patulin (BioDeep_00000407549)
Secondary id: BioDeep_00000003862, BioDeep_00001871287
natural product PANOMIX_OTCML-2023 Volatile Flavor Compounds
代谢物信息卡片
化学式: C7H6O4 (154.0266076)
中文名称: 棒曲霉素
谱图信息:
最多检出来源 Viridiplantae(plant) 1.2%
分子结构信息
SMILES: C1C=C2C(=CC(=O)O2)C(O1)O
InChI: InChI=1S/C7H6O4/c8-6-3-4-5(11-6)1-2-10-7(4)9/h1,3,7,9H,2H2
描述信息
D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins
CONFIDENCE standard compound; INTERNAL_ID 5971
D009676 - Noxae > D009153 - Mutagens
CONFIDENCE Reference Standard (Level 1)
Patulin (Terinin) is a mycotoxin produced by fungi including the Aspergillus, Penicillium, and Byssochlamys species, is suspected to be clastogenic, mutagenic, teratogenic and cytotoxic. Patulin induces autophagy-dependent apoptosis through lysosomal-mitochondrial axis, and causes DNA damage[1][2][3][4].
同义名列表
数据库引用编号
34 个数据库交叉引用编号
- ChEBI: CHEBI:74926
- PubChem: 4696
- DrugBank: DB15586
- ChEMBL: CHEMBL294018
- MeSH: Patulin
- CAS: 247172-18-5
- CAS: 149-29-1
- MoNA: Bruker_HCD_library000016
- MoNA: AU597100
- MoNA: AC000654
- MoNA: AC000653
- MoNA: AC000652
- MoNA: AC000651
- MoNA: AC000650
- MoNA: VF-NPL-QEHF025941
- MoNA: VF-NPL-QEHF025940
- MoNA: VF-NPL-QEHF025939
- MoNA: VF-NPL-QEHF025938
- MoNA: VF-NPL-QEHF025937
- MoNA: VF-NPL-QEHF025936
- MoNA: VF-NPL-QEHF025935
- MoNA: VF-NPL-QEHF025934
- MoNA: VF-NPL-QEHF025933
- MoNA: VF-NPL-QEHF025932
- MoNA: VF-NPL-QEHF025931
- MoNA: VF-NPL-QEHF025930
- MoNA: VF-NPL-QEHF025929
- MoNA: VF-NPL-QEHF025928
- MoNA: VF-NPL-QEHF025927
- medchemexpress: HY-N6779
- KEGG: C16748
- PubChem: 96023272
- KNApSAcK: 74926
- LOTUS: LTS0191045
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
235 个相关的物种来源信息
- 159075 - Acremonium: LTS0191045
- 5051 - Acremonium persicinum: 10.1021/JF00034A040
- 261921 - Acremonium sclerotigenum: 10.1021/JF00034A040
- 261921 - Acremonium sclerotigenum: LTS0191045
- 155619 - Agaricomycetes: LTS0191045
- 102749 - Ageratina: LTS0191045
- 2773065 - Ageratina calophylla: 10.1016/S0031-9422(00)84545-8
- 2773065 - Ageratina calophylla: LTS0191045
- 5598 - Alternaria: LTS0191045
- 551006 - Alternaria oudemansii: 10.1021/JF00034A040
- 551006 - Alternaria oudemansii: LTS0191045
- 119927 - Alternaria tenuissima: 10.1021/JF00034A040
- 119927 - Alternaria tenuissima: LTS0191045
- 1934349 - Amesia: LTS0191045
- 1934350 - Amesia atrobrunnea: 10.1021/JF00034A040
- 1934350 - Amesia atrobrunnea: LTS0191045
- 54958 - Amphisphaeriaceae: LTS0191045
- 34384 - Arthrodermataceae: LTS0191045
- 4890 - Ascomycota: LTS0191045
- 1131492 - Aspergillaceae: LTS0191045
- 5052 - Aspergillus: LTS0191045
- 1884262 - Aspergillus cejpii: 10.1021/JF00034A040
- 1884262 - Aspergillus cejpii: LTS0191045
- 176167 - Aspergillus diversus: 10.1021/JF00034A040
- 176167 - Aspergillus diversus: LTS0191045
- 5059 - Aspergillus flavus: 10.1021/JF00034A040
- 5059 - Aspergillus flavus: LTS0191045
- 5060 - Aspergillus giganteus:
- 5060 - Aspergillus giganteus: 10.1006/ABBI.1997.0175
- 5060 - Aspergillus giganteus: 10.1021/JF00034A040
- 5060 - Aspergillus giganteus: LTS0191045
- 40380 - Aspergillus ochraceus: 10.1021/NP000381U
- 40380 - Aspergillus ochraceus: LTS0191045
- 5062 - Aspergillus oryzae: 10.1021/JF00034A040
- 5062 - Aspergillus oryzae: LTS0191045
- 1167532 - Aspergillus oryzae: 10.1021/JF00034A040
- 5067 - Aspergillus parasiticus: 10.1021/JF00034A040
- 5067 - Aspergillus parasiticus: LTS0191045
- 138280 - Aspergillus petrakii: 10.1021/JF00034A040
- 138280 - Aspergillus petrakii: LTS0191045
- 176181 - Aspergillus varians: 10.1007/S10600-005-0122-Y
- 176181 - Aspergillus varians: LTS0191045
- 4210 - Asteraceae: LTS0191045
- 5227 - Auriculariaceae: LTS0191045
- 5204 - Basidiomycota: LTS0191045
- 103887 - Bionectriaceae: LTS0191045
- 40420 - Bondarzewiaceae: LTS0191045
- 150368 - Calcarisporium: LTS0191045
- 240499 - Calcarisporium arbuscula: 10.1021/JF00034A040
- 240499 - Calcarisporium arbuscula: LTS0191045
- 35718 - Chaetomiaceae: LTS0191045
- 5149 - Chaetomium: LTS0191045
- 3041 - Chlorophyta: LTS0191045
- 58368 - Chondrostereum: LTS0191045
- 58369 - Chondrostereum purpureum: 10.1021/JF00034A040
- 58369 - Chondrostereum purpureum: LTS0191045
- 223374 - Cladorrhinum: 10.1021/JF00034A040
- 223374 - Cladorrhinum: LTS0191045
- 79808 - Coniochaeta: LTS0191045
- 91930 - Coniochaeta hoffmannii: 10.1021/JF00034A040
- 91930 - Coniochaeta hoffmannii: LTS0191045
- 79807 - Coniochaetaceae: LTS0191045
- 1460697 - Coniothyriaceae: LTS0191045
- 78388 - Coniothyrium: 10.1021/JF00034A040
- 78388 - Coniothyrium: LTS0191045
- 474943 - Cordycipitaceae: LTS0191045
- 72985 - Corynascus: LTS0191045
- 190048 - Corynascus sepedonium: 10.1021/JF00034A040
- 190048 - Corynascus sepedonium: LTS0191045
- 13474 - Cylindrocarpon: LTS0191045
- 94995 - Cylindrocarpon cylindroides: 10.1021/JF00034A040
- 94995 - Cylindrocarpon cylindroides: LTS0191045
- 303675 - Cylindrocarpon olidum: 10.1021/JF00034A040
- 139264 - Cyphellaceae: LTS0191045
- 255780 - Dichotomomyces: LTS0191045
- 147541 - Dothideomycetes: LTS0191045
- 33198 - Drechslera: 10.1021/JF00034A040
- 33198 - Drechslera: LTS0191045
- 2759 - Eukaryota: LTS0191045
