Rhaponticin (BioDeep_00000230893)

Main id: BioDeep_00000008001

 

PANOMIX_OTCML-2023 Chemicals and Drugs natural product


代谢物信息卡片


(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(3-hydroxy-4-methoxy-phenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

化学式: C21H24O9 (420.142)
中文名称: 土大黄苷
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C1=C(O)C=C(/C=C/C2=CC(O)=C(OC)C=C2)C=C1O[C@@H]1O[C@@H]([C@H]([C@@H]([C@H]1O)O)O)CO
InChI: InChI=1S/C21H24O9/c1-28-16-5-4-11(8-15(16)24)2-3-12-6-13(23)9-14(7-12)29-21-20(27)19(26)18(25)17(10-22)30-21/h2-9,17-27H,10H2,1H3/b3-2+/t17-,18+,19-,20-,21+/m0/s1

描述信息

Trans-rhaponticin is a rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities. It has a role as an anti-inflammatory agent, a plant metabolite, a neuroprotective agent, an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, an apoptosis inducer, an angiogenesis inhibitor, a hypoglycemic agent, an anti-allergic agent and an antilipemic drug.
Rhapontin is a natural product found in Rheum compactum, Rheum hotaoense, and other organisms with data available.
A rhaponticin in which the double bond adopts a trans-configuration. It possesses a range of pharmacological activities including antitumour, antiinflammatory, antilipemic and neuroprotective activities.
Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].
Rhapontin (Rhaponiticin), a component of rhubarb (Rheum officinale Baill), induces apoptosis resulting in suppression of proliferation of human stomach cancer KATO III cells[1].

同义名列表

36 个代谢物同义名

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(3-hydroxy-4-methoxy-phenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-(3-hydroxy-5-((E)-3-hydroxy-4-methoxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; (2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol; (2S,3R,4S,5S,6R)-2-(3-hydroxy-5-(3-hydroxy-4-methoxystyryl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol; 3,3 inverted exclamation marka,5-Trihydroxy-4 inverted exclamation marka-methoxystilbene 3-O-|A-D-glucoside; .beta.-D-Glucopyranoside, 3-hydroxy-5-[(1E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenyl; 3-HYDROXY-5-((1E)-2-(3-HYDROXY-4-METHOXYPHENYL)ETHENYL)PHENYL .BETA.-D-GLUCOPYRANOSIDE; beta-D-Glucopyranoside, 3-hydroxy-5-[(1E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenyl; ss-D-Glucopyranoside, 3-hydroxy-5-[(1E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]phenyl; beta-D-Glucopyranoside, 3-hydroxy-5-(2-(3-hydroxy-4-methoxyphenyl)ethenyl)phenyl; 3-Hydroxy-5-(2-(3-hydroxy-4-methoxyphenyl)ethenyl)phenyl-beta-D-glucopyranoside; 3-Hydroxy-5-(2-(3-hydroxy-4-methoxyphenyl)vinyl)phenyl-beta-D-glucopyranoside; 3-hydroxy-5-[2-(3-hydroxy-4-methoxyphenyl)vinyl]phenyl-beta-d-glucopyranoside; 4-Methoxy-3,3,5-trihydroxystilbene 3-O-beta-D-glucopyranoside; 3,5-Dihydroxy-4-methoxystilbene 3-O-beta-D-glucopyranoside; 3,3,5-Trihydroxy-4-methoxystilbene 3-O-beta-D-glucoside; 3,5,3-trihydroxy-4-methoxystilbene 3-O-beta-D-glucoside; Glucopyranoside, rhapontigenin-3, beta-D-; N,N-Bis(trimethylsilyl)-1,4-butanediamine; Rhapontigenin, 3-beta-D-glucopyranoside; Rhapontin, analytical standard; GKAJCVFOJGXVIA-DXKBKAGUSA-N; Rhapontigenin glucoside; trans-rhaponticin; Spectrum5_001757; Rose oxide (cis); Rhaponticin,(S); Rhapontin, 95\\%; RHAPONTIN [MI]; Rhaponiticin; Rhaponticin; IDI1_001004; Rhaponthin; Rhapontin; Ponticin; Rhaponticin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

