Lycopene (BioDeep_00000000571)
Secondary id: BioDeep_00000019043, BioDeep_00000409930
human metabolite PANOMIX_OTCML-2023 blood metabolite Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C40H56 (536.4381776)
中文名称: 番茄红素, 茄红素, 西红柿红素
谱图信息:
最多检出来源 Homo sapiens(blood) 0.19%
分子结构信息
SMILES: C/C(/C)=C/CC/C(/C)=C/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(\C)/C=C/C=C(\C)/C=C/C=C(\C)/CC/C=C(\C)/C
InChI: InChI=1S/C40H56/c1-33(2)19-13-23-37(7)27-17-31-39(9)29-15-25-35(5)21-11-12-22-36(6)26-16-30-40(10)32-18-28-38(8)24-14-20-34(3)4/h11-12,15-22,25-32H,13-14,23-24H2,1-10H3/b12-11+,25-15+,26-16+,31-17+,32-18+,35-21+,36-22+,37-27+,38-28+,39-29+,40-30+
描述信息
Lycopene is an acyclic carotene commonly obtained from tomatoes and other red fruits. It has a role as an antioxidant and a plant metabolite. It contains a carotenoid psi-end derivative.
Lycopene is a naturally occuring red carotenoid pigment that is responsible in red to pink colors seen in tomatoes, pink grapefruit, and other foods. Having a chemical formula of C40H56, lycopene is a tetraterpene assembled from eight isoprene units that are solely composed of carbon and hydrogen. Lycophene may undergo extensive isomerization that allows 1056 theoretical cis-trans configurations; however the all-trans configuration of lycopene is the most predominant isomer found in foods that gives the red hue. Lycopene is a non-essential human nutrient that is classified as a non-provitamin A carotenoid pigment since it lacks a terminal beta ionone ring and does not mediate vitamin A activity. However lycophene is a potent antioxidant molecule that scavenges reactive oxygen species (ROS) singlet oxygen. Tomato lycopene extract is used as a color additive in food products.
Lycopene is a natural product found in Rhodobacter capsulatus, Afifella marina, and other organisms with data available.
Lycopene is a linear, unsaturated hydrocarbon carotenoid, the major red pigment in fruits such as tomatoes, pink grapefruit, apricots, red oranges, watermelon, rosehips, and guava. As a class, carotenoids are pigment compounds found in photosynthetic organisms (plants, algae, and some types of fungus), and are chemically characterized by a large polyene chain containing 35-40 carbon atoms; some carotenoid polyene chains are terminated by two 6-carbon rings. In animals, carotenoids such as lycopene may possess antioxidant properties which may retard aging and many degenerative diseases. As an essential nutrient, lycopene is required in the animal diet. (NCI04)
A carotenoid and red pigment produced by tomatoes, other red fruits and vegetables, and photosynthetic algae. It is a key intermediate in the biosynthesis of other carotenoids, and has antioxidant, anti-carcinogenic, radioprotective, and anti-inflammatory properties.
Lycopene (molecular formula: C40H56) is a bright red carotenoid pigment. It is a phytochemical found in tomatoes and other red fruits. Lycopene is the most common carotenoid in the human body and is one of the most potent carotenoid antioxidants. Its name is derived from the tomatos species classification, Solanum lycopersicum. Lycopene is a terpene assembled from 8 isoprene units. Lycopene is the most powerful carotenoid quencher of singlet oxygen. Singlet oxygen from ultraviolet light is a primary cause of skin aging (Wikipedia).
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
An acyclic carotene commonly obtained from tomatoes and other red fruits.
D020011 - Protective Agents > D011837 - Radiation-Protective Agents
D020011 - Protective Agents > D016588 - Anticarcinogenic Agents
D000893 - Anti-Inflammatory Agents
D000970 - Antineoplastic Agents
It is used as food colouring
同义名列表
66 个代谢物同义名
2,6,8,10,12,14,16,18,20,22,24,26,30-Dotriacontatridecaene, 2,6,10,14,19,23,27,31-octamethyl-, (6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)-; (6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene; (6E,8E,10E,12E,14E,16E,18E,20E,22E,24E,26E)-2,6,10,14,19,23,27,31-Octamethyl-2,6,8,10,12,14,16,18,20,22,24,26,30-dotriacontatridecaene; 2,6,8,10,12,14,16,18,20,22,24,26,30-Dotriacontatridecaene, 2,6,10,14,19,23,27,31-Octamethyl-, (all-E)-; (all-E)-2,6,10,14,19,23,27,31-Octamethyl-2,6,8,10,12,14,16,18,20,22,24,26,30-dotriacontatridecaene; 2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene; (ALL-E)-LYCOPENE (CONSTITUENT OF LYCOPENE AND TOMATO EXTRACT CONTAINING LYCOPENE); Lycopene, Pharmaceutical Secondary Standard; Certified Reference Material; Lycopene, United States Pharmacopeia (USP) Reference Standard; Lycopene, (7-cis,7-cis,9-cis,9-cis)-isomer -; LYCOPENE FROM BLAKESLEA TRISPORA [FCC]; Lycopene, >=98\\% (HPLC), from tomato; Lycopene from blakeslea trispora; LYCOPENE PREPARATION [USP-RS]; Lycopene, >=90\\%, from tomato; LYCOPENE PREPARATION (USP-RS); Lycopene, analytical standard; lycopene, (13-cis)-isomer; TOMATO LYCOPENE [FHFI]; lycopene, (cis)-isomer; .psi.,.psi.-Carotene; (all-trans)-lycopene; Lycopene, all-trans-; Lycopene preparation; Lycopene all-trans-; all-trans-lycopene; Blakeslea trispora; All trans Lycopene; psi, psi-Carotene; LYCOPENE [WHO-DD]; Psi,psi-carotene; LYCOPENE [MART.]; psi-psi-carotene; LYCOPENE [VANDF]; LYCOPENE (MART.); (all-e)-lycopene; LYCOPENE [INCI]; TOMATO LYCOPENE; UNII-SB0N2N0WV6; LyocpenePowder; trans-Lycopene; Lycopene (VAN); LYCOPENE [MI]; Pro Lycopene; y,y-Carotene; ψ,ψ-Carotene; Aec lycopene; cis-Lycopene; Tox21_112395; Pro-Lycopene; prolycopene; Mexoryl SAQ; Solanorubin; Tomat-O-Red; LYC-O-MATO; SB0N2N0WV6; LYC O MATO; Lycopene 7; Redivivo; Lycopene; LYCOMATO; Ateronon; Lyco Vit; lycored; LYC; Lycopene
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:15948
- KEGG: C05432
- PubChem: 446925
- HMDB: HMDB0003000
- Metlin: METLIN429
- DrugBank: DB11231
- ChEMBL: CHEMBL501174
- Wikipedia: Lycopene
- LipidMAPS: LMPR01070257
- MeSH: Lycopene
- ChemIDplus: 0000502658
- MetaCyc: CPD1F-114
- KNApSAcK: C00000911
- foodb: FDB014534
- chemspider: 394156
- CAS: 502-65-8
- medchemexpress: HY-N0287
- MetaboLights: MTBLC15948
- PubChem: 7796
- PDB-CCD: LYC
- 3DMET: B00778
- NIKKAJI: J6.206E
- RefMet: Lycopene
- KNApSAcK: 15948
- LOTUS: LTS0147750
- wikidata: Q105188696
- LOTUS: LTS0116567
分类词条
相关代谢途径
Reactome(0)
BioCyc(23)
- bacterioruberin biosynthesis
- C.p.450 monoglucoside biosynthesis
- decaprenoxanthin and decaprenoxanthin diglucoside biosynthesis
- superpathway of carotenoid biosynthesis in plants
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria)
- trans-lycopene biosynthesis II (plants)
- superpathway of carotenoid biosynthesis
- carotenoid cleavage
- sarcinaxanthin diglucoside biosynthesis
- decaprenoxanthin diglucoside biosynthesis
- spirilloxanthin and 2,2'-diketo-spirilloxanthin biosynthesis
- chlorobactene biosynthesis
- okenone biosynthesis
- neurosporaxanthin biosynthesis
- bixin biosynthesis
- flexixanthin biosynthesis
- β-carotene biosynthesis (engineered)
- myxol-2' fucoside biosynthesis
- δ-carotene biosynthesis
- β-carotene biosynthesis
- trans-lycopene biosynthesis I
- isorenieratene biosynthesis I (actinobacteria)
- trans-lycopene biosynthesis I (bacteria)
PlantCyc(10)
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria)
- superpathway of carotenoid biosynthesis in plants
- carotenoid cleavage
- α-carotene biosynthesis
- isorenieratene biosynthesis I (actinobacteria)
- δ-carotene biosynthesis
- β-carotene biosynthesis (engineered)
- β-carotene biosynthesis
- trans-lycopene biosynthesis I
- bixin biosynthesis
代谢反应
862 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(36)
- flexixanthin biosynthesis:
A + rhodopin ⟶ 3,4-didehydrorhodopin + A(H2)
- spirilloxanthin and 2,2'-diketo-spirilloxanthin biosynthesis:
2-oxospirilloxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2,2'-dioxospirilloxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- myxol-2' fucoside biosynthesis:
rhodopin ⟶ 1'-hydroxy-γ-carotene
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
7,9,9'-cis-neurosporene + an electron-transfer quinone ⟶ an electron-transfer quinol + prolycopene
- trans-lycopene biosynthesis II (plants):
9,9'-di-cis-ζ-carotene + an electron-transfer quinone ⟶ 7,9,9'-cis-neurosporene + an electron-transfer quinol
- superpathway of carotenoid biosynthesis:
all-trans-β-carotene + H+ + NADH + O2 ⟶ β-cryptoxanthin + H2O + NAD+
- trans-lycopene biosynthesis II (plants):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (plants):
prolycopene ⟶ all-trans-lycopene
- okenone biosynthesis:
A + thiothece-474 ⟶ A(H2) + okenone
- β-carotene biosynthesis (engineered):
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- trans-lycopene biosynthesis I:
all-trans phytofluene + A ⟶ all-trans-ζ-carotene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- trans-lycopene biosynthesis I (bacteria):
all-trans neurosporene + A ⟶ all-trans-lycopene + A(H2)
- sarcinaxanthin diglucoside biosynthesis:
UDP-α-D-glucose + sarcinaxanthin ⟶ H+ + UDP + sarcinaxanthin monoglucoside
- decaprenoxanthin diglucoside biosynthesis:
UDP-α-D-glucose + decaprenoxanthin monoglucoside ⟶ H+ + UDP + decaprenoxanthin diglucoside
- bacterioruberin biosynthesis:
all-trans-lycopene + DMAPP + H2O ⟶ dihydroisopentenyldehydrorhodopin + diphosphate
- C.p.450 monoglucoside biosynthesis:
all-trans-lycopene + DMAPP + H2O ⟶ dihydroisopentenyldehydrorhodopin + diphosphate
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- neurosporaxanthin biosynthesis:
O2 + torulene ⟶ 3-methyl-2-butenal + 4'-apo-β-carotenal
- bixin biosynthesis:
SAM + bixin ⟶ SAH + bixin dimethyl ester
- chlorobactene biosynthesis:
γ-carotene + A ⟶ A(H2) + chlorobactene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- isorenieratene biosynthesis I (actinobacteria):
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ all-trans-β-carotene
- carotenoid cleavage:
all-trans-β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ all-trans-β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ all-trans-β-carotene
- neurosporaxanthin biosynthesis:
4'-apo-β,ψ-caroten-4'-al + H2O + NAD+ ⟶ H+ + NADH + neurosporaxanthin
- β-carotene biosynthesis:
γ-carotene ⟶ all-trans-β-carotene
- decaprenoxanthin and decaprenoxanthin diglucoside biosynthesis:
all-trans-lycopene + A(H2) + DMAPP + O2 ⟶ A + H2O + diphosphate + nonaflavuxanthin
WikiPathways(0)
Plant Reactome(301)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + hydrogen donor + neurosporene ⟶ H2O + hydrogen acceptor + lycopene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Carotenoid biosynthesis:
Oxygen + hydrogen donor + neurosporene ⟶ H2O + hydrogen acceptor + lycopene
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Carotenoid biosynthesis:
Oxygen + beta-cryptoxanthin + hydrogen donor ⟶ H2O + hydrogen acceptor + zeaxanthin
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Secondary metabolism:
DMAPP + genistein ⟶ PPi + lupiwighteone
- Carotenoid biosynthesis:
gamma-carotene ⟶ beta-carotene
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Carotenoid biosynthesis:
Oxygen + TPNH + zeinoxanthin ⟶ H2O + TPN + lutein
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ bixin aldehyde + sulcatone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
- Lycopene cleavage:
Oxygen + lycopene ⟶ 4,8,13-trimethylhexadeca-heptaenedial + pseudoionone
INOH(0)
PlantCyc(524)
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
9,9'-di-cis-ζ-carotene + an electron-transfer quinone ⟶ 7,9,9'-cis-neurosporene + an electron-transfer quinol
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
9,9'-di-cis-ζ-carotene + an electron-transfer quinone ⟶ 7,9,9'-cis-neurosporene + an electron-transfer quinol
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
9,9'-di-cis-ζ-carotene + an electron-transfer quinone ⟶ 7,9,9'-cis-neurosporene + an electron-transfer quinol
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
γ-carotene ⟶ β-carotene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-cryptoxanthin + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ H2O + an oxidized ferredoxin [iron-sulfur] cluster + zeaxanthin
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prolycopene ⟶ all-trans-lycopene
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
β-carotene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ β-cryptoxanthin + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of carotenoid biosynthesis in plants:
15-cis-phytoene + a plastoquinone ⟶ 15,9'-di-cis-phytofluene + a plastoquinol
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria):
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
- superpathway of carotenoid biosynthesis in plants:
prephytoene diphosphate ⟶ 15-cis-phytoene + diphosphate
- β-carotene biosynthesis (engineered):
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- trans-lycopene biosynthesis I:
all-trans-ζ-carotene + A ⟶ all-trans neurosporene + A(H2)
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + 4,9-dimethyldodeca-2,4,6,8,10-pentaene-1,12-dial
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
SAM + bixin ⟶ SAH + bixin dimethyl ester
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
H2O + NAD+ + bixin aldehyde ⟶ H+ + NADH + norbixin
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- bixin biosynthesis:
all-trans-lycopene + O2 ⟶ bixin aldehyde + sulcatone
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- carotenoid cleavage:
β-carotene + O2 ⟶ β-ionone + all-trans-10'-apo-β-carotenal
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- β-carotene biosynthesis:
γ-carotene ⟶ β-carotene
- δ-carotene biosynthesis:
all-trans-lycopene ⟶ δ-carotene
- isorenieratene biosynthesis I (actinobacteria):
β-carotene + A ⟶ β-isorenieratene + A(H2)
COVID-19 Disease Map(0)
PharmGKB(0)
211 个相关的物种来源信息
- 643217 - Afifella: LTS0116567
- 1080 - Afifella marina: 10.1562/0031-8655(2001)0740444TDCITC2.0.CO2
- 1080 - Afifella marina: LTS0116567
- 155619 - Agaricomycetes: LTS0116567
- 28581 - Allomyces: LTS0116567
- 64505 - Allomyces javanicus: 10.1086/335822
- 64505 - Allomyces javanicus: LTS0116567
- 28211 - Alphaproteobacteria: LTS0116567
- 2157 - Archaea: LTS0116567
- 193297 - Aronia: LTS0116567
- 661339 - Aronia melanocarpa: 10.1111/J.1365-2621.1989.TB04709.X
- 661339 - Aronia melanocarpa: LTS0116567
- 4890 - Ascomycota: LTS0116567
- 1131492 - Aspergillaceae: LTS0116567
- 5052 - Aspergillus: LTS0116567
- 5060 - Aspergillus giganteus: 10.1016/S0031-9422(00)83869-8
- 5060 - Aspergillus giganteus: LTS0116567
- 4210 - Asteraceae: LTS0116567
- 91061 - Bacilli: LTS0116567
- 2 - Bacteria: LTS0116567
- 5204 - Basidiomycota: LTS0116567
- 24079 - Bignoniaceae: LTS0116567
- 4806 - Blastocladiaceae: LTS0116567
- 451460 - Blastocladiomycetes: LTS0116567
- 451459 - Blastocladiomycota: LTS0116567
- 41495 - Calendula: LTS0116567
- 41496 - Calendula officinalis: 10.1042/BJ0580090
- 41496 - Calendula officinalis: LTS0116567
- 3041 - Chlorophyta: LTS0116567
- 4761 - Chytridiomycota: LTS0116567
- 3653 - Citrullus: LTS0116567
- 3654 - Citrullus lanatus: 10.3109/09637480801987195
- 3654 - Citrullus lanatus: LTS0116567
- 2706 - Citrus: LTS0116567
- 43166 - Citrus aurantium: 10.1021/JF00013A009
- 43166 - Citrus aurantium: 10.1021/JF00090A003
- 558547 - Citrus deliciosa: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: 10.1016/0031-9422(83)83012-X
- 85571 - Citrus reticulata: LTS0116567
- 37656 - Citrus × paradisi: 10.1021/JF00013A009
- 37656 - Citrus × paradisi: 10.1021/JF00090A003
- 4740 - Commelinaceae: LTS0116567
- 3650 - Cucurbitaceae: LTS0116567
- 3367 - Cupressaceae: LTS0116567
- 59973 - Cyclamen: LTS0116567
- 87530 - Cyclamen persicum: 10.1002/HLCA.19510340525
- 87530 - Cyclamen persicum: LTS0116567
- 165808 - Cystofilobasidiaceae: LTS0116567
- 13492 - Diospyros: LTS0116567
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/BF00575777
- 35925 - Diospyros kaki: 10.1007/BF00597795
- 35925 - Diospyros kaki: 10.1016/S0031-9422(00)80801-8
- 35925 - Diospyros kaki: LTS0116567
- 19955 - Ebenaceae: LTS0116567
- 25996 - Elaeagnaceae: LTS0116567
- 543 - Enterobacteriaceae: LTS0116567
- 1903409 - Erwiniaceae: LTS0116567
- 561 - Escherichia: LTS0116567
- 562 - Escherichia coli: LTS0116567
- 2759 - Eukaryota: LTS0116567
- 147545 - Eurotiomycetes: LTS0116567
- 28890 - Euryarchaeota: LTS0116567
- 3803 - Fabaceae: LTS0116567
- 49546 - Flavobacteriaceae: LTS0116567
- 117743 - Flavobacteriia: LTS0116567
- 237 - Flavobacterium: 10.1016/S0378-1119(96)00624-5
- 237 - Flavobacterium: LTS0116567
- 4751 - Fungi: LTS0116567
- 5506 - Fusarium: LTS0116567
- 5127 - Fusarium fujikuroi: 10.1016/0304-4165(88)90119-5
- 5127 - Fusarium fujikuroi: LTS0116567
- 1236 - Gammaproteobacteria: LTS0116567
- 59428 - Gnaphalium: LTS0116567
- 702247 - Gnaphalium uliginosum: 10.1007/BF00580575
- 702247 - Gnaphalium uliginosum: LTS0116567
- 183963 - Halobacteria: LTS0116567
- 2236 - Halobacteriaceae: LTS0116567
- 2239 - Halobacterium: LTS0116567
- 1644056 - Haloferacaceae: LTS0116567
- 2251 - Haloferax: LTS0116567
- 2246 - Haloferax volcanii: 10.1016/0305-1978(95)00047-X
- 2246 - Haloferax volcanii: LTS0116567
- 48233 - Hippophae: LTS0116567
- 193516 - Hippophae rhamnoides:
- 193516 - Hippophae rhamnoides: 10.1007/BF00570873
- 193516 - Hippophae rhamnoides: 10.1016/J.JCHROMB.2004.08.047
- 193516 - Hippophae rhamnoides: LTS0116567
- 9606 - Homo sapiens: -
- 4447 - Liliopsida: LTS0116567
- 3398 - Magnoliopsida: LTS0116567
- 3370 - Metasequoia: LTS0116567
- 3371 - Metasequoia glyptostroboides: 10.1016/0305-1978(87)90003-2
- 3371 - Metasequoia glyptostroboides: LTS0116567
- 162481 - Microbotryomycetes: LTS0116567
- 3671 - Momordica: LTS0116567
- 3673 - Momordica charantia: 10.1271/BBB.66.2479
- 3673 - Momordica charantia: LTS0116567
- 1851551 - Mrakiaceae: LTS0116567
- 2212703 - Mucoromycetes: LTS0116567
- 1913637 - Mucoromycota: LTS0116567
- 16614 - Myrsinaceae: LTS0116567
- 3931 - Myrtaceae: LTS0116567
- 110618 - Nectriaceae: LTS0116567
- 2682465 - Nephroselmidaceae: LTS0116567
- 1242998 - Nephroselmidophyceae: LTS0116567
- 31311 - Nephroselmis: LTS0116567
- 344402 - Nephroselmis rotunda: 10.1016/0305-1978(95)00075-5
- 344402 - Nephroselmis rotunda: LTS0116567
- 168076 - Palisota: LTS0116567
- 1415684 - Palisota barteri: 10.1515/ZNB-1968-0817
- 1415684 - Palisota barteri: LTS0116567
- 4726 - Pandanus tectorius: 10.1079/PHN2005892
- 53335 - Pantoea: LTS0116567
- 553 - Pantoea ananatis: 10.1128/JB.172.12.6704-6712.1990
- 553 - Pantoea ananatis: LTS0116567
- 1084 - Pararhodospirillum photometricum: 10.1128/AEM.00545-12
- 3684 - Passiflora: LTS0116567
- 78168 - Passiflora edulis: 10.1021/JF9801724
- 78168 - Passiflora edulis: LTS0116567
- 3683 - Passifloraceae: LTS0116567
- 147549 - Pezizomycetes: LTS0116567
- 107449 - Phaffia: LTS0116567
- 264483 - Phaffia rhodozyma: 10.1016/S0031-9422(00)84390-3
- 264483 - Phaffia rhodozyma: LTS0116567
- 90951 - Phallaceae: LTS0116567
- 146780 - Phallus: LTS0116567
- 146782 - Phallus rugulosus: 10.1080/00021369.1978.10863289
- 146782 - Phallus rugulosus: LTS0116567
- 4836 - Phycomyces: LTS0116567
- 4837 - Phycomyces blakesleeanus:
- 4837 - Phycomyces blakesleeanus: LTS0116567
- 1344966 - Phycomycetaceae: LTS0116567
- 58019 - Pinopsida: LTS0116567
- 4335 - Primulaceae: LTS0116567
- 3754 - Prunus: LTS0116567
- 36596 - Prunus armeniaca: 10.1021/JF00090A003
- 36596 - Prunus armeniaca: LTS0116567
- 120289 - Psidium: LTS0116567
- 120290 - Psidium guajava: 10.1021/JF980405R
- 120290 - Psidium guajava: LTS0116567
- 144561 - Pyracantha: LTS0116567
- 690342 - Pyracantha angustifolia: 10.1021/JA01200A026
- 690342 - Pyracantha angustifolia: LTS0116567
- 110846 - Pyronemataceae: LTS0116567
- 1060 - Rhodobacter: LTS0116567
- 1061 - Rhodobacter capsulatus: 10.1248/CPB.45.1225
- 1061 - Rhodobacter capsulatus: LTS0116567
- 119043 - Rhodobiaceae: LTS0116567
- 34016 - Rhodobium: LTS0116567
- 41295 - Rhodospirillaceae: LTS0116567
- 1081 - Rhodospirillum: LTS0116567
- 5533 - Rhodotorula: LTS0116567
- 5537 - Rhodotorula mucilaginosa: 10.1007/BF00407369
- 5537 - Rhodotorula mucilaginosa: LTS0116567
- 85274 - Rhodovibrio: LTS0116567
- 1087 - Rhodovibrio salinarum: 10.1128/AEM.00545-12
- 1087 - Rhodovibrio salinarum: LTS0116567
- 3764 - Rosa: LTS0116567
- 74635 - Rosa canina:
- 74635 - Rosa canina: 10.1016/S0731-7085(97)00099-X
- 74635 - Rosa canina: 10.1111/J.1365-2621.1989.TB04709.X
- 74635 - Rosa canina: LTS0116567
- 74645 - Rosa rugosa: 10.1111/J.1365-2621.1989.TB04709.X
- 74645 - Rosa rugosa: LTS0116567
- 267261 - Rosa villosa: 10.1002/HLCA.19830660211
- 267261 - Rosa villosa: LTS0116567
- 3745 - Rosaceae: LTS0116567
- 23513 - Rutaceae: LTS0116567
- 47208 - Scutellinia: LTS0116567
- 2730461 - Scutellinia umbrorum: 10.1016/0031-9422(95)00294-H
- 2730461 - Scutellinia umbrorum: LTS0116567
- 36904 - Shepherdia: LTS0116567
- 36905 - Shepherdia canadensis:
- 36905 - Shepherdia canadensis: 10.1016/S0031-9422(00)85452-7
- 36905 - Shepherdia canadensis: 10.3891/ACTA.CHEM.SCAND.08-1305
- 36905 - Shepherdia canadensis: LTS0116567
- 4070 - Solanaceae: LTS0116567
- 4107 - Solanum: LTS0116567
- 4081 - Solanum lycopersicum:
- 4081 - Solanum lycopersicum: LTS0116567
- 147550 - Sordariomycetes: LTS0116567
- 1799696 - Sporidiobolaceae: LTS0116567
- 90964 - Staphylococcaceae: LTS0116567
- 1279 - Staphylococcus: LTS0116567
- 1280 - Staphylococcus aureus: LTS0116567
- 1883 - Streptomyces: LTS0116567
- 33903 - Streptomyces avermitilis: 10.1073/PNAS.1511027112
- 33903 - Streptomyces avermitilis: LTS0116567
- 33903 - Streptomyces avermitilis: NA
- 1908 - Streptomyces globisporus: 10.1073/PNAS.1511027112
- 1908 - Streptomyces globisporus: LTS0116567
- 1908 - Streptomyces globisporus: NA
- 1911 - Streptomyces griseus:
- 1911 - Streptomyces griseus: 10.1007/BF02173971
- 1911 - Streptomyces griseus: LTS0116567
- 1911 - Streptomyces griseus: NA
- 2062 - Streptomycetaceae: LTS0116567
- 35493 - Streptophyta: LTS0116567
- 69903 - Tecoma: LTS0116567
- 58023 - Tracheophyta: LTS0116567
- 155616 - Tremellomycetes: LTS0116567
- 28568 - Trichocomaceae: LTS0116567
- 3898 - Trifolium: LTS0116567
- 3899 - Trifolium repens: 10.1007/BF00580095
- 3899 - Trifolium repens: LTS0116567
- 33090 - Viridiplantae: LTS0116567
- 3602 - Vitaceae: LTS0116567
- 3603 - Vitis: LTS0116567
- 29760 - Vitis vinifera: 10.1007/BF00574814
- 29760 - Vitis vinifera: LTS0116567
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Wencheng Zhang, Ziqiao Ji, Guiqiu Hu, Li Yuan, Man Liu, Xian Zhang, Chunhua Wei, Zuyun Dai, Zhongzhou Yang, Chaonan Wang, Xuezheng Wang, Feishi Luan, Shi Liu. Clpf encodes pentatricopeptide repeat protein (PPR5) and regulates pink flesh color in watermelon (Citrullus lanatus L.).
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.
2024 May; 137(6):126. doi:
10.1007/s00122-024-04619-8
. [PMID: 38727833] - Xunyu Song, Jun Sun, Hanxiong Liu, Aroosa Mushtaq, Zhoumei Huang, Daotong Li, Lujia Zhang, Fang Chen. Lycopene Alleviates Endoplasmic Reticulum Stress in Steatohepatitis through Inhibition of the ASK1-JNK Signaling Pathway.
Journal of agricultural and food chemistry.
2024 Apr; 72(14):7832-7844. doi:
10.1021/acs.jafc.3c08108
. [PMID: 38544357] - Buli Su, Peixuan Lai, Ming-Rong Deng, Honghui Zhu. Global rewiring of lipid metabolism to produce carotenoid by deleting the transcription factor genes ino2/ino4 in Saccharomyces cerevisiae.
International journal of biological macromolecules.
2024 Apr; 264(Pt 1):130400. doi:
10.1016/j.ijbiomac.2024.130400
. [PMID: 38412934] - Yanan Zhang, Xiaobing Zhai, Honglin Chai, Keyang Liu, Wenzhi Ma, Shiyang Li, Jing Zeng, Mei Yang, Feng Zhou, Surui Zheng, Xia Wu, Bing Xiang, Jinhong Cao, Ehab S Eshak, Can Jiang. Associations of different isomeric forms of serum lycopene with cardiovascular disease and all-cause mortality.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2024 Apr; 94(2):108-119. doi:
10.1024/0300-9831/a000775
. [PMID: 36691936] - Denny Pellowski, Paula Kusch, Thorsten Henning, Bastian Kochlik, Maria Maares, Amy Schmiedeskamp, Gabriele Pohl, Monika Schreiner, Susanne Baldermann, Hajo Haase, Tanja Schwerdtle, Tilman Grune, Daniela Weber. Postprandial Micronutrient Variability and Bioavailability: An Interventional Meal Study in Young vs. Old Participants.
Nutrients.
2024 Feb; 16(5):. doi:
10.3390/nu16050625
. [PMID: 38474753] - Vojkan M Miljković, Ljubiša Nikolić, Jelena Mrmošanin, Ivana Gajić, Tatjana Mihajilov-Krstev, Jelena Zvezdanović, Milena Miljković. Chemical Profile and Antioxidant and Antimicrobial Activity of Rosa canina L. Dried Fruit Commercially Available in Serbia.
International journal of molecular sciences.
2024 Feb; 25(5):. doi:
10.3390/ijms25052518
. [PMID: 38473766] - Jawaria Jameel, Tauseef Anwar, Saadat Majeed, Huma Qureshi, Ejaz Hussain Siddiqi, Sundas Sana, Wajid Zaman, Hayssam M Ali. Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms.
BMC plant biology.
2024 Feb; 24(1):128. doi:
10.1186/s12870-024-04836-9
. [PMID: 38383291] - Hao Luo, Yihong Bao, Ping Zhu. Enhancing the functionality of plant-based Yogurt: Integration of lycopene through dual-stage fermentation of soymilk.
Food chemistry.
2024 Feb; 434(?):137511. doi:
10.1016/j.foodchem.2023.137511
. [PMID: 37742554] - Weidong Chen, Yuanqing Li, Min Li, Hai Li, Caifang Chen, Yanzhao Lin. Association between dietary carotenoid intakes and abdominal aortic calcification in adults: National Health and Nutrition Examination Survey 2013-2014.
Journal of health, population, and nutrition.
2024 Feb; 43(1):20. doi:
10.1186/s41043-024-00511-9
. [PMID: 38303096] - Wanrong Wu, Yanchun Shao, Yeting Wu, Yunxia Gong, Xiaoyan Guan, Baixue Liu, Youyou Lu. New Horizons of Covalent Complex of Plant-Derived Recombinant Human Lactoferrin (OsrhLF) Combined with Different Polyphenols: Formation, Physicochemical Properties, and Gastrointestinal Fate.
Journal of agricultural and food chemistry.
2024 Jan; ?(?):. doi:
10.1021/acs.jafc.3c06856
. [PMID: 38262965] - Huimin Ma, Qi Chen, Haiming Yang, Xiaoli Wan. Effects of lycopene on the growth performance, meat quality, and antioxidant capacity of broiler chickens challenged with aflatoxin B1.
Journal of food science.
2024 Jan; 89(1):96-103. doi:
10.1111/1750-3841.16848
. [PMID: 37983886] - Wenhai Guo, Danping Huang, Shaodong Li. Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway.
Clinical and experimental hypertension (New York, N.Y. : 1993).
2023 Dec; 45(1):2205051. doi:
10.1080/10641963.2023.2205051
. [PMID: 37120838] - Margarita Aguilar-Espinosa, José Enrique Ek-Ku, Renata Rivera-Madrid, Marina Vera-Ku. Advancing carotenoid Quantification: A new method for semi-quantitative assessment of β -Carotene and lycopene content in food extracts.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2023 Dec; 1231(?):123929. doi:
10.1016/j.jchromb.2023.123929
. [PMID: 38035540] - Shaohua Yan, Siyu Chen, Yumiao Liu, Hongbin Liang, Xinlu Zhang, Qiuxia Zhang, Jiancheng Xiu. Associations of serum carotenoids with visceral adiposity index and lipid accumulation product: a cross-sectional study based on NHANES 2001-2006.
Lipids in health and disease.
2023 Nov; 22(1):209. doi:
10.1186/s12944-023-01945-6
. [PMID: 38037060] - Jadwiga Hamulka, Agnieszka Sulich, Magdalena Górnicka, Marta Jeruszka-Bielak. Changes in Plasma Carotenoid Concentrations during the AntioxObesity Weight Reduction Program among Adults with Excessive Body Weight.
Nutrients.
2023 Nov; 15(23):. doi:
10.3390/nu15234890
. [PMID: 38068747] - Riccardo Fedeli, Ludovica Marotta, Luca Frattaruolo, Alice Panti, Gabriele Carullo, Fabio Fusi, Simona Saponara, Sandra Gemma, Stefania Butini, Anna Rita Cappello, Andrea Vannini, Giuseppe Campiani, Stefano Loppi. Nutritionally enriched tomatoes (Solanum lycopersicum L.) grown with wood distillate: chemical and biological characterization for quality assessment.
Journal of food science.
2023 Nov; ?(?):. doi:
10.1111/1750-3841.16829
. [PMID: 37961008] - Rong-Rui Wei, Qing-Yuan Lin, Mozili Adu, Hui-Lian Huang, Zhi-Hong Yan, Feng Shao, Guo-Yue Zhong, Zhong-Li Zhang, Zhi-Pei Sang, Lan Cao, Qin-Ge Ma. The sources, properties, extraction, biosynthesis, pharmacology, and application of lycopene.
Food & function.
2023 Nov; 14(22):9974-9998. doi:
10.1039/d3fo03327a
. [PMID: 37916682] - Hao-Ran Wang, Mu-Zi Li, Jia-Gen Cui, Hao Zhang, Yi Zhao, Jin-Long Li. Lycopene Prevents Phthalate-Induced Cognitive Impairment via Modulating Ferroptosis.
Journal of agricultural and food chemistry.
2023 Nov; 71(44):16727-16738. doi:
10.1021/acs.jafc.3c04801
. [PMID: 37871231] - Xinying Zhang, Shuting Chen, Ying Lin, Wenjie Li, Denggang Wang, Shupeng Ruan, Yuxin Yang, Shuli Liang. Metabolic Engineering of Pichia pastoris for High-Level Production of Lycopene.
ACS synthetic biology.
2023 10; 12(10):2961-2972. doi:
10.1021/acssynbio.3c00294
. [PMID: 37782893] - Marco Dainelli, Sara Pignattelli, Nadia Bazihizina, Sara Falsini, Alessio Papini, Ivan Baccelli, Stefano Mancuso, Andrea Coppi, Maria Beatrice Castellani, Ilaria Colzi, Cristina Gonnelli. Can microplastics threaten plant productivity and fruit quality? Insights from Micro-Tom and Micro-PET/PVC.
The Science of the total environment.
2023 Oct; 895(?):165119. doi:
10.1016/j.scitotenv.2023.165119
. [PMID: 37364840] - Ying Wang, Siqi Li, Ze Zhou, Lifen Sun, Jing Sun, Chuanpu Shen, Ranran Gao, Jingyuan Song, Xiangdong Pu. The Functional Characteristics and Soluble Expression of Saffron CsCCD2.
International journal of molecular sciences.
2023 Oct; 24(20):. doi:
10.3390/ijms242015090
. [PMID: 37894770] - Ki-Nam Yoon, Yeong-Seok Yoon, Hae-Jung Hong, Jong-Heum Park, Beom-Seok Song, Jong-Bang Eun, Jae-Kyung Kim. Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes.
Journal of the science of food and agriculture.
2023 Oct; 103(13):6640-6653. doi:
10.1002/jsfa.12760
. [PMID: 37267467] - Bangmian Du, Mengjuan Sun, Wenyang Hui, Chengjia Xie, Xian Xu. Recent Advances on Key Enzymes of Microbial Origin in the Lycopene Biosynthesis Pathway.
Journal of agricultural and food chemistry.
2023 Sep; 71(35):12927-12942. doi:
10.1021/acs.jafc.3c03942
. [PMID: 37609695] - Nancy E Moran, Joshua Wade, Rachel Stroh, Barbara Stoll, Gregory Guthrie, Amy B Hair, Douglas G Burrin. Preterm Pigs Fed Donor Human Milk Have Greater Liver Beta-carotene Concentrations than Pigs Fed Infant Formula.
The Journal of nutrition.
2023 Sep; ?(?):. doi:
10.1016/j.tjnut.2023.08.026
. [PMID: 37666415] - Ana Arruabarrena, Joanna Lado, Matías González-Arcos, Sabina Vidal. Targeted disruption of tomato chromoplast-specific lycopene β-cyclase (CYC-B) gene promotes early accumulation of lycopene in fruits and enhanced postharvest cold tolerance.
Plant biotechnology journal.
2023 Aug; ?(?):. doi:
10.1111/pbi.14169
. [PMID: 37654005] - Sonal B More, Mahalaxmi Mohan, Prayrna Kulkarni, Kedar C Ahire. Lycopene attenuates silver nanoparticle-induced liver injury in albino mice.
Journal of biochemical and molecular toxicology.
2023 Aug; ?(?):e23500. doi:
10.1002/jbt.23500
. [PMID: 37555715] - Iness Jabri Karoui, Emna Chaabani, Imen Dali, Abdelkarim Aydi, