Fraxetin (BioDeep_00000000002)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


7,8-dihydroxy-6-methoxychromen-2-one

化学式: C10H8O5 (208.0372)
中文名称: 弗拉西汀, 秦皮素
谱图信息: 最多检出来源 Homo sapiens(otcml) 21.33%

Reviewed

Last reviewed on 2024-06-28.

Cite this Page

Fraxetin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/fraxetin (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000002). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: COC1=C(C(=C2C(=C1)C=CC(=O)O2)O)O
InChI: InChI=1S/C10H8O5/c1-14-6-4-5-2-3-7(11)15-10(5)9(13)8(6)12/h2-4,12-13H,1H3

描述信息

Fraxetin is a hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. It has a role as an Arabidopsis thaliana metabolite, an antimicrobial agent, an apoptosis inhibitor, an apoptosis inducer, an antioxidant, an anti-inflammatory agent, a hepatoprotective agent, an antibacterial agent and a hypoglycemic agent. It is a hydroxycoumarin and an aromatic ether.
Fraxetin is a natural product found in Santolina pinnata, Campanula dolomitica, and other organisms with data available.
A hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups.
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.550
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.542

Fraxetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=574-84-5 (retrieved 2024-06-28) (CAS RN: 574-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1].
Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1].

同义名列表

52 个代谢物同义名

2H-1-Benzopyran-2-one, 7,8-dihydroxy-6-methoxy-; 7,8-Dihydroxy-6-methoxy-2H-1-benzopyran-2-one; 7,8-Dihydroxy-6-methoxy-2H-chromen-2-one #; 7,8-Dihydroxy-6-methoxy-2H-chromen-2-one; 7,8-Dihydroxy-6-methoxycoumarin, 98\\%; 7,8-Dihydroxy-6-methoxy-chromen-2-one; 7,8-Dihydroxy-6-methoxy-2-benzopyrone; 7,8-dihydroxy-6-methoxychromen-2-one; Coumarin, 7,8-dihydroxy-6-methoxy-; Coumarin, 7,8-dihydroxy-6-methoxy; 7,8-dihydroxy-6-methoxy coumarin; 6-methoxy-7,8-dihydroxycoumarin; 7,8-Dihydroxy-6-methoxycoumarin; Fraxetin, analytical standard; 8-hydroxyscopoletin; Oprea1_735469; DivK1c_006573; KSC-11-207-12; FRAXETIN [MI]; MEGxp0_000506; KBio1_001517; ACon1_000442; KBio2_007123; KBio2_001987; KBio3_002724; KBio2_004555; ACon0_001071; CD3GD44O3K; Fraxetol; Fraxetin; 7,8-dihydroxy-6-methoxy-2-chromenone; 7,8-dihydroxy-6-methoxy-coumarin; EINECS 209-376-2; Spectrum_001507; NCGC00096046-01; SpecPlus_000477; SPECTRUM1504069; NCGC00096046-02; NCGC00017270-01; 254916_ALDRICH; BSPBio_003224; KBioGR_001952; KBioSS_001987; ZINC00113309; SPBio_001737; AIDS-224554; AIDS224554; TNP00177; 574-84-5; ST024715; Fraxetin; Fraxetin