114 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ANG, BCL2, CASP9, CAT, KEAP1, MAPK14, PRKAA2, PTGS2, TP53, TYR, XDH
Peripheral membrane protein 3 CYP1B1, GORASP1, PTGS2
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, HMOX1, PTGS2
Nucleus 11 ANG, BCL2, CASP9, GABPA, HMOX1, KEAP1, MAPK14, PARP1, PCNA, PRKAA2, TP53
cytosol 11 ANG, BCL2, CASP9, CAT, HMOX1, KEAP1, MAPK14, PARP1, PRKAA2, TP53, XDH
dendrite 1 PRKAA2
nuclear body 2 PARP1, PCNA
centrosome 2 PCNA, TP53
nucleoplasm 8 GABPA, HMOX1, KEAP1, MAPK14, PARP1, PCNA, PRKAA2, TP53
Cell membrane 1 TNF
Cytoplasmic side 2 GORASP1, HMOX1
Golgi apparatus membrane 1 GORASP1
cell surface 1 TNF
glutamatergic synapse 1 MAPK14
Golgi apparatus 2 GORASP1, PRKAA2
Golgi membrane 2 GORASP1, INS
growth cone 1 ANG
neuronal cell body 3 ANG, PRKAA2, TNF
Cytoplasm, cytosol 1 PARP1
Lysosome 1 TYR
plasma membrane 1 TNF
Membrane 7 BCL2, CAT, CYP1B1, HMOX1, PARP1, PRKAA2, TP53
axon 1 PRKAA2
caveola 1 PTGS2
extracellular exosome 2 CAT, PCNA
endoplasmic reticulum 5 BCL2, HMOX1, KEAP1, PTGS2, TP53
extracellular space 6 ANG, HMOX1, IL6, INS, TNF, XDH
perinuclear region of cytoplasm 2 HMOX1, TYR
mitochondrion 7 BCL2, CASP9, CAT, CYP1B1, MAPK14, PARP1, TP53
protein-containing complex 6 BCL2, CASP9, CAT, PARP1, PTGS2, TP53
intracellular membrane-bounded organelle 3 CAT, CYP1B1, TYR
Microsome membrane 2 CYP1B1, PTGS2
Single-pass type I membrane protein 1 TYR
Secreted 3 ANG, IL6, INS
extracellular region 6 ANG, CAT, IL6, INS, MAPK14, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 2 PARP1, TP53
centriolar satellite 1 KEAP1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
actin cytoskeleton 1 ANG
nucleolus 3 ANG, PARP1, TP53
Melanosome membrane 1 TYR
midbody 1 KEAP1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 1 CAT
cis-Golgi network 1 GORASP1
Peroxisome 2 CAT, XDH
basement membrane 1 ANG
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
nuclear speck 2 MAPK14, PRKAA2
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 4 GABPA, PARP1, PCNA, TP53
phagocytic cup 1 TNF
Chromosome 2 ANG, PARP1
Nucleus, nucleolus 2 ANG, PARP1
spindle pole 1 MAPK14
nuclear replication fork 2 PARP1, PCNA
chromosome, telomeric region 2 PARP1, PCNA
actin filament 1 KEAP1
site of double-strand break 2 PARP1, TP53
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 1 PARP1
endosome lumen 1 INS
Melanosome 1 TYR
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 2 ANG, PRKAA2
germ cell nucleus 1 TP53
replication fork 2 PCNA, TP53
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
male germ cell nucleus 1 PCNA
endocytic vesicle 1 ANG
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
nuclear lamina 1 PCNA
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 PARP1
nucleotide-activated protein kinase complex 1 PRKAA2
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
angiogenin-PRI complex 1 ANG
catalase complex 1 CAT
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Oleksandra Liudvytska, Michał B Ponczek, Oskar Ciesielski, Justyna Krzyżanowska-Kowalczyk, Mariusz Kowalczyk, Aneta Balcerczyk, Joanna Kolodziejczyk-Czepas. Rheum rhaponticum and Rheum rhabarbarum Extracts as Modulators of Endothelial Cell Inflammatory Response. Nutrients. 2023 Feb; 15(4):. doi: 10.3390/nu15040949. [PMID: 36839307]