- 147545 - Eurotiomycetes: LTS0191045
- 4751 - Fungi: LTS0191045
- 37243 - Gymnoascaceae: LTS0191045
- 69889 - Gymnoascus: LTS0191045
- 69890 - Gymnoascus reessii: LTS0191045
- 5181 - Helotiaceae: LTS0191045
- 13562 - Heterobasidion: LTS0191045
- 13563 - Heterobasidion annosum: 10.1021/JF00034A040
- 13563 - Heterobasidion annosum: LTS0191045
- 5129 - Hypocreaceae: LTS0191045
- 42302 - Lasiosphaeriaceae: LTS0191045
- 291363 - Lecanicillium: LTS0191045
- 73499 - Lecanicillium psalliotae: 10.1021/JF00034A040
- 73499 - Lecanicillium psalliotae: LTS0191045
- 147548 - Leotiomycetes: LTS0191045
- 3398 - Magnoliopsida: LTS0191045
- 5593 - Microascaceae: LTS0191045
- 37240 - Myxotrichaceae: LTS0191045
- 78133 - Myxotrichum: LTS0191045
- 78137 - Myxotrichum chartarum: 10.1021/JF00034A040
- 78137 - Myxotrichum chartarum: LTS0191045
- 110618 - Nectriaceae: LTS0191045
- 140106 - Neonectria: LTS0191045
- 78403 - Neonectria neomacrospora: 10.1021/JF00034A040
- 78403 - Neonectria neomacrospora: LTS0191045
- 474942 - Ophiocordycipitaceae: LTS0191045
- 5073 - Penicillium: 10.1002/JCTB.5000621208
- 5073 - Penicillium: 10.1016/S0040-4020(99)00884-4
- 5073 - Penicillium: 10.1111/LAM.12056
- 5073 - Penicillium: LTS0191045
- 36655 - Penicillium aurantiogriseum: 10.1002/JCTB.5000621208
- 36655 - Penicillium aurantiogriseum: 10.1021/JF00034A040
- 36655 - Penicillium aurantiogriseum: 10.1111/LAM.12056
- 36655 - Penicillium aurantiogriseum: LTS0191045
- 5076 - Penicillium chrysogenum: 10.1007/BF00563932
- 5076 - Penicillium chrysogenum: LTS0191045
- 69770 - Penicillium cyaneum: 10.1021/JF00034A040
- 69770 - Penicillium cyaneum: LTS0191045
- 60167 - Penicillium cyclopium: 10.1002/JCTB.5000621208
- 60167 - Penicillium cyclopium: 10.1111/LAM.12056
- 60167 - Penicillium cyclopium: LTS0191045
- 60174 - Penicillium echinulatum: 10.1021/JF00034A040
- 27334 - Penicillium expansum:
- 27334 - Penicillium expansum: LTS0191045
- 69773 - Penicillium glabrum: 10.1021/JF00034A040
- 69773 - Penicillium glabrum: LTS0191045
- 395885 - Penicillium granulatum: 10.1002/JCTB.5000621208
- 395885 - Penicillium granulatum: 10.1111/LAM.12056
- 395885 - Penicillium granulatum: LTS0191045
- 5078 - Penicillium griseofulvum:
- 5078 - Penicillium griseofulvum: 10.1002/JCTB.5000621208
- 5078 - Penicillium griseofulvum: 10.1007/BF00436910
- 5078 - Penicillium griseofulvum: 10.1021/JF00034A040
- 5078 - Penicillium griseofulvum: 10.1111/LAM.12056
- 5078 - Penicillium griseofulvum: 10.1128/AEM.45.6.1939-1942.1983
- 5078 - Penicillium griseofulvum: 10.1139/M86-051
- 5078 - Penicillium griseofulvum: LTS0191045
- 36648 - Penicillium hirsutum: 10.1021/JF00034A040
- 36648 - Penicillium hirsutum: LTS0191045
- 40296 - Penicillium italicum: 10.1021/JF00034A040
- 40296 - Penicillium italicum: LTS0191045
- 28578 - Penicillium javanicum: 10.1021/JF00034A040
- 28578 - Penicillium javanicum: LTS0191045
- 357984 - Penicillium lanosum: 10.1002/JCTB.5000621208
- 357984 - Penicillium lanosum: 10.1111/LAM.12056
- 357984 - Penicillium lanosum: LTS0191045
- 1328044 - Penicillium lapidosum: 10.1002/JCTB.5000621208
- 1328044 - Penicillium lapidosum: 10.1111/LAM.12056
- 1328044 - Penicillium lapidosum: LTS0191045
- 944025 - Penicillium lignorum: 10.1021/JF00034A040
- 69779 - Penicillium melinii: 10.1002/JCTB.5000621208
- 69779 - Penicillium melinii: 10.1021/JF00034A040
- 69779 - Penicillium melinii: 10.1111/LAM.12056
- 69779 - Penicillium melinii: LTS0191045
- 434487 - Penicillium novae-zeelandiae: 10.1002/JCTB.5000621208
- 434487 - Penicillium novae-zeelandiae: 10.1111/LAM.12056
- 434487 - Penicillium novae-zeelandiae: LTS0191045
- 99116 - Penicillium olsonii: 10.1021/JF00034A040
- 99116 - Penicillium olsonii: LTS0191045
- 5082 - Penicillium roqueforti: 10.1002/JCTB.5000621208
- 5082 - Penicillium roqueforti: 10.1111/LAM.12056
- 5082 - Penicillium roqueforti: LTS0191045
- 69488 - Penicillium simplicissimum: 10.1021/JF00034A040
- 69488 - Penicillium simplicissimum: LTS0191045
- 60172 - Penicillium solitum:
- 60172 - Penicillium solitum: 10.1002/JCTB.5000621208
- 60172 - Penicillium solitum: 10.1007/BF01946206
- 60172 - Penicillium solitum: 10.1016/S0021-9673(01)89440-1
- 60172 - Penicillium solitum: 10.1111/LAM.12056
- 60172 - Penicillium solitum: 10.1248/CPB.31.362
- 60172 - Penicillium solitum: 10.1248/CPB.34.3534
- 60172 - Penicillium solitum: LTS0191045
- 374132 - Penicillium terrestre: 10.1002/JCTB.5000621208
- 374132 - Penicillium terrestre: 10.1111/LAM.12056
- 374132 - Penicillium terrestre: LTS0191045
- 29844 - Penicillium urticae:
- 29844 - Penicillium urticae: 10.1002/JCTB.5000621208
- 29844 - Penicillium urticae: 10.1111/LAM.12056
- 29844 - Penicillium urticae: 10.1128/AEM.45.6.1939-1942.1983
- 29844 - Penicillium urticae: 10.1139/M86-051
- 29844 - Penicillium urticae: LTS0191045
- 29845 - Penicillium vulpinum: 10.1002/JCTB.5000621208
- 29845 - Penicillium vulpinum: 10.1111/LAM.12056
- 29845 - Penicillium vulpinum: LTS0191045
- 37840 - Pestalotiopsis: 10.1021/JF00034A040
- 37840 - Pestalotiopsis: LTS0191045
- 487628 - Pleiochaeta: 10.1021/JF00034A040