数据库引用编号

26 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

183 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 BCL2, CASP3, CAT, CCND1, CDH1, CDH2, MAPK8, NFE2L2, NLRP3, PIK3CA, STAT3, TLR4, VEGFA, VIM
Endosome membrane 1 TLR4
Endoplasmic reticulum membrane 2 BCL2, HMOX1
Nucleus 10 BCL2, CASP3, CCND1, CDH1, HMOX1, MAPK8, NFE2L2, NLRP3, STAT3, VEGFA
cytosol 13 BCL2, CASP3, CAT, CCND1, CDH1, HMOX1, IL1B, MAPK8, NFE2L2, NLRP3, PIK3CA, STAT3, VIM
phagocytic vesicle 1 VIM
trans-Golgi network 1 CDH1
centrosome 2 CCND1, NFE2L2
nucleoplasm 7 CASP3, CCND1, CDH1, HMOX1, MAPK8, NFE2L2, STAT3
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT3
Cell membrane 5 CDH1, CDH2, TLR4, TNF, VIM
Cytoplasmic side 1 HMOX1
lamellipodium 3 CDH1, CDH2, PIK3CA
Golgi apparatus membrane 1 NLRP3
Synapse 1 MAPK8
cell junction 2 CDH1, CDH2
cell surface 4 CDH2, TLR4, TNF, VEGFA
glutamatergic synapse 2 CASP3, CDH1
Golgi apparatus 3 CDH1, NFE2L2, VEGFA
Golgi membrane 2 INS, NLRP3
neuronal cell body 2 CASP3, TNF
postsynapse 1 CDH1
sarcolemma 1 CDH2
Cytoplasm, cytosol 3 IL1B, NFE2L2, NLRP3
Lysosome 1 IL1B
endosome 1 CDH1
plasma membrane 8 CDH1, CDH2, NFE2L2, PIK3CA, STAT3, TLR4, TNF, VIM
Membrane 8 BCL2, CAT, CDH1, CDH2, HMOX1, NLRP3, TLR4, VEGFA
apical plasma membrane 1 CDH2
axon 3 CCK, MAPK8, VIM
basolateral plasma membrane 1 CDH2
extracellular exosome 3 CAT, CDH1, VIM
endoplasmic reticulum 4 BCL2, HMOX1, NLRP3, VEGFA
extracellular space 7 CCK, HMOX1, IL1B, IL6, INS, TNF, VEGFA
perinuclear region of cytoplasm 4 CDH1, HMOX1, PIK3CA, TLR4
adherens junction 3 CDH1, CDH2, VEGFA
apicolateral plasma membrane 1 CDH2
bicellular tight junction 1 CCND1
intercalated disc 2 CDH2, PIK3CA
mitochondrion 3 BCL2, CAT, NLRP3
protein-containing complex 2 BCL2, CAT
intracellular membrane-bounded organelle 1 CAT
postsynaptic density 2 CASP3, CDH2
Single-pass type I membrane protein 3 CDH1, CDH2, TLR4
Secreted 6 CCK, IL1B, IL6, INS, NLRP3, VEGFA
extracellular region 9 CAT, CCK, CDH1, IL1B, IL6, INS, NLRP3, TNF, VEGFA
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
mitochondrial matrix 1 CAT
transcription regulator complex 1 STAT3
Nucleus membrane 2 BCL2, CCND1
Bcl-2 family protein complex 1 BCL2
nuclear membrane 3 BCL2, CCND1, CDH1
external side of plasma membrane 2 TLR4, TNF
Secreted, extracellular space, extracellular matrix 1 VEGFA
actin cytoskeleton 1 CDH1
Early endosome 1 TLR4
apical part of cell 1 CDH2
cell-cell junction 1 CDH2
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
presynaptic active zone membrane 1 CDH2
Cell membrane, sarcolemma 1 CDH2
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 VIM
focal adhesion 3 CAT, CDH2, VIM
Cell junction, adherens junction 2 CDH1, CDH2
flotillin complex 1 CDH1
extracellular matrix 1 VEGFA
Peroxisome 2 CAT, VIM
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
collagen-containing extracellular matrix 1 CDH2
secretory granule 2 IL1B, VEGFA
fascia adherens 1 CDH2
intermediate filament 1 VIM
lateral plasma membrane 1 CDH1
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 1 TLR4
neuron projection 2 CDH2, VIM
chromatin 2 NFE2L2, STAT3
mediator complex 1 NFE2L2
cell leading edge 1 VIM
phagocytic cup 2 TLR4, TNF
cytoskeleton 1 VIM