  • Bon-Hyeock Koo, Jonghoon Lee, Younghyun Jin, Hyun Kyo Lim, Sungwoo Ryoo. Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca2+-dependent eNOS activation. BMB reports. 2021 Oct; 54(10):516-521. doi: . [PMID: 34078530]
  • Tiansong Yang, Qingyong Wang, Yuanyuan Qu, Chuwen Feng, Chaoran Li, Yan Yang, Zhongren Sun, Tahani A Alahmadi, Sulaiman A Alharbi, Shengyong Bao. Protective effect of rhaponticin on ovariectomy-induced osteoporosis in rats. Journal of biochemical and molecular toxicology. 2021 Sep; 35(9):e22837. doi: 10.1002/jbt.22837. [PMID: 34227182]
  • Rougang Li, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Omar H M Shair, Vishnu Priya Veeraraghavan, Krishna Mohan Surapaneni, Thamaraiselvan Rengarajan. Anti-inflammatory effects of rhaponticin on LPS-induced human endothelial cells through inhibition of MAPK/NF-κβ signaling pathways. Journal of biochemical and molecular toxicology. 2021 May; 35(5):e22733. doi: 10.1002/jbt.22733. [PMID: 33605003]
  • Manh Tuan Ha, Minji Kim, Chung Sub Kim, Se-Eun Park, Jeong Ah Kim, Mi Hee Woo, Jae Sue Choi, Byung Sun Min. Tetra-aryl cyclobutane and stilbenes from the rhizomes of Rheum undulatum and their α-glucosidase inhibitory activity: Biological evaluation, kinetic analysis, and molecular docking simulation. Bioorganic & medicinal chemistry letters. 2020 04; 30(8):127049. doi: 10.1016/j.bmcl.2020.127049. [PMID: 32111435]
  • Dan Chen, Jing-Ru Liu, Yanjin Cheng, Hua Cheng, Ping He, Yang Sun. Metabolism of Rhaponticin and Activities of its Metabolite, Rhapontigenin: A Review. Current medicinal chemistry. 2020; 27(19):3168-3186. doi: 10.2174/0929867326666190121143252. [PMID: 30666906]
  • Xiaosheng Tang, Ping Tang, Lei Ma, Liangliang Liu. Screening and Evaluation of Xanthine Oxidase Inhibitors from Gnetum parvifolium in China. Molecules (Basel, Switzerland). 2019 Jul; 24(14):. doi: 10.3390/molecules24142671. [PMID: 31340570]
  • SeonJu Park, Yun Na Kim, Hee Jae Kwak, Eun Ju Jeong, Seung Hyun Kim. Estrogenic activity of constituents from the rhizomes of Rheum undulatum Linné. Bioorganic & medicinal chemistry letters. 2018 02; 28(4):552-557. doi: 10.1016/j.bmcl.2018.01.063. [PMID: 29402747]
  • Lijun Tao, Juan Cao, Wencheng Wei, Haifeng Xie, Mian Zhang, Chaofeng Zhang. Protective role of rhapontin in experimental pulmonary fibrosis in vitro and in vivo. International immunopharmacology. 2017 Jun; 47(?):38-46. doi: 10.1016/j.intimp.2017.03.020. [PMID: 28364627]
  • Yanfeng He, Xiaoyan Wang, Yourui Suo, Chenxu Ding, Honglun Wang. Efficient Protocol for Isolation of Rhaponticin and Rhapontigenin with Consecutive Sample Injection from Fenugreek (Trigonella foenum-graecum L.) by HSCCC. Journal of chromatographic science. 2016 Mar; 54(3):479-85. doi: 10.1093/chromsci/bmv169. [PMID: 26598549]
  • Sung-Pil Jo, Jeong-Keun Kim, Young-Hee Lim. Antihyperlipidemic effects of rhapontin and rhapontigenin from rheum undulatum in rats fed a high-cholesterol diet. Planta medica. 2014 Aug; 80(13):1067-71. doi: 10.1055/s-0034-1382999. [PMID: 25127020]
  • Amrit Poudel, Se-Gun Kim, Ramakanta Lamichhane, Yun-Kyung Kim, Hyung-Kwon Jo, Hyun-Ju Jung. Quantitative assessment of traditional Oriental herbal formulation Samhwangsasim-tang using UPLC technique. Journal of chromatographic science. 2014 Feb; 52(2):176-85. doi: 10.1093/chromsci/bmt008. [PMID: 23403059]