- 487628 - Pleiochaeta: LTS0191045
- 28556 - Pleosporaceae: LTS0191045
- 1052105 - Purpureocillium: LTS0191045
- 33203 - Purpureocillium lilacinum: 10.1021/JF00034A040
- 33203 - Purpureocillium lilacinum: LTS0191045
- 5332 - Schizophyllaceae: LTS0191045
- 40374 - Scopulariopsis: LTS0191045
- 186360 - Scopulariopsis flava: 10.1021/JF00034A040
- 186360 - Scopulariopsis flava: LTS0191045
- 5538 - Scytalidium: LTS0191045
- 5539 - Scytalidium lignicola: 10.1021/JF00034A040
- 5539 - Scytalidium lignicola: LTS0191045
- 147550 - Sordariomycetes: LTS0191045
- 1812776 - Sporocadaceae: LTS0191045
- 95729 - Stemphylium: 10.1021/JF00034A040
- 95729 - Stemphylium: LTS0191045
- 35493 - Streptophyta: LTS0191045
- 5094 - Talaromyces: LTS0191045
- 128434 - Talaromyces diversus: 10.1021/JF00034A040
- 128434 - Talaromyces diversus: LTS0191045
- 29842 - Talaromyces duclauxii: 10.1021/JF00034A040
- 29842 - Talaromyces duclauxii: LTS0191045
- 28572 - Talaromyces funiculosus: 10.1021/JF00034A040
- 28572 - Talaromyces funiculosus: LTS0191045
- 28566 - Talaromyces trachyspermus: 10.1021/JF00034A040
- 28566 - Talaromyces trachyspermus: LTS0191045
- 1053258 - Thelonectria: LTS0191045
- 1576542 - Thelonectria olida: 10.1021/JF00034A040
- 1576542 - Thelonectria olida: LTS0191045
- 35719 - Thielavia: LTS0191045
- 58023 - Tracheophyta: LTS0191045
- 28568 - Trichocomaceae: LTS0191045
- 5543 - Trichoderma: LTS0191045
- 29875 - Trichoderma virens: 10.1021/JF00034A040
- 29875 - Trichoderma virens: LTS0191045
- 5550 - Trichophyton: LTS0191045
- 523103 - Trichophyton mentagrophytes: 10.1021/JF00034A040
- 523103 - Trichophyton mentagrophytes: LTS0191045
- 231006 - Trichothecium: LTS0191045
- 47278 - Trichothecium roseum: 10.1021/JF00034A040
- 47278 - Trichothecium roseum: LTS0191045
- 51912 - Trichothecium sympodiale: 10.1021/JF00034A040
- 51912 - Trichothecium sympodiale: LTS0191045
- 3118 - Ulva: LTS0191045
- 3116 - Ulva intestinalis: 10.1016/S0040-4020(99)00884-4
- 3116 - Ulva intestinalis: LTS0191045
- 3114 - Ulvaceae: LTS0191045
- 33103 - Ulvophyceae: LTS0191045
- 33090 - Viridiplantae: LTS0191045
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Tristan W Wang, Amanda G Wilson, Gregory M Peck, Patrick A Gibney, Kathie T Hodge. Patulin contamination of hard apple cider by Paecilomyces niveus and other postharvest apple pathogens: Assessing risk factors.
International journal of food microbiology.
2024 Feb; 412(?):110545. doi:
10.1016/j.ijfoodmicro.2023.110545
. [PMID: 38237417] - Shuang Li, Shubing Chen, Yanan Meng, Shun Zhang, Ting Cai. Identification and pretreatment analysis of endogenous degradation products of patulin in zebrafish.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2024 Feb; 184(?):114414. doi:
10.1016/j.fct.2023.114414
. [PMID: 38128688] - Meiqiu Xu, Esa Abiso Godana, Jingyu Li, Yaping Deng, Yufei Ma, Huiyuan Ya, Hongyin Zhang. Infection of postharvest pear by Penicillium expansum is facilitated by the glycoside hydrolase (eglB) gene.
International journal of food microbiology.
2024 Jan; 410(?):110465. doi:
10.1016/j.ijfoodmicro.2023.110465
. [PMID: 37980812] - Mengna Zhang, Na Liu, Fengshou Dong, Liping Wang, Jun Xu, Xiaohu Wu, Yongquan Zheng, Xinglu Pan. The fate of mycotoxins in oranges during storage and processing.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2023 Dec; 40(12):1614-1624. doi:
10.1080/19440049.2023.2282555
. [PMID: 38011597] - Cong Song, Yang Zhang, Qian Zhao, Mengyao Chen, Yu Zhang, Congcong Gao, Zhenhua Jia, Shuishan Song, Junfeng Guan, Zhonglin Shang. Volatile organic compounds produced by Bacillus aryabhattai AYG1023 against Penicillium expansum causing blue mold on the Huangguan pear.
Microbiological research.
2023 Oct; 278(?):127531. doi:
10.1016/j.micres.2023.127531
. [PMID: 37871540] - Dianiris Luciano-Rosario, Omer Barda, Joanna Tannous, Dean Frawley, Özgür Bayram, Dov Prusky, Edward Sionov, Nancy P Keller. The histone demethylase KdmB is part of a trimeric protein complex and mediates virulence and mycotoxin production in Penicillium expansum.
Fungal genetics and biology : FG & B.
2023 Sep; ?(?):103837. doi:
10.1016/j.fgb.2023.103837
. [PMID: 37722619] - Seungmin Yu, Ji-Hye Song, Hee Soo Kim, Seulmin Hong, Seon Kyeong Park, Soo Hyun Park, Jangho Lee, Young Chan Chae, Jae Ho Park, Yu Geon Lee. Patulin alleviates hepatic lipid accumulation by regulating lipogenesis and mitochondrial respiration.
Life sciences.
2023 Aug; 326(?):121816. doi:
10.1016/j.lfs.2023.121816
. [PMID: 37271452] - Wen-Chang Sun, Ning-Ning Wang, Ru Li, Xian-Ce Sun, Jia-Wei Liao, Guang Yang, Shuang Liu. Ferritinophagy activation and sideroflexin1-dependent mitochondrial iron overload contribute to patulin-induced cardiac inflammation and fibrosis.
The Science of the total environment.
2023 May; ?(?):164472. doi:
10.1016/j.scitotenv.2023.164472
. [PMID: 37257617] - Mengyang Xing, Yong Chen, Wanqin Dai, Xiao He, Boqiang Li, Shiping Tian. Immobilized short-chain dehydrogenase/reductase on Fe3O4 particles acts as a magnetically recoverable biocatalyst component in patulin bio-detoxification system.
Journal of hazardous materials.