Golgi apparatus, trans-Golgi network 1 CDH1
Endomembrane system 1 NLRP3
endosome lumen 1 INS
microtubule organizing center 2 NLRP3, VIM
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 VIM
lipopolysaccharide receptor complex 1 TLR4
plasma membrane raft 1 CDH2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 CDH2, IL6, INS
nuclear matrix 1 VIM
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 VEGFA
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
Secreted, extracellular exosome 1 IL1B
anaphase-promoting complex 1 CDH1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
Single-pass type IV membrane protein 1 HMOX1
Nucleus matrix 1 VIM
[Isoform 2]: Nucleus 1 CDH1
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
postsynaptic specialization membrane 1 CDH2
apical junction complex 1 CDH1
Cell junction, desmosome 2 CDH1, CDH2
desmosome 2 CDH1, CDH2
catenin complex 2 CDH1, CDH2
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
[N-VEGF]: Cytoplasm 1 VEGFA
[VEGFA]: Secreted 1 VEGFA
[Isoform L-VEGF189]: Endoplasmic reticulum 1 VEGFA
[Isoform VEGF121]: Secreted 1 VEGFA
[Isoform VEGF165]: Secreted 1 VEGFA
VEGF-A complex 1 VEGFA
cyclin D1-CDK6 complex 1 CCND1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jiyeon Ham, Wonhyoung Park, Jisoo Song, Hee Seung Kim, Gwonhwa Song, Whasun Lim, Soo Jin Park, Sunwoo Park. Fraxetin reduces endometriotic lesions through activation of ER stress, induction of mitochondria-mediated apoptosis, and generation of ROS. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jan; 123(?):155187. doi: 10.1016/j.phymed.2023.155187. [PMID: 37984125]
  • Xiaorun Zhai, Jingyu Zhu, Jiao Li, Zhixu Wang, Gufang Zhang, Yunjuan Nie. Fraxetin alleviates BLM-induced idiopathic pulmonary fibrosis by inhibiting NCOA4-mediated epithelial cell ferroptosis. Inflammation research : official journal of the European Histamine Research Society ... [et al.]. 2023 Oct; ?(?):. doi: 10.1007/s00011-023-01800-5. [PMID: 37798541]
  • Yu Yin, Lihui Wang, Guifang Chen, Hongwen You. Effect of Fraxetin on Oxidative Damage Caused by Isoproterenol-Induced Myocardial Infarction in Rats. Applied biochemistry and biotechnology. 2022 Dec; 194(12):5666-5679. doi: 10.1007/s12010-022-04019-y. [PMID: 35802243]
  • Ruhu Xu, Yingdan Ruan, Lan Zhang, Yating Gu, Mingming Liu. Fraxetin suppresses the proliferation, migration, and invasion of ovarian cancer cells by inhibiting the TLR4/STAT3 signaling pathway. Immunopharmacology and immunotoxicology. 2022 Nov; ?(?):1-8. doi: 10.1080/08923973.2022.2141643. [PMID: 36346016]
  • Minkyeong Lee, Changwon Yang, Sunwoo Park, Gwonhwa Song, Whasun Lim. Fraxetin induces cell death in colon cancer cells via mitochondria dysfunction and enhances therapeutic effects in 5-fluorouracil resistant cells. Journal of cellular biochemistry. 2022 02; 123(2):469-480. doi: 10.1002/jcb.30187. [PMID: 34816480]
  • Yi-Hsien Hsieh, Tung-Wei Hung, Yong-Syuan Chen, Yi-Ning Huang, Hui-Ling Chiou, Chu-Che Lee, Jen-Pi Tsai. In Vitro and In Vivo Antifibrotic Effects of Fraxetin on Renal Interstitial Fibrosis via the ERK Signaling Pathway. Toxins. 2021 07; 13(7):. doi: 10.3390/toxins13070474. [PMID: 34357946]