  • Ping Li, Weixi Tian, Xiaoyan Wang, Xiaofeng Ma. Inhibitory effect of desoxyrhaponticin and rhaponticin, two natural stilbene glycosides from the Tibetan nutritional food Rheum tanguticum Maxim. ex Balf., on fatty acid synthase and human breast cancer cells. Food & function. 2014 Feb; 5(2):251-6. doi: 10.1039/c3fo60484e. [PMID: 24362821]
  • Yang Sun, Yingyong Zhao, Xiaohui Yang. A simple and rapid spectrofluorimetric method for determining the pharmacokinetics and metabolism of rhaponticin in rat plasma, feces and urine using a cerium probe. Luminescence : the journal of biological and chemical luminescence. 2013 Jul; 28(4):523-9. doi: 10.1002/bio.2488. [PMID: 23364836]
  • Yang Sun, Yingyong Zhao. Enhanced pharmacokinetics and anti-tumor efficacy of PEGylated liposomal rhaponticin and plasma protein binding ability of rhaponticin. Journal of nanoscience and nanotechnology. 2012 Oct; 12(10):7677-84. doi: 10.1166/jnn.2012.6599. [PMID: 23421127]
  • Fang-Fang Chen, Xiao-Yu Xie, Yan-Ping Shi. Magnetic molecularly imprinted polymer for the detection of rhaponticin in Chinese patent medicines. Journal of chromatography. A. 2012 Aug; 1252(?):8-14. doi: 10.1016/j.chroma.2012.06.071. [PMID: 22776726]
  • Chu VanMen, Yu Seon Jang, Hong Mei Zhu, Jae Hyun Lee, Trinh Nam Trung, Tran Minh Ngoc, Young Ho Kim, Jong Seong Kang. Chemical-based species classification of rhubarb using simultaneous determination of five bioactive substances by HPLC and LDA analysis. Phytochemical analysis : PCA. 2012 Jul; 23(4):359-64. doi: 10.1002/pca.1365. [PMID: 22009582]
  • Ying-Yong Zhao, Qi Su, Xian-Long Cheng, Xiao-Jie Tan, Xu Bai, Rui-Chao Lin. Pharmacokinetics, bioavailability and metabolism of rhaponticin in rat plasma by UHPLC-Q-TOF/MS and UHPLC-DAD-MSn. Bioanalysis. 2012 Mar; 4(6):713-23. doi: 10.4155/bio.12.24. [PMID: 22452262]
  • Yang Sun, Zhen Ji, Xuehua Liang, Guobo Li, Shengyong Yang, Song Wei, Yingyong Zhao, Xiaoyun Hu, Jun Fan. Studies on the binding of rhaponticin with human serum albumin by molecular spectroscopy, modeling and equilibrium dialysis. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2012 Feb; 87(?):171-8. doi: 10.1016/j.saa.2011.11.033. [PMID: 22169567]
  • Ming Guo, Xing-tao Xu, Zhi-wu Wu. [Binding mechanism of rhaponticin and human serum albumin]. Yao xue xue bao = Acta pharmaceutica Sinica. 2011 Sep; 46(9):1084-92. doi: NULL. [PMID: 22121779]
  • Victor S Sobolev, Shabana I Khan, Nurhayat Tabanca, David E Wedge, Susan P Manly, Stephen J Cutler, Monique R Coy, James J Becnel, Scott A Neff, James B Gloer. Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic Stilbenoids. Journal of agricultural and food chemistry. 2011 Mar; 59(5):1673-82. doi: 10.1021/jf104742n. [PMID: 21314127]
  • Jeong-Keun Kim, Narae Kim, Young-Hee Lim. Evaluation of the antibacterial activity of rhapontigenin produced from rhapontin by biotransformation against Propionibacterium acnes. Journal of microbiology and biotechnology. 2010 Jan; 20(1):82-7. doi: 10.4014/jmb.0907.07022. [PMID: 20134237]
  • Jinlong Chen, Mengmeng Ma, Yanwei Lu, Lisheng Wang, Chutse Wu, Haifeng Duan. Rhaponticin from rhubarb rhizomes alleviates liver steatosis and improves blood glucose and lipid profiles in KK/Ay diabetic mice. Planta medica. 2009 Apr; 75(5):472-7. doi: 10.1055/s-0029-1185304. [PMID: 19235684]
