, Shuangyu Xu, Wenjuan Zhang, Chunmei Xu, Beixing Li, Daxia Zhang, Wei Mu, Feng Liu. Nematicidal Activity of trans-2-Hexenal against Southern Root-Knot Nematode (Meloidogyne incognita) on Tomato Plants.
Journal of agricultural and food chemistry.
2017 Jan; 65(3):544-550. doi:
10.1021/acs.jafc.6b04091
. [PMID: 28048941] - Liwei Zhang, Hongwei Li, Long Zhang. Two Olfactory Pathways to Detect Aldehydes on Locust Mouthpart.
International journal of biological sciences.
2017; 13(6):759-771. doi:
10.7150/ijbs.19820
. [PMID: 28656001] - Joelle F Olson, Leonard M Ver Vers, Roger D Moon, Stephen A Kells. Two compounds in bed bug feces are sufficient to elicit off-host aggregation by bed bugs, Cimex lectularius.
Pest management science.
2017 Jan; 73(1):198-205. doi:
10.1002/ps.4286
. [PMID: 27060680] - ". [Analysis of Volatile Components and Special Aroma in Fresh Roots of Codonopsis Radix].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2016 Sep; 39(9):2005-12. doi:
"
. [PMID: 30207655] - Zhixiang Zhang, Meiping Zhang, Shuwei Yan, Guirong Wang, Yang Liu. A Female-Biased Odorant Receptor from Apolygus lucorum (Meyer-Dür) Tuned to Some Plant Odors.
International journal of molecular sciences.
2016 Jul; 17(8):. doi:
10.3390/ijms17081165
. [PMID: 27483241] - Mikiko Kunishima, Yasuo Yamauchi, Masaharu Mizutani, Masaki Kuse, Hirosato Takikawa, Yukihiro Sugimoto. Identification of (Z)-3:(E)-2-Hexenal Isomerases Essential to the Production of the Leaf Aldehyde in Plants.
The Journal of biological chemistry.
2016 Jul; 291(27):14023-14033. doi:
10.1074/jbc.m116.726687
. [PMID: 27129773] - Vadim E Tseilikman, Denis A Kozochkin, Eugenia B Manukhina, H Fred Downey, Olga B Tseilikman, Maria E Misharina, Anna A Nikitina, Maria V Komelkova, Maxim S Lapshin, Marina V Kondashevskaya, Svetlana S Lazuko, Oxana V Kusina, Marat V Sahabutdinov. Duration of hexobarbital-induced sleep and monoamine oxidase activities in rat brain: Focus on the behavioral activity and on the free-radical oxidation.
General physiology and biophysics.
2016 Apr; 35(2):175-83. doi:
10.4149/gpb_2015039
. [PMID: 26689857] - Shanshan Wang, Takanori Saito, Katsuya Ohkawa, Hitoshi Ohara, Masahiro Shishido, Hiromi Ikeura, Kazuteru Takagi, Shigeyuki Ogawa, Mineyuki Yokoyama, Satoru Kondo. α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).
Journal of plant physiology.
2016 Mar; 192(?):90-7. doi:
10.1016/j.jplph.2016.01.009
. [PMID: 26881925] - Stefano Catola, Giovanni Marino, Giovanni Emiliani, Taravat Huseynova, Mirza Musayev, Zeynal Akparov, Bianca Elena Maserti. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress.
Planta.
2016 Feb; 243(2):441-9. doi:
10.1007/s00425-015-2414-1
. [PMID: 26452697] - Tomonori Asai, Tetsuya Matsukawa, Shin'ichiro Kajiyama. Metabolic changes in Citrus leaf volatiles in response to environmental stress.
Journal of bioscience and bioengineering.
2016 Feb; 121(2):235-41. doi:
10.1016/j.jbiosc.2015.06.004
. [PMID: 26188419] - Xiaowei Xin, Qingshen Liu, Yingying Zhang, Demin Gao. Chemical composition and antibacterial activity of the essential oil from Pyrrosia tonkinensis (Giesenhagen) Ching.
Natural product research.
2016; 30(7):853-6. doi:
10.1080/14786419.2015.1062759
. [PMID: 26214127] - Zhen Zeng, Jimei Ma, Bin Liu, Hong Jiang. Amino acid-catalyzed formation of 2-vinylfuran from lipid-derived 4-oxo-2-hexenal.
Food chemistry.
2015 Dec; 188(?):591-5. doi:
10.1016/j.foodchem.2015.05.058
. [PMID: 26041235] - Michele M Skopec, Kevin D Kohl, Katharina Schramm, James R Halpert, M Denise Dearing. Using the Specialization Framework to Determine Degree of Dietary Specialization in a Herbivorous Woodrat.
Journal of chemical ecology.
2015 Dec; 41(12):1059-68. doi:
10.1007/s10886-015-0654-y
. [PMID: 26631406] - Rossana Mirabella, Han Rauwerda, Silke Allmann, Alessandra Scala, Eleni A Spyropoulou, Michel de Vries, Maaike R Boersma, Timo M Breit, Michel A Haring, Robert C Schuurink. WRKY40 and WRKY6 act downstream of the green leaf volatile E-2-hexenal in Arabidopsis.
The Plant journal : for cell and molecular biology.
2015 Sep; 83(6):1082-96. doi:
10.1111/tpj.12953
. [PMID: 26243404] - Lorenzo Siroli, Francesca Patrignani, Fausto Gardini, Rosalba Lanciotti. Effects of sub-lethal concentrations of thyme and oregano essential oils, carvacrol, thymol, citral and trans-2-hexenal on membrane fatty acid composition and volatile molecule profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis.
Food chemistry.
2015 Sep; 182(?):185-92. doi:
10.1016/j.foodchem.2015.02.136
. [PMID: 25842326] - Lorenzo Siroli, Francesca Patrignani, Diana I Serrazanetti, Giulia Tabanelli, Chiara Montanari, Fausto Gardini, Rosalba Lanciotti. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce.
Food microbiology.
2015 May; 47(?):74-84. doi:
10.1016/j.fm.2014.11.008
. [PMID: 25583340] - Shigeru Tamogami, Koji Noge, Ganesh K Agrawal, Randeep Rakwal. Methyl jasmonate elicits the production of methyl (E)-2-hexenoate from (Z)-2-hexenol via (Z)-2-hexenal in Achyranthes bidentata plant.
FEBS letters.
2015 Jan; 589(3):390-5. doi:
10.1016/j.febslet.2014.12.025
. [PMID: 25575415] - Satoshi Nakaya, Atsushi Usami, Tomohito Yorimoto, Mitsuo Miyazawa. Characteristic Chemical Components and Aroma-active Compounds of the Essential Oils from Ranunculus nipponicus var. submersus Used in Japanese Traditional Food.
Journal of oleo science.
2015; 64(6):595-601. doi:
10.5650/jos.ess14265
. [PMID: 25891110] - Chengyu Chen, Wei Mu, Yunhe Zhao, Hui Li, Peng Zhang, Qiuhong Wang, Feng Liu. Biological Activity of trans-2-Hexenal Against Bradysia odoriphaga (Diptera: Sciaridae) at Different Developmental Stages.
Journal of insect science (Online).
2015; 15(?):. doi:
10.1093/jisesa/iev075
. [PMID: 26170398] - L Bian, X L Sun, X M Cai, Z M Chen. Slow Release of Plant Volatiles Using Sol-Gel Dispensers.
Journal of economic entomology.
2014 12; 107(6):2023-9. doi:
10.1603/ec14054
. [PMID: 26470065] - Mohammad Safi Shalamzari, Ariane Kahnt, Reinhilde Vermeylen, Tadeusz E Kleindienst, Michael Lewandowski, Filip Cuyckens, Willy Maenhaut, Magda Claeys. Characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal.
Environmental science & technology.
2014 Nov; 48(21):12671-8. doi:
10.1021/es503226b
. [PMID: 25271849] - Tracy C Leskey, Virginia Hock, Gérald Chouinard, Daniel Cormier, Kathleen Leahy, Daniel Cooley, Arthur Tuttle, Alan Eaton, Aijun Zhang. Evaluating electrophysiological and behavioral responses to volatiles for improvement of odor-baited trap tree management of Conotrachelus nenuphar (Coleoptera: Curculionidae).
Environmental entomology.
2014 Jun; 43(3):753-61. doi:
10.1603/en13230
. [PMID: 24780096] - Marwa Fathy Bakr Ali, Naoya Kishikawa, Kaname Ohyama, Horria Abdel-Mageed Mohamed, Hanaa Mohamed Abdel-Wadood, Ashraf Mohamed Mahmoud, Takahiro Imazato, Yukitaka Ueki, Mitsuhiro Wada, Naotaka Kuroda. Chromatographic determination of low-molecular mass unsaturated aliphatic aldehydes with peroxyoxalate chemiluminescence detection after fluorescence labeling with 4-(N,N-dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2014 Mar; 953-954(?):147-52. doi:
10.1016/j.jchromb.2014.02.009
. [PMID: 24614624] - Chang Yeol Yang, Junheon Kim, Seung-Joon Ahn, Dong-Hwan Kim, Myoung Rae Cho. Identification of the female-produced sex pheromone of the plant bug Apolygus spinolae.
Journal of chemical ecology.
2014 Mar; 40(3):244-9. doi:
10.1007/s10886-014-0407-3
. [PMID: 24647725] - Muhammad Azam, Min Song, Fangjuan Fan, Bo Zhang, Yaying Xu, Changjie Xu, Kunsong Chen. Comparative analysis of flower volatiles from nine citrus at three blooming stages.
International journal of molecular sciences.
2013 Nov; 14(11):22346-67. doi:
10.3390/ijms141122346
. [PMID: 24232454] - Satoshi Endo, Toshiyuki Matsunaga, Atsuko Matsumoto, Yuki Arai, Satoshi Ohno, Ossama El-Kabbani, Kazuo Tajima, Yasuo Bunai, Shigeru Yamano, Akira Hara, Yukio Kitade. Rabbit 3-hydroxyhexobarbital dehydrogenase is a NADPH-preferring reductase with broad substrate specificity for ketosteroids, prostaglandin D₂, and other endogenous and xenobiotic carbonyl compounds.
Biochemical pharmacology.
2013 Nov; 86(9):1366-75. doi:
10.1016/j.bcp.2013.08.024
. [PMID: 23994167] - Anthony J De Lucca, Carol H Carter-Wientjes, Stephen M Boué, Mary P Lovisa, Deepak Bhatnagar. Inhibition of bacterial and filamentous fungal growth in high moisture, nonsterile corn with intermittent pumping of trans-2-hexenal vapor.
Journal of food science.
2013 Jul; 78(7):M1029-35. doi:
10.1111/1750-3841.12151
. [PMID: 23865451] - Daihua Hu, Juntao Feng, Zhihui Wang, Hua Wu, Xing Zhang. Effect of nine plant volatiles in the field on the sex pheromones of Leguminivora glycinivorella.
Natural product communications.
2013 Mar; 8(3):393-6. doi:
"
. [PMID: 23678819] - Lianzhu Lin, Mingzhu Zhuang, Fenfen Lei, Bao Yang, Mouming Zhao. GC/MS analysis of volatiles obtained by headspace solid-phase microextraction and simultaneous-distillation extraction from Rabdosia serra (MAXIM.) HARA leaf and stem.
Food chemistry.
2013 Jan; 136(2):555-62. doi:
10.1016/j.foodchem.2012.08.048
. [PMID: 23122097] - Sandeep Banu, Balaji Bhaskar, Premkumar Balasekar. Hepatoprotective and antioxidant activity of Leucas aspera against D-galactosamine induced liver damage in rats.
Pharmaceutical biology.
2012 Dec; 50(12):1592-5. doi:
10.3109/13880209.2012.685130
. [PMID: 22992009] - Simon A Zebelo, Kenji Matsui, Rika Ozawa, Massimo E Maffei. Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon) plant-to-plant communication.
Plant science : an international journal of experimental plant biology.
2012 Nov; 196(?):93-100. doi:
10.1016/j.plantsci.2012.08.006
. [PMID: 23017903] - Ozgür Devrim Can, Umide Demir Ozkay. Effects of Hypericum montbretti extract on the central nervous system and involvement of GABA (A)/Benzodiazepine receptors in its pharmacological activity.
Phytotherapy research : PTR.
2012 Nov; 26(11):1695-700. doi:
10.1002/ptr.4629
. [PMID: 22395896] - Toshihiro Hirao, Atsushi Okazawa, Kazuo Harada, Akio Kobayashi, Toshiya Muranaka, Kazumasa Hirata. Green leaf volatiles enhance methyl jasmonate response in Arabidopsis.
Journal of bioscience and bioengineering.
2012 Nov; 114(5):540-5. doi:
10.1016/j.jbiosc.2012.06.010
. [PMID: 22795666] - Hanane Moummou, Libert Brice Tonfack, Christian Chervin, Mohamed Benichou, Emmanuel Youmbi, Christian Ginies, Alain Latché, Jean-Claude Pech, Benoît van der Rest. Functional characterization of SlscADH1, a fruit-ripening-associated short-chain alcohol dehydrogenase of tomato.
Journal of plant physiology.
2012 Oct; 169(15):1435-44. doi:
10.1016/j.jplph.2012.06.007
. [PMID: 22818888] - Maria Zoeller, Nadja Stingl, Markus Krischke, Agnes Fekete, Frank Waller, Susanne Berger, Martin J Mueller. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid.
Plant physiology.
2012 Sep; 160(1):365-78. doi:
10.1104/pp.112.202846
. [PMID: 22822212] - Pengyan Li, Junwei Zhu, Yuchuan Qin. Enhanced attraction of Plutella xylostella (Lepidoptera: Plutellidae) to pheromone-baited traps with the addition of green leaf volatiles.
Journal of economic entomology.
2012 Aug; 105(4):1149-56. doi:
10.1603/ec11109
. [PMID: 22928292] - Brendan Wampler, Sheryl A Barringer. Volatile generation in bell peppers during frozen storage and thawing using selected ion flow tube mass spectrometry (SIFT-MS).
Journal of food science.
2012 Jun; 77(6):C677-83. doi:
10.1111/j.1750-3841.2012.02727.x
. [PMID: 22590987] - Hiroomi Kai, Keita Hirashima, Osamu Matsuda, Hidetoshi Ikegami, Traud Winkelmann, Takao Nakahara, Koh Iba. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone.
Journal of experimental botany.
2012 Jun; 63(11):4143-50. doi:
10.1093/jxb/ers110
. [PMID: 22511805] - Andre F Cruz, Chantal Hamel, Chao Yang, Tomoko Matsubara, Yantai Gan, Asheesh K Singh, Kousaku Kuwada, Takaaki Ishii. Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation.
Phytochemistry.
2012 Jun; 78(?):72-80. doi:
10.1016/j.phytochem.2012.03.003
. [PMID: 22520499] - Mitsuo Miyazawa, Shunsuke Hashidume, Toshiyuki Takahashi, Tohru Kikuchi. Aroma evaluation of gamazumi (Viburnum dilatatum) by aroma extract dilution analysis and odour activity value.
Phytochemical analysis : PCA.
2012 May; 23(3):208-13. doi:
10.1002/pca.1344
. [PMID: 21858881] - Jack D Williams, Ayman M Saleh, Dom N Acharya. Composition of the essential oil of wild growing Artemisia vulgaris from Erie, Pennsylvania.
Natural product communications.
2012 May; 7(5):637-40. doi:
. [PMID: 22799096]
- Benjamin Fürstenau, Gloria Rosell, Angel Guerrero, Carmen Quero. Electrophysiological and behavioral responses of the black-banded oak borer, Coroebus florentinus, to conspecific and host-plant volatiles.
Journal of chemical ecology.
2012 Apr; 38(4):378-88. doi:
10.1007/s10886-012-0110-1
. [PMID: 22477026] - Eric G Dennis, Robert A Keyzers, Curtis M Kalua, Suzanne M Maffei, Emily L Nicholson, Paul K Boss. Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.
Journal of agricultural and food chemistry.
2012 Mar; 60(10):2638-46. doi:
10.1021/jf2042517
. [PMID: 22332880] - Mara Quaglia, Mario Fabrizi, Antonio Zazzerini, Claudia Zadra. Role of pathogen-induced volatiles in the Nicotiana tabacum-Golovinomyces cichoracearum interaction.
Plant physiology and biochemistry : PPB.
2012 Mar; 52(?):9-20. doi:
10.1016/j.plaphy.2011.11.006
. [PMID: 22305063] - Min Jung Joo, Crispin Merkel, Rafael Auras, Eva Almenar. Development and characterization of antimicrobial poly(l-lactic acid) containing trans-2-hexenal trapped in cyclodextrins.
International journal of food microbiology.
2012 Feb; 153(3):297-305. doi:
10.1016/j.ijfoodmicro.2011.11.015
. [PMID: 22177713] - G S Germinara, A Conte, A De Cristofaro, L Lecce, A Di Palma, G Rotundo, M A Del Nobile. Electrophysiological and behavioral activity of (E)-2-hexenal in the granary weevil and its application in food packaging.
Journal of food protection.
2012 Feb; 75(2):366-70. doi:
10.4315/0362-028x.jfp-11-142
. [PMID: 22289599] - Georg Dierkes, Annette Bongartz, Helmut Guth, Heiko Hayen. Quality evaluation of olive oil by statistical analysis of multicomponent stable isotope dilution assay data of aroma active compounds.
Journal of agricultural and food chemistry.
2012 Jan; 60(1):394-401. doi:
10.1021/jf203406s
. [PMID: 22117816] - Kaori Shiojiri, Rika Ozawa, Kenji Matsui, Maurice W Sabelis, Junji Takabayashi. Intermittent exposure to traces of green leaf volatiles triggers a plant response.
Scientific reports.
2012; 2(?):378. doi:
10.1038/srep00378
. [PMID: 22532926]