  • Mohamed Balaha, Nehad Ahmed, Ayman Geddawy, Samah Kandeel. Fraxetin prevented sodium fluoride-induced chronic pancreatitis in rats: Role of anti-inflammatory, antioxidant, antifibrotic and anti-apoptotic activities. International immunopharmacology. 2021 Apr; 93(?):107372. doi: 10.1016/j.intimp.2021.107372. [PMID: 33524802]
  • Zhiwei Miao, Lei Zhang, Mingjia Gu, Jianyi Huang, Xiaoyu Wang, Jing Yan, Yan Xu, Libing Wang. Preparation of Fraxetin Long Circulating Liposome and Its Anti-enteritis Effect. AAPS PharmSciTech. 2021 Mar; 22(3):110. doi: 10.1208/s12249-021-01940-z. [PMID: 33733385]
  • Yang-Liu Xia, Jing-Jing Wang, Shi-Yang Li, Yong Liu, Frank J Gonzalez, Ping Wang, Guang-Bo Ge. Synthesis and structure-activity relationship of coumarins as potent Mcl-1 inhibitors for cancer treatment. Bioorganic & medicinal chemistry. 2021 01; 29(?):115851. doi: 10.1016/j.bmc.2020.115851. [PMID: 33218896]
  • Christopher J Harbort, Masayoshi Hashimoto, Haruhiko Inoue, Yulong Niu, Rui Guan, Adamo D Rombolà, Stanislav Kopriva, Mathias J E E E Voges, Elizabeth S Sattely, Ruben Garrido-Oter, Paul Schulze-Lefert. Root-Secreted Coumarins and the Microbiota Interact to Improve Iron Nutrition in Arabidopsis. Cell host & microbe. 2020 12; 28(6):825-837.e6. doi: 10.1016/j.chom.2020.09.006. [PMID: 33027611]
  • Chi-Na Zhao, Zong-Li Yao, Dan Yang, Jian Ke, Qing-Lai Wu, Jun-Kai Li, Xu-Dong Zhou. Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities. Biomolecules. 2020 01; 10(1):. doi: 10.3390/biom10010074. [PMID: 31906487]
  • Yong Zhang, Li Wang, Yan Deng, Peizhu Zhao, Wen Deng, Jing Zhang, Jie Luo, Rongqing Li. Fraxetin Suppresses Proliferation of Non-Small-Cell Lung Cancer Cells via Preventing Activation of Signal Transducer and Activator of Transcription 3. The Tohoku journal of experimental medicine. 2019 05; 248(1):3-12. doi: 10.1620/tjem.248.3. [PMID: 31080186]
  • Truong Ngoc Minh, Tran Dang Xuan, Hoang-Dung Tran, Truong Mai Van, Yusuf Andriana, Tran Dang Khanh, Nguyen Van Quan, Ateeque Ahmad. Isolation and Purification of Bioactive Compounds from the Stem Bark of Jatropha podagrica. Molecules (Basel, Switzerland). 2019 Mar; 24(5):. doi: 10.3390/molecules24050889. [PMID: 30832436]
  • Yuanli Zhou, Xuanguo Zhang, Chao Li, Xin Yuan, Lihua Han, Zheng Li, Xiaobin Tan, Jie Song, Gang Wang, Xiaobin Jia, Liang Feng, Xiting Qiao, Jiping Liu. Research on the pharmacodynamics and mechanism of Fraxini Cortex on hyperuricemia based on the regulation of URAT1 and GLUT9. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Oct; 106(?):434-442. doi: 10.1016/j.biopha.2018.06.163. [PMID: 29990831]
  • Jia-Cheng Liao, Zhao-Xia Wei, Chang Zhao, Zhong-Ping Ma, Dao-Zhang Cai. Inhibition of osteoclastogenesis for periprosthetic osteolysis therapy through the suppression of p38 signaling by fraxetin. International journal of molecular medicine. 2018 Sep; 42(3):1257-1264. doi: 10.3892/ijmm.2018.3698. [PMID: 29786751]
  • Huei-Hsuan Tsai, Jorge Rodríguez-Celma, Ping Lan, Yu-Ching Wu, Isabel Cristina Vélez-Bermúdez, Wolfgang Schmidt. Scopoletin 8-Hydroxylase-Mediated Fraxetin Production Is Crucial for Iron Mobilization. Plant physiology. 2018 05; 177(1):194-207. doi: 10.1104/pp.18.00178. [PMID: 29559590]