2023 Apr; 448(?):130986. doi:
10.1016/j.jhazmat.2023.130986
. [PMID: 36860057] - Xiaodi Xu, Yong Chen, Boqiang Li, Shiping Tian. Histone H3K4 Methyltransferase PeSet1 Regulates Colonization, Patulin Biosynthesis, and Stress Responses of Penicillium expansum.
Microbiology spectrum.
2023 Feb; 11(1):e0354522. doi:
10.1128/spectrum.03545-22
. [PMID: 36633412] - Jihui Xi, Dongyun Yang, Huali Xue, Zhiguang Liu, Yang Bi, Yuan Zhang, Xi Yang, Suqin Shang. Isolation of the Main Pathogens Causing Postharvest Disease in Fresh Angelica sinensis during Different Storage Stages and Impacts of Ozone Treatment on Disease Development and Mycotoxin Production.
Toxins.
2023 Feb; 15(2):. doi:
10.3390/toxins15020154
. [PMID: 36828468] - Zhaoyuan Gong, Yueming Huang, Xianjing Hu, Jianye Zhang, Qilei Chen, Hubiao Chen. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods.
Biosensors.
2023 Jan; 13(1):. doi:
10.3390/bios13010140
. [PMID: 36671974] - Huimin Li, Yang Zhang, Congcong Gao, Qi Gao, Yudou Cheng, Min Zhao, Junfeng Guan. Mycotoxin Production and the Relationship between Microbial Diversity and Mycotoxins in Pyrus bretschneideri Rehd cv. Huangguan Pear.
Toxins.
2022 Oct; 14(10):. doi:
10.3390/toxins14100699
. [PMID: 36287968] - Hui Chen, Lixing Cao, Kai Han, Han Zhang, Jinling Cui, Xuan Ma, Shuang Zhao, Chong Zhao, Shutao Yin, Lihong Fan, Hongbo Hu. Patulin disrupts SLC7A11-cystine-cysteine-GSH antioxidant system and promotes renal cell ferroptosis both in vitro and in vivo.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2022 Aug; 166(?):113255. doi:
10.1016/j.fct.2022.113255
. [PMID: 35772596] - Meiqiu Xu, Qidi Zhang, Solairaj Dhanasekaran, Esa Abiso Godana, Xiaoyun Zhang, Qiya Yang, Lina Zhao, Hongyin Zhang. The necrosis-inducing protein (NIP) gene contributes to Penicillium expansum virulence during postharvest pear infection.
Food research international (Ottawa, Ont.).
2022 08; 158(?):111562. doi:
10.1016/j.foodres.2022.111562
. [PMID: 35840251] - Saurabh Pal, Deviprasad Rendedula, Narendra Kumar Nagendla, Muralidharan Kaliyaperumal, Mohana Krishna Reddy Mudiam, Kausar Mahmood Ansari. Serum and urine metabolomics analysis reveals the role of altered metabolites in patulin-induced nephrotoxicity.
Food research international (Ottawa, Ont.).
2022 06; 156(?):111177. doi:
10.1016/j.foodres.2022.111177
. [PMID: 35651038] - Mengyang Xing, Yong Chen, Boqiang Li, Shiping Tian. Highly efficient removal of patulin using immobilized enzymes of Pseudomonas aeruginosa TF-06 entrapped in calcium alginate beads.
Food chemistry.
2022 May; 377(?):131973. doi:
10.1016/j.foodchem.2021.131973
. [PMID: 34990945] - Yunfeng Hou, Shaopeng Wang, Liping Jiang, Xiance Sun, Jing Li, Ningning Wang, Xiaofang Liu, Xiaofeng Yao, Cong Zhang, Haoyuan Deng, Guang Yang. Patulin Induces Acute Kidney Injury in Mice through Autophagy-Ferroptosis Pathway.
Journal of agricultural and food chemistry.
2022 May; 70(20):6213-6223. doi:
10.1021/acs.jafc.1c08349
. [PMID: 35543324] - Holly P Bartholomew, Michael J Bradshaw, Otilia Macarisin, Verneta L Gaskins, Jorge M Fonseca, Wayne M Jurick. More than a Virulence Factor: Patulin Is a Non-Host-Specific Toxin that Inhibits Postharvest Phytopathogens and Requires Efflux for Penicillium Tolerance.
Phytopathology.
2022 May; 112(5):1165-1174. doi:
10.1094/phyto-09-21-0371-r
. [PMID: 35365059] - Yashodani Pillay, Savania Nagiah, Charlette Tiloke, Alisa Phulukdaree, Anil A Chuturgoon. miR-27b inhibition contributes to cytotoxicity in patulin-exposed HEK293 cells.
Toxicon : official journal of the International Society on Toxinology.
2022 Apr; 210(?):58-65. doi:
10.1016/j.toxicon.2022.02.018
. [PMID: 35217024] - Hai Li, Candi Liu, Shurong Luo, Sijie Zhu, Shan Tang, Huimei Zeng, Yu Qin, Ming Ma, Dong Zeng, Teris A van Beek, Hui Wang, Bo Chen. Chromatographic Determination of the Mycotoxin Patulin in 219 Chinese Tea Samples and Implications for Human Health.
Molecules (Basel, Switzerland).
2022 Apr; 27(9):. doi:
10.3390/molecules27092852
. [PMID: 35566203] - Baigang Zhang, Chenghui Huang, Qikun Lu, Hairong Liang, Jinliang Li, Dongmei Xu. Involvement of caspase in patulin-induced hepatotoxicity in vitro and in vivo.
Toxicon : official journal of the International Society on Toxinology.
2022 Jan; 206(?):64-73. doi:
10.1016/j.toxicon.2021.12.017
. [PMID: 34968565] - Nan Zhang, Jingrong Li, Boshi Liu, Haixia Wang, Di Zhang, Zheng Li. A facile 'turn-on' fluorescent aptasensor for simultaneous detection of dual mycotoxins in traditional Chinese medicine based on graphene oxide and FRET.
Toxicon : official journal of the International Society on Toxinology.
2022 Jan; 206(?):42-50. doi:
10.1016/j.toxicon.2021.12.006
. [PMID: 34902366] - Ingrid D Dos Santos, Marlos E Z Fontana, Bruna Klein, Stephanie R Ribeiro, Andrieli Stefanello, Fabio R Thewes, Suele F P Schmidt, Marina V Copetti, Auri Brackmann, Ionara R Pizzutti, Roger Wagner. Fungal growth, patulin accumulation and volatile profile in 'Fuji Mishima' apples under controlled atmosphere and dynamic controlled atmosphere.
Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.
2022 Jan; 39(1):170-184. doi:
10.1080/19440049.2021.1987533
. [PMID: 34702141] - Saurabh Pal, Neha Singh, Indra Dev, Vineeta Sharma, Pankaj Ramji Jagdale, Anjaneya Ayanur, Kausar Mahmood Ansari. TGF-β/Smad signaling pathway plays a crucial role in patulin-induced pro-fibrotic changes in rat kidney via modulation of slug and snail expression.
Toxicology and applied pharmacology.
2022 01; 434(?):115819. doi:
10.1016/j.taap.2021.115819
. [PMID: 34896196] - Tristan W Wang, Kathie T Hodge. Susceptibility of Rosaceous Pome and Stone Fruits to Postharvest Rot by Paecilomyces niveus.
Plant disease.
2022 Jan; 106(1):121-126. doi:
10.1094/pdis-04-21-0855-re
. [PMID: 34445878] - Yesica Lambrese, Gabriela Sansone, María Isabel Sanz, Susana Noemí Di Masi, Julio Raba, Viviana Calvente. Kosakonia radicincitans and Cryptococcus laurentii controlled Penicillium expansum rot and decreased patulin production at 4 and 25 °C.
Food microbiology.
2021 Dec; 100(?):103863. doi:
10.1016/j.fm.2021.103863
. [PMID: 34416963] - Husam Ibrahem Aroud, Bianca May, Helmut Dietrich, Ralf Schweiggert, Sabine Kemmlein. Influence of processing steps on the fate of ochratoxin A, patulin, and alternariol during production of cloudy and clear apple juices.
Mycotoxin research.
2021 Nov; 37(4):341-354. doi:
10.1007/s12550-021-00443-x
. [PMID: 34693499] - Wassim Habib, Mario Masiello, Hala Chahine-Tsouvalakis, Zahraa Al Moussawi, Carine Saab, Salwa Tohmé Tawk, Luca Piemontese, Michele Solfrizzo, Antonio Francesco Logrieco, Antonio Moretti, Antonia Susca. Occurrence and Characterization of Penicillium Species Isolated from Post-Harvest Apples in Lebanon.
Toxins.
2021 10; 13(10):. doi:
10.3390/toxins13100730
. [PMID: 34679023] - Ante Lončarić, Bojan Šarkanj, Ana-Marija Gotal, Marija Kovač, Ante Nevistić, Goran Fruk, Martina Skendrović Babojelić, Jurislav Babić, Borislav Miličević, Tihomir Kovač. Penicillium expansum Impact and Patulin Accumulation on Conventional and Traditional Apple Cultivars.
Toxins.
2021 10; 13(10):. doi:
10.3390/toxins13100703
. [PMID: 34678996] - Yong Chen, Zhanquan Zhang, Boqiang Li, Shiping Tian. PeMetR-mediated sulfur assimilation is essential for virulence and patulin biosynthesis in Penicillium expansum.
Environmental microbiology.
2021 09; 23(9):5555-5568. doi:
10.1111/1462-2920.15704
. [PMID: 34347341] - Jiayu Liu, Qi Liu, Jiahui Han, Jiayu Feng, Tianmin Guo, Zhiman Li, Fenyi Min, Ruyi Jin, Xiaoli Peng. N-Acetylcysteine Inhibits Patulin-Induced Apoptosis by Affecting ROS-Mediated Oxidative Damage Pathway.
Toxins.
2021 08; 13(9):. doi:
10.3390/toxins13090595
. [PMID: 34564600] - Berta Canal, Allison W McClure, Joseph F Curran, Mary Wu, Rachel Ulferts, Florian Weissmann, Jingkun Zeng, Agustina P Bertolin, Jennifer C Milligan, Souradeep Basu, Lucy S Drury, Tom D Deegan, Ryo Fujisawa, Emma L Roberts, Clovis Basier, Karim Labib, Rupert Beale, Michael Howell, John F X Diffley. Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of nsp14/nsp10 exoribonuclease.
The Biochemical journal.
2021 07; 478(13):2445-2464. doi:
10.1042/bcj20210198
. [PMID: 34198326] - Yanjing Guo, Weizhe Liu, He Wang, Xiaoxiong Wang, Sheng Qiang, Hazem M Kalaji, Reto Jörg Strasser, Shiguo Chen. Action Mode of the Mycotoxin Patulin as a Novel Natural Photosystem II Inhibitor.
Journal of agricultural and food chemistry.
2021 Jul; 69(26):7313-7323. doi:
10.1021/acs.jafc.1c01811
. [PMID: 34165302] - Mengyang Xing, Yong Chen, Boqiang Li, Shiping Tian. Characterization of a short-chain dehydrogenase/reductase and its function in patulin biodegradation in apple juice.
Food chemistry.
2021 Jun; 348(?):129046. doi:
10.1016/j.foodchem.2021.129046
. [PMID: 33508606] - Pascaline Bahati, Xuejun Zeng, Ferdinand Uzizerimana, Ariunsaikhan Tsoggerel, Muhammad Awais, Guo Qi, Rui Cai, Tianli Yue, Yahong Yuan. Adsorption Mechanism of Patulin from Apple Juice by Inactivated Lactic Acid Bacteria Isolated from Kefir Grains.
Toxins.
2021 06; 13(7):. doi:
10.3390/toxins13070434
. [PMID: 34206488] - Laura Settier-Ramírez, Gracia López-Carballo, Pilar Hernández-Muñoz, Angélique Fontana, Caroline Strub, Sabine Schorr-Galindo. New Isolated Metschnikowia pulcherrima Strains from Apples for Postharvest Biocontrol of Penicillium expansum and Patulin Accumulation.
Toxins.
2021 06; 13(6):. doi:
10.3390/toxins13060397
. [PMID: 34199507] - Xiaoyun Liu, Xiaomin Cui, Dongchao Ji, Zhanquan Zhang, Boqiang Li, Yong Xu, Tong Chen, Shiping Tian. Luteolin-induced activation of the phenylpropanoid metabolic pathway contributes to quality maintenance and disease resistance of sweet cherry.
Food chemistry.
2021 Apr; 342(?):128309. doi:
10.1016/j.foodchem.2020.128309
. [PMID: 33051099] - Jiahui Han, Chengni Jin, Yujie Zhong, Jiachang Zhu, Qi Liu, Dianjun Sun, Jiayu Feng, Xiaodong Xia, Xiaoli Peng. Involvement of NADPH oxidase in patulin-induced oxidative damage and cytotoxicity in HEK293 cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2021 Apr; 150(?):112055. doi:
10.1016/j.fct.2021.112055
. [PMID: 33577942] - Jinling Cui, Shutao Yin, Chong Zhao, Lihong Fan, Hongbo Hu. Combining Patulin with Cadmium Induces Enhanced Hepatotoxicity and Nephrotoxicity In Vitro and In Vivo.
Toxins.
2021 03; 13(3):. doi:
10.3390/toxins13030221
. [PMID: 33803748] - Hongyin Zhang, Joseph Ahima, Qiya Yang, Lina Zhao, Xiaoyun Zhang, Xiangfeng Zheng. A review on citrinin: Its occurrence, risk implications, analytical techniques, biosynthesis, physiochemical properties and control.
Food research international (Ottawa, Ont.).
2021 03; 141(?):110075. doi:
10.1016/j.foodres.2020.110075
. [PMID: 33641962] - Jiang He, Natasha Marie Evans, Huaizhi Liu, Yan Zhu, Ting Zhou, Suqin Shao. UV treatment for degradation of chemical contaminants in food: A review.
Comprehensive reviews in food science and food safety.
2021 03; 20(2):1857-1886. doi:
10.1111/1541-4337.12698
. [PMID: 33486857] - Yashodani Pillay, Terisha Ghazi, Shanel Raghubeer, Savania Nagiah, Anil A Chuturgoon. Patulin activates the NRF2 pathway by modulation of miR-144 expression in HEK293 cells.
Mycotoxin research.
2021 Feb; 37(1):97-103. doi:
10.1007/s12550-020-00418-4
. [PMID: 33403569] - Vincenzo Tragni, Pietro Cotugno, Anna De Grassi, Federica Massari, Francesco Di Ronzo, Antonella Maria Aresta, Carlo Zambonin, Simona Marianna Sanzani, Antonio Ippolito, Ciro Leonardo Pierri. Targeting mitochondrial metabolite transporters in Penicillium expansum for reducing patulin production.
Plant physiology and biochemistry : PPB.
2021 Jan; 158(?):158-181. doi:
10.1016/j.plaphy.2020.07.027
. [PMID: 33250320] - Chaozhi Wei, Leilei Yu, Nanzhen Qiao, Shumin Wang, Fengwei Tian, Jianxin Zhao, Hao Zhang, Qixiao Zhai, Wei Chen. The characteristics of patulin detoxification by Lactobacillus plantarum 13M5.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Dec; 146(?):111787. doi:
10.1016/j.fct.2020.111787
. [PMID: 33031840] - Yashodani Pillay, Savania Nagiah, Alisa Phulukdaree, Anand Krishnan, Anil A Chuturgoon. Patulin suppresses α1-adrenergic receptor expression in HEK293 cells.
Scientific reports.
2020 11; 10(1):20115. doi:
10.1038/s41598-020-77157-0
. [PMID: 33208818] - Dianiris Luciano-Rosario, Nancy P Keller, Wayne M Jurick. Penicillium expansum: biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit.
Molecular plant pathology.
2020 11; 21(11):1391-1404. doi:
10.1111/mpp.12990
. [PMID: 32969130] - Boqiang Li, Yong Chen, Zhanquan Zhang, Guozheng Qin, Tong Chen, Shiping Tian. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum.
Comprehensive reviews in food science and food safety.
2020 11; 19(6):3416-3438. doi:
10.1111/1541-4337.12612
. [PMID: 33337032] - Nianfa Han, Ruilin Luo, Jiayu Liu, Tianmin Guo, Jiayu Feng, Xiaoli Peng. Transcriptomic and Proteomic Analysis Reveals Mechanisms of Patulin-Induced Cell Toxicity in Human Embryonic Kidney Cells.
Toxins.
2020 10; 12(11):. doi:
10.3390/toxins12110681
. [PMID: 33138038] - Nanzhen Qiao, Leilei Yu, Chengcheng Zhang, Chaozhi Wei, Jianxin Zhao, Hao Zhang, Fengwei Tian, Qixiao Zhai, Wei Chen. A comparison of the inhibitory activities of Lactobacillus and Bifidobacterium against Penicillium expansum and an analysis of potential antifungal metabolites.
FEMS microbiology letters.
2020 09; 367(18):. doi:
10.1093/femsle/fnaa130
. [PMID: 32845333] - Kolawole I Ayeni, Michael Sulyok, Rudolf Krska, Chibundu N Ezekiel. Fungal and plant metabolites in industrially-processed fruit juices in Nigeria.
Food additives & contaminants. Part B, Surveillance.
2020 Sep; 13(3):155-161. doi:
10.1080/19393210.2020.1741691
. [PMID: 32207373] - Mercedes Taroncher, Maria-Chiari Pigni, Maria-Natalia Diana, Ana Juan-García, Maria-Jose Ruiz. Does low concentration mycotoxin exposure induce toxicity in HepG2 cells through oxidative stress?.
Toxicology mechanisms and methods.
2020 Jul; 30(6):417-426. doi:
10.1080/15376516.2020.1757000
. [PMID: 32306886] - Zelma Faisal, Virág Vörös, Eszter Fliszár-Nyúl, Beáta Lemli, Sándor Kunsági-Máté, Rita Csepregi, Tamás Kőszegi, Ferenc Zsila, Miklós Poór. Probing the Interactions of Ochratoxin B, Ochratoxin C, Patulin, Deoxynivalenol, and T-2 Toxin with Human Serum Albumin.
Toxins.
2020 06; 12(6):. doi:
10.3390/toxins12060392
. [PMID: 32545742] - Mengyang Xing, Boqiang Li, Yong Chen, Shiping Tian. Ribonucleoside Diphosphate Reductase Plays an Important Role in Patulin Degradation by Enterobacter cloacae subsp. dissolvens.
Journal of agricultural and food chemistry.
2020 May; 68(18):5232-5240. doi:
10.1021/acs.jafc.0c01613
. [PMID: 32293876] - Salma Ouhibi, Arnau Vidal, Carla Martins, Ridha Gali, Abderrazzek Hedhili, Sarah De Saeger, Marthe De Boevre. LC-MS/MS methodology for simultaneous determination of patulin and citrinin in urine and plasma applied to a pilot study in colorectal cancer patients.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Feb; 136(?):110994. doi:
10.1016/j.fct.2019.110994
. [PMID: 31783110] - Wayne M Jurick, Hui Peng, Hunter S Beard, Wesley M Garrett, Franz J Lichtner, Dianiris Luciano-Rosario, Otilia Macarisin, Yingjian Liu, Kari A Peter, Verneta L Gaskins, Tianbao Yang, Joseph Mowery, Gary Bauchan, Nancy P Keller, Bret Cooper. Blistering1 Modulates Penicillium expansum Virulence Via Vesicle-mediated Protein Secretion.
Molecular & cellular proteomics : MCP.
2020 02; 19(2):344-361. doi:
10.1074/mcp.ra119.001831
. [PMID: 31871254] - Xinjie Song, Danhua Wang, Myunghee Kim. Immunoliposome-based fluorometric patulin assay by using immunomagnetic nanoparticles.
Mikrochimica acta.
2019 11; 186(12):834. doi:
10.1007/s00604-019-3973-9
. [PMID: 31758269] - Kayla K Pennerman, Joseph B Scarsella, Guo-Hua Yin, Sui-Sheng T Hua, Thomas G Hartman, Joan W Bennett. Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium.
Mycotoxin research.
2019 Nov; 35(4):329-340. doi:
10.1007/s12550-019-00348-w
. [PMID: 31025195] - Christian I Oporto, Carlos A Villarroel, Sebastián M Tapia, Verónica García, Francisco A Cubillos. Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces Cerevisiae.
Toxins.
2019 07; 11(7):. doi:
10.3390/toxins11070400
. [PMID: 31295862] - Iman Saleh, Ipek Goktepe. The characteristics, occurrence, and toxicological effects of patulin.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2019 Jul; 129(?):301-311. doi:
10.1016/j.fct.2019.04.036
. [PMID: 31029720] - Xiaomin Zhang, Maorun Fu, Qingmin Chen. Effect of chlorine dioxide (ClO2 ) on patulin produced by Penicillum expansum and involved mechanism.
Journal of the science of food and agriculture.
2019 Mar; 99(4):1961-1968. doi:
10.1002/jsfa.9394
. [PMID: 30270445] - Boqiang Li, Yong Chen, Yuanyuan Zong, Yanjiao Shang, Zhanquan Zhang, Xiaodi Xu, Xiao Wang, Manyuan Long, Shiping Tian. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum.
Environmental microbiology.
2019 03; 21(3):1124-1139. doi:
10.1111/1462-2920.14542
. [PMID: 30680886] - Marina Sajid, Sajid Mehmood, Yahong Yuan, Tianli Yue. Mycotoxin patulin in food matrices: occurrence and its biological degradation strategies.
Drug metabolism reviews.
2019 02; 51(1):105-120. doi:
10.1080/03602532.2019.1589493
. [PMID: 30857445] - Joanna Tannous, Dilip Kumar, Noa Sela, Edward Sionov, Dov Prusky, Nancy P Keller. Fungal attack and host defence pathways unveiled in near-avirulent interactions of Penicillium expansum creA mutants on apples.
Molecular plant pathology.
2018 12; 19(12):2635-2650. doi:
10.1111/mpp.12734
. [PMID: 30047230] - Yong Chen, Boqiang Li, Xiaodi Xu, Zhanquan Zhang, Shiping Tian. The pH-responsive PacC transcription factor plays pivotal roles in virulence and patulin biosynthesis in Penicillium expansum.
Environmental microbiology.
2018 11; 20(11):4063-4078. doi:
10.1111/1462-2920.14453
. [PMID: 30370586] - Neha Singh, Megha Bansal, Saurabh Pal, Shamshad Alam, Pankaj Jagdale, Anjaneya Ayanur, Kausar Mahmood Ansari. COX-2/EP2-EP4/β-catenin signaling regulates patulin-induced intestinal cell proliferation and inflammation.
Toxicology and applied pharmacology.
2018 10; 356(?):224-234. doi:
10.1016/j.taap.2018.08.009
. [PMID: 30138657] - Marina Sajid, Sajid Mehmood, Chen Niu, Yahong Yuan, Tianli Yue. Effective Adsorption of Patulin from Apple Juice by Using Non-Cytotoxic Heat-Inactivated Cells and Spores of Alicyclobacillus Strains.
Toxins.
2018 08; 10(9):. doi:
10.3390/toxins10090344
. [PMID: 30149638] - Ingrid D Dos Santos, Ionara R Pizzutti, Jonatan V Dias, Marlos E Z Fontana, Auri Brackmann, Rogério O Anese, Fabio R Thewes, Leandro N Marques, Carmem D Cardoso. Patulin accumulation in apples under dynamic controlled atmosphere storage.
Food chemistry.
2018 Jul; 255(?):275-281. doi:
10.1016/j.foodchem.2018.02.022
. [PMID: 29571477] - C J Botha, M Truter, M Sulyok. Multimycotoxin analysis of South African Aspergillus clavatus isolates.
Mycotoxin research.
2018 May; 34(2):91-97. doi:
10.1007/s12550-017-0303-0
. [PMID: 29236246] - Aymeric Monteillier, Pierre-Marie Allard, Katia Gindro, Jean-Luc Wolfender, Muriel Cuendet. Lung Cancer Chemopreventive Activity of Patulin Isolated from Penicillium vulpinum.
Molecules (Basel, Switzerland).
2018 Mar; 23(3):. doi:
10.3390/molecules23030636
. [PMID: 29534536] - Joanna Tannous, Nancy P Keller, Ali Atoui, André El Khoury, Roger Lteif, Isabelle P Oswald, Olivier Puel. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research.
Critical reviews in food science and nutrition.
2018; 58(12):2082-2098. doi:
10.1080/10408398.2017.1305945
. [PMID: 28362209] - Dilip Kumar, Shiri Barad, Yong Chen, Xingyu Luo, Joanna Tannous, Amit Dubey, Nofar Glam Matana, Shiping Tian, Boqiang Li, Nancy Keller, Dov Prusky. LaeA regulation of secondary metabolism modulates virulence in Penicillium expansum and is mediated by sucrose.
Molecular plant pathology.
2017 10; 18(8):1150-1163. doi:
10.1111/mpp.12469
. [PMID: 27528575] - Yujie Zhong, Chengni Jin, Jing Gan, Xiaorui Wang, Zhenqiang Shi, Xiaodong Xia, Xiaoli Peng. Apigenin attenuates patulin-induced apoptosis in HEK293 cells by modulating ROS-mediated mitochondrial dysfunction and caspase signal pathway.
Toxicon : official journal of the International Society on Toxinology.
2017 Oct; 137(?):106-113. doi:
10.1016/j.toxicon.2017.07.018
. [PMID: 28734981] - Saranya Poapolathep, Phanwimol Tanhan, Onuma Piasai, Kanjana Imsilp, Jana Hajslova, Mario Giorgi, Susumu Kumagai, Amnart Poapolathep. Occurrence and Health Risk of Patulin and Pyrethroids in Fruit Juices Consumed in Bangkok, Thailand.
Journal of food protection.
2017 09; 80(9):1415-1421. doi:
10.4315/0362-028x.jfp-17-026
. [PMID: 28762777] - Belén Guijarro, Inmaculada Larena, Paloma Melgarejo, Antonieta De Cal. Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit.
International journal of food microbiology.
2017 Aug; 254(?):25-35. doi:
10.1016/j.ijfoodmicro.2017.05.004
. [PMID: 28511111] - Ahmed A Ismaiel, Jutta Papenbrock. Effect of Patulin from Penicillium vulpinum on the Activity of Glutathione-S-Transferase and Selected Antioxidative Enzymes in Maize.
International journal of environmental research and public health.
2017 07; 14(7):. doi:
10.3390/ijerph14070825
. [PMID: 28737668] - Xiaotong Lu, Enxiang Zhang, Shutao Yin, Lihong Fan, Hongbo Hu. Methylseleninic Acid Prevents Patulin-Induced Hepatotoxicity and Nephrotoxicity via the Inhibition of Oxidative Stress and Inactivation of p53 and MAPKs.
Journal of agricultural and food chemistry.
2017 Jul; 65(26):5299-5305. doi:
10.1021/acs.jafc.7b01338
. [PMID: 28594550] - Joanna Tannous, Selma P Snini, Rhoda El Khoury, Cécile Canlet, Philippe Pinton, Yannick Lippi, Imourana Alassane-Kpembi, Thierry Gauthier, André El Khoury, Ali Atoui, Ting Zhou, Roger Lteif, Isabelle P Oswald, Olivier Puel. Patulin transformation products and last intermediates in its biosynthetic pathway, E- and Z-ascladiol, are not toxic to human cells.
Archives of toxicology.
2017 Jun; 91(6):2455-2467. doi:
10.1007/s00204-016-1900-y
. [PMID: 27913847] - Walid Hammami, Roda Al-Thani, Stefano Fiori, Saeed Al-Meer, Fathy Atia Atia, Duha Rabah, Quirico Migheli, Samir Jaoua. Patulin and patulin producing Penicillium spp. occurrence in apples and apple-based products including baby food.
Journal of infection in developing countries.
2017 Apr; 11(4):343-349. doi:
10.3855/jidc.9043
. [PMID: 28459226] - Tongfei Lai, Ying Wang, Yaya Fan, Yingying Zhou, Ying Bao, Ting Zhou. The response of growth and patulin production of postharvest pathogen Penicillium expansum to exogenous potassium phosphite treatment.
International journal of food microbiology.
2017 Mar; 244(?):1-10. doi:
10.1016/j.ijfoodmicro.2016.12.017
. [PMID: 28042969] - Yong Chen, Huai-Min Peng, Xiao Wang, Bo-Qiang Li, Man-Yuan Long, Shi-Ping Tian. Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis.
Toxins.
2017 02; 9(2):. doi:
10.3390/toxins9020048
. [PMID: 28208714] - Manel Boussabbeh, Alexandre Prola, Intidhar Ben Salem, Arnaud Guilbert, Hassen Bacha, Christophe Lemaire, Salwa Abis-Essefi. Crocin and quercetin prevent PAT-induced apoptosis in mammalian cells: Involvement of ROS-mediated ER stress pathway.
Environmental toxicology.
2016 Dec; 31(12):1851-1858. doi:
10.1002/tox.22185
. [PMID: 26314699] - Selma P Snini, Joanna Tannous, Pauline Heuillard, Sylviane Bailly, Yannick Lippi, Enric Zehraoui, Christian Barreau, Isabelle P Oswald, Olivier Puel. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum.
Molecular plant pathology.
2016 08; 17(6):920-30. doi:
10.1111/mpp.12338
. [PMID: 26582186] - Shiri Barad, Eduardo A Espeso, Amir Sherman, Dov Prusky. Ammonia activates pacC and patulin accumulation in an acidic environment during apple colonization by Penicillium expansum.
Molecular plant pathology.
2016 06; 17(5):727-40. doi:
10.1111/mpp.12327
. [PMID: 26420024] - Manel Boussabbeh, Intidhar Ben Salem, Faicel Belguesmi, Fadwa Neffati, Mohamed Fadhel Najjar, Salwa Abid-Essefi, Hassen Bacha. Crocin protects the liver and kidney from patulin-induced apoptosis in vivo.
Environmental science and pollution research international.
2016 May; 23(10):9799-808. doi:
10.1007/s11356-016-6195-2
. [PMID: 26856859] - Huan Jin, Shutao Yin, Xinhua Song, Enxiang Zhang, Lihong Fan, Hongbo Hu. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation.
Scientific reports.
2016 Apr; 6(?):24455. doi:
10.1038/srep24455
. [PMID: 27071452] - Giuseppe Ianiri, Alexander Idnurm, Raffaello Castoria. Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin.
BMC genomics.
2016 Mar; 17(?):210. doi:
10.1186/s12864-016-2550-4
. [PMID: 26956724] - Manel Boussabbeh, Intidhar Ben Salem, Faicel Belguesmi, Hassen Bacha, Salwa Abid-Essefi. Tissue oxidative stress induced by patulin and protective effect of crocin.
Neurotoxicology.
2016 Mar; 53(?):343-349. doi:
10.1016/j.neuro.2015.11.005
. [PMID: 26584762] - Houda Banani, Marina Marcet-Houben, Ana-Rosa Ballester, Pamela Abbruscato, Luis González-Candelas, Toni Gabaldón, Davide Spadaro. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum.
BMC genomics.
2016 Jan; 17(?):19. doi:
10.1186/s12864-015-2347-x
. [PMID: 26729047] - Manel Boussabbeh, Intidhar Ben Salem, Fadwa Neffati, Mohamed Fadhel Najjar, Hassen Bacha, Salwa Abid-Essefi. Crocin Prevents Patulin-Induced Acute Toxicity in Cardiac Tissues via the Regulation of Oxidative Damage and Apoptosis.
Journal of biochemical and molecular toxicology.
2015 Oct; 29(10):479-488. doi:
10.1002/jbt.21718
. [PMID: 26095701] - Yuanyuan Zong, Boqiang Li, Shiping Tian. Effects of carbon, nitrogen and ambient pH on patulin production and related gene expression in Penicillium expansum.
International journal of food microbiology.
2015 Aug; 206(?):102-8. doi:
10.1016/j.ijfoodmicro.2015.05.007
. [PMID: 26001378] - Ruiyu Zhu, Kirstin Feussner, Tao Wu, Fujie Yan, Petr Karlovsky, Xiaodong Zheng. Detoxification of mycotoxin patulin by the yeast Rhodosporidium paludigenum.
Food chemistry.
2015 Jul; 179(?):1-5. doi:
10.1016/j.foodchem.2015.01.066
. [PMID: 25722132] - Boqiang Li, Yuanyuan Zong, Zhenglin Du, Yong Chen, Zhanquan Zhang, Guozheng Qin, Wenming Zhao, Shiping Tian. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.
Molecular plant-microbe interactions : MPMI.
2015 Jun; 28(6):635-47. doi:
10.1094/mpmi-12-14-0398-fi
. [PMID: 25625822] - Y Pillay, A Phulukdaree, S Nagiah, A A Chuturgoon. Patulin triggers NRF2-mediated survival mechanisms in kidney cells.
Toxicon : official journal of the International Society on Toxinology.
2015 Jun; 99(?):1-5. doi:
10.1016/j.toxicon.2015.03.004
. [PMID: 25772858] - Manel Boussabbeh, Intidhar Ben Salem, Alexandre Prola, Arnaud Guilbert, Hassen Bacha, Salwa Abid-Essefi, Christophe Lemaire. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway.
Toxicological sciences : an official journal of the Society of Toxicology.
2015 Apr; 144(2):328-37. doi:
10.1093/toxsci/kfu319
. [PMID: 25577197] - Ana-Rosa Ballester, Marina Marcet-Houben, Elena Levin, Noa Sela, Cristina Selma-Lázaro, Lourdes Carmona, Michael Wisniewski, Samir Droby, Luis González-Candelas, Toni Gabaldón. Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity.
Molecular plant-microbe interactions : MPMI.
2015 Mar; 28(3):232-48. doi:
10.1094/mpmi-09-14-0261-fi
. [PMID: 25338147] - Baigang Zhang, Xiaoli Peng, Guanghui Li, Yunfeng Xu, Xiaodong Xia, Qian Wang. Oxidative stress is involved in Patulin induced apoptosis in HEK293 cells.
Toxicon : official journal of the International Society on Toxinology.
2015 Feb; 94(?):1-7. doi:
10.1016/j.toxicon.2014.12.002
. [PMID: 25478806] - Ruiyu Zhu, Ting Yu, Shuanghuan Guo, Hao Hu, Xiaodong Zheng, Petr Karlovsky. Effect of the yeast Rhodosporidium paludigenum on postharvest decay and patulin accumulation in apples and pears.
Journal of food protection.
2015 Jan; 78(1):157-63. doi:
10.4315/0362-028x.jfp-14-218
. [PMID: 25581191] - Erqun Song, Xiaomin Xia, Chuanyang Su, Wenjing Dong, Yaping Xian, Wei Wang, Yang Song. Hepatotoxicity and genotoxicity of patulin in mice, and its modulation by green tea polyphenols administration.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2014 Sep; 71(?):122-7. doi:
10.1016/j.fct.2014.06.009
. [PMID: 24949943]