  • Hyung Jun Lim, Eun Chul Cho, Jongwon Shim, Do-Hoon Kim, Eun Jung An, Junoh Kim. Polymer-associated liposomes as a novel delivery system for cyclodextrin-bound drugs. Journal of colloid and interface science. 2008 Apr; 320(2):460-8. doi: 10.1016/j.jcis.2008.01.025. [PMID: 18261738]
  • Rosanna Y Y Lam, Anthony Y H Woo, Po-Sing Leung, Christopher H K Cheng. Antioxidant actions of phenolic compounds found in dietary plants on low-density lipoprotein and erythrocytes in vitro. Journal of the American College of Nutrition. 2007 Jun; 26(3):233-42. doi: 10.1080/07315724.2007.10719606. [PMID: 17634168]
  • Jian Mei Li, Chun Tao Che, Clara B S Lau, Po Sing Leung, Christopher H K Cheng. Desoxyrhaponticin (3,5-dihydroxy-4'-methoxystilbene 3-O-beta-D-glucoside) inhibits glucose uptake in the intestine and kidney: In vitro and in vivo studies. The Journal of pharmacology and experimental therapeutics. 2007 Jan; 320(1):38-46. doi: 10.1124/jpet.106.111526. [PMID: 17038511]
  • F Misiti, B Sampaolese, D Mezzogori, F Orsini, M Pezzotti, B Giardina, M E Clementi. Protective effect of rhubarb derivatives on amyloid beta (1-42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic. Brain research bulletin. 2006 Dec; 71(1-3):29-36. doi: 10.1016/j.brainresbull.2006.07.012. [PMID: 17113925]
  • Soo Bong Choi, Byoung Seob Ko, Seong Kyu Park, Jin Sun Jang, Sunmin Park. Insulin sensitizing and alpha-glucoamylase inhibitory action of sennosides, rheins and rhaponticin in Rhei Rhizoma. Life sciences. 2006 Jan; 78(9):934-42. doi: 10.1016/j.lfs.2005.05.101. [PMID: 16182318]
  • G H Deng, S L Wei, H X Wei. [A new ecdysone hormone rhaponticum from Rhaponticum uniflorum (L.) DC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2000 Jul; 25(7):417-8. doi: ". [PMID: 12515222]
  • D H Kim, E K Park, E A Bae, M J Han. Metabolism of rhaponticin and chrysophanol 8-o-beta-D-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biological & pharmaceutical bulletin. 2000 Jul; 23(7):830-3. doi: 10.1248/bpb.23.830. [PMID: 10919361]
  • H Matsuda, T Kageura, T Morikawa, I Toguchida, S Harima, M Yoshikawa. Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages. Bioorganic & medicinal chemistry letters. 2000 Feb; 10(4):323-7. doi: 10.1016/s0960-894x(99)00702-7. [PMID: 10714491]
  • N H Shin, S Y Ryu, H Lee, K R Min, Y Kim. Inhibitory effects of hydroxystilbenes on cyclooxygenase from sheep seminal vesicles. Planta medica. 1998 Apr; 64(3):283-4. doi: 10.1055/s-2006-957430. [PMID: 9581529]
  • J N Grech, Q Li, B D Roufogalis, C C Duck. Novel Ca(2+)-ATPase inhibitors from the dried root tubers of Polygonum Multiflorum. Journal of natural products. 1994 Dec; 57(12):1682-7. doi: 10.1021/np50114a010. [PMID: 7714535]
  • L Y He. [Determination of anthraquinone derivatives in rhubarb grown for export]. Zhong yao tong bao (Beijing, China : 1981). 1985 Nov; 10(11):33-5. doi: ". [PMID: 2938789]
  • X Peigen, H Liyi, W Liwei. Ethnopharmacologic study of Chinese rhubarb. Journal of ethnopharmacology. 1984 May; 10(3):275-93. doi: 10.1016/0378-8741(84)90016-3. [PMID: 6748707]
  • C L Li, Y W Ye. [Effects of rhapontin of rheum hotaoense on serum lipid and lipoprotein levels (serum)]. Yao xue xue bao = Acta pharmaceutica Sinica. 1981 Sep; 16(9):699-702. doi: NULL. [PMID: 7331819]