  • Jakub Rajniak, Ricardo F H Giehl, Evelyn Chang, Irene Murgia, Nicolaus von Wirén, Elizabeth S Sattely. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature chemical biology. 2018 05; 14(5):442-450. doi: 10.1038/s41589-018-0019-2. [PMID: 29581584]
  • Joanna Siwinska, Kinga Siatkowska, Alexandre Olry, Jeremy Grosjean, Alain Hehn, Frederic Bourgaud, Andrew A Meharg, Manus Carey, Ewa Lojkowska, Anna Ihnatowicz. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of experimental botany. 2018 03; 69(7):1735-1748. doi: 10.1093/jxb/ery005. [PMID: 29361149]
  • Xiaowei Chen, Xiaozhou Ying, Weiming Sun, Huijia Zhu, Xin Jiang, Bin Chen. The therapeutic effect of fraxetin on ethanol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and modulating inflammatory mediators in rats. International immunopharmacology. 2018 Mar; 56(?):98-104. doi: 10.1016/j.intimp.2018.01.027. [PMID: 29414667]
  • Dhananjay Kumar Singh, Harveer Singh Cheema, Archana Saxena, Jyotshana, Shilpi Singh, Mahendra P Darokar, Dnyaneshwar U Bawankule, Karuna Shanker, Suaib Luqman. Fraxetin and ethyl acetate extract from Lawsonia inermis L. ameliorate oxidative stress in P. berghei infected mice by augmenting antioxidant defence system. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2017 Dec; 36(?):262-272. doi: 10.1016/j.phymed.2017.09.012. [PMID: 29157824]
  • Hyun Gyu Choi, In-Gyu Je, Geum Jin Kim, Joo-Won Nam, Sang Hee Shim, Sang-Hyun Kim, Hyukjae Choi. Chemical Constituents of the Root of Angelica tenuissima and their Anti-allergic Inflammatory Activity. Natural product communications. 2017 May; 12(5):779-780. doi: . [PMID: 30496664]
  • Haidong Wang, Bingxin Xiao, Zhiqiang Hao, Zengxian Sun. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2016 Apr; 1017-1018(?):70-74. doi: 10.1016/j.jchromb.2016.02.030. [PMID: 26945887]
  • Haiting Wang, Dan Zou, Kunpeing Xie, Mingjie Xie. Antibacterial mechanism of fraxetin against Staphylococcus aureus. Molecular medicine reports. 2014 Nov; 10(5):2341-5. doi: 10.3892/mmr.2014.2529. [PMID: 25189268]
  • Minglan Yu, Ailing Sun, Yongqing Zhang, Renmin Liu. Purification of coumarin compounds from Cortex fraxinus by adsorption chromatography. Journal of chromatographic science. 2014 Oct; 52(9):1033-7. doi: 10.1093/chromsci/bmt153. [PMID: 24114664]
  • Aline Witaicenis, Leonardo Noboru Seito, Alexandre da Silveira Chagas, Luiz Domingues de Almeida, Ana Carolina Luchini, Patrícia Rodrigues-Orsi, Silvia Helena Cestari, Luiz Claudio Di Stasi. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014 Feb; 21(3):240-6. doi: 10.1016/j.phymed.2013.09.001. [PMID: 24176844]
  • Yang-Liu Xia, Si-Cheng Liang, Liang-Liang Zhu, Guang-Bo Ge, Gui-Yuan He, Jing Ning, Xia Lv, Xiao-Chi Ma, Ling Yang, Sheng-Li Yang. Identification and characterization of human UDP-glucuronosyltransferases responsible for the glucuronidation of fraxetin. Drug metabolism and pharmacokinetics. 2014; 29(2):135-40. doi: 10.2133/dmpk.dmpk-13-rg-059. [PMID: 24025985]
  • Xiaowei Chen, Xiaozhou Ying, Weiwei Zhang, Yongping Chen, Chunwei Shi, Yijun Hou, Youcai Zhang. The hepatoprotective effect of fraxetin on carbon tetrachloride induced hepatic fibrosis by antioxidative activities in rats. International immunopharmacology. 2013 Nov; 17(3):543-7. doi: 10.1016/j.intimp.2013.08.006. [PMID: 23994349]
  • Raju Murali, Subramani Srinivasan, Natarajan Ashokkumar. Antihyperglycemic effect of fraxetin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Biochimie. 2013 Oct; 95(10):1848-54. doi: 10.1016/j.biochi.2013.06.013. [PMID: 23806420]
  • Augusta Caligiani, Letizia Tonelli, Gerardo Palla, Angela Marseglia, Damiano Rossi, Renato Bruni. Looking beyond sugars: phytochemical profiling and standardization of manna exudates from Sicilian Fraxinus excelsior L. Fitoterapia. 2013 Oct; 90(?):65-72. doi: 10.1016/j.fitote.2013.07.002. [PMID: 23850543]
  • Rohan A Davis, Daniela Vullo, Alfonso Maresca, Claudiu T Supuran, Sally-Ann Poulsen. Natural product coumarins that inhibit human carbonic anhydrases. Bioorganic & medicinal chemistry. 2013 Mar; 21(6):1539-43. doi: 10.1016/j.bmc.2012.07.021. [PMID: 22892213]
  • M V Potapovich, D I Metelitsa, O I Shadyro. [Antioxidant activity of hydroxy derivatives of coumarin]. Prikladnaia biokhimiia i mikrobiologiia. 2012 May; 48(3):282-8. doi: . [PMID: 22834298]
  • Jian-Mei Li, Xian Zhang, Xing Wang, Yong-Chang Xie, Ling-Dong Kong. Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. European journal of pharmacology. 2011 Sep; 666(1-3):196-204. doi: 10.1016/j.ejphar.2011.05.021. [PMID: 21620826]
  • Weihong Feng, Zhimin Wang, Qiwei Zhang, Limei Liu, Jinyu Wang, Fei Yang. [Quantitative method for simultaneous assay of four coumarins with one marker in Fraxini Cortex]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2011 Jul; 36(13):1782-9. doi: ". [PMID: 22032145]
  • Elizabeth A Mazzio, Fran Close, Karam F A Soliman. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. International journal of molecular sciences. 2011 Jan; 12(1):506-69. doi: 10.3390/ijms12010506. [PMID: 21340000]
  • Liya Li, Navindra P Seeram. Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds. Journal of agricultural and food chemistry. 2010 Nov; 58(22):11673-9. doi: 10.1021/jf1033398. [PMID: 21033720]
  • Phuong Thien Thuong, Tran Manh Hung, Tran Minh Ngoc, Do Thi Ha, Byung Sun Min, Seung Jun Kwack, Tae Suk Kang, Jae Sue Choi, KiHwan Bae. Antioxidant activities of coumarins from Korean medicinal plants and their structure-activity relationships. Phytotherapy research : PTR. 2010 Jan; 24(1):101-6. doi: 10.1002/ptr.2890. [PMID: 19468986]
  • Eunjin Shin, Kyeong-Mi Choi, Hwan-Soo Yoo, Chong-Kil Lee, Bang Yeon Hwang, Mi Kyeong Lee. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biological & pharmaceutical bulletin. 2010; 33(9):1610-4. doi: 10.1248/bpb.33.1610. [PMID: 20823583]
  • Phuong Thien Thuong, Yuba Raj Pokharel, Moo Yeol Lee, Sang Kyum Kim, KiHwan Bae, Nguyen Duy Su, Won Keun Oh, Keon Wook Kang. Dual anti-oxidative effects of fraxetin isolated from Fraxinus rhinchophylla. Biological & pharmaceutical bulletin. 2009 Sep; 32(9):1527-32. doi: 10.1248/bpb.32.1527. [PMID: 19721227]
  • Zhi-jing Ma, Zhi-juan Zhao. [Studies on chemical constituents from stem barks of Fraxinus paxiana]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Aug; 33(16):1990-3. doi: ". [PMID: 19086636]
  • Sheng Lin, Ming-tao Liu, Su-juan Wang, Shuai Li, Yong-chun Yang, Jian-gong Shi. [Coumarins from branch of Fraxinus sieboldiana and their antioxidative activity]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Jul; 33(14):1708-10. doi: ". [PMID: 18841773]
  • Xu-Dong Xu, Xiao-Ru Hu, Jing-Quan Yuan, Jun-Shan Yang. [Studies on chemical constituents of Sarcandra glabra]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2008 Apr; 33(8):900-2. doi: . [PMID: 18619347]
  • M Habib Oueslati, H Ben Jannet, Zine Mighri, Susan Matthew, Pedro M Abreu. A new C9 nor-isoprenoid glucoside from Rantherium suaveolens. Natural product research. 2007 Aug; 21(10):884-8. doi: 10.1080/14786410500201977. [PMID: 17680498]
  • Carlos L Céspedes, J Guillermo Avila, Andrés Martínez, Blanca Serrato, José C Calderón-Mugica, Rafael Salgado-Garciglia. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of agricultural and food chemistry. 2006 May; 54(10):3521-7. doi: 10.1021/jf053071w. [PMID: 19127719]
  • Takaaki Yasuda, Mai Fukui, Takahiro Nakazawa, Ayumi Hoshikawa, Keisuke Ohsawa. Metabolic fate of fraxin administered orally to rats. Journal of natural products. 2006 May; 69(5):755-7. doi: 10.1021/np0580412. [PMID: 16724835]
  • María Francisca Molina-Jiménez, María Isabel Sánchez-Reus, María Cascales, David Andrés, Juana Benedí. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine. Toxicology and applied pharmacology. 2005 Dec; 209(3):214-25. doi: 10.1016/j.taap.2005.04.009. [PMID: 15904944]
  • David Michael Wood, Hadi Alsahaf, Peter Streete, Paul Ivor Dargan, Alison Linda Jones. Fatality after deliberate ingestion of the pesticide rotenone: a case report. Critical care (London, England). 2005 Jun; 9(3):R280-4. doi: 10.1186/cc3528. [PMID: 15987402]
  • María Francisca Molina-Jiménez, María Isabel Sánchez-Reus, David Andres, María Cascales, Juana Benedi. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain research. 2004 May; 1009(1-2):9-16. doi: 10.1016/j.brainres.2004.02.065. [PMID: 15120578]
  • Konstantina C Fylaktakidou, Dimitra J Hadjipavlou-Litina, Konstantinos E Litinas, Demetrios N Nicolaides. Natural and synthetic coumarin derivatives with anti-inflammatory/ antioxidant activities. Current pharmaceutical design. 2004; 10(30):3813-33. doi: 10.2174/1381612043382710. [PMID: 15579073]
  • Takao Kaneko, Shoichi Tahara, Fumiyo Takabayashi. Suppression of lipid hydroperoxide-induced oxidative damage to cellular DNA by esculetin. Biological & pharmaceutical bulletin. 2003 Jun; 26(6):840-4. doi: 10.1248/bpb.26.840. [PMID: 12808296]
  • Takao Kaneko, Naomichi Baba, Mitsuyoshi Matsuo. Protection of coumarins against linoleic acid hydroperoxide-induced cytotoxicity. Chemico-biological interactions. 2003 Jan; 142(3):239-54. doi: 10.1016/s0009-2797(02)00077-7. [PMID: 12453663]
  • Hyoung Ja Kim, Yeon Gyu Yu, Hokoon Park, Yong Sup Lee. HIV gp41 binding phenolic components from Fraxinus sieboldiana var. angustata. Planta medica. 2002 Nov; 68(11):1034-6. doi: 10.1055/s-2002-35665. [PMID: 12451497]
  • B Fernandez-Puntero, I Barroso, I Iglesias, J Benedí, A Villar. Antioxidant activity of Fraxetin: in vivo and ex vivo parameters in normal situation versus induced stress. Biological & pharmaceutical bulletin. 2001 Jul; 24(7):777-84. doi: 10.1248/bpb.24.777. [PMID: 11456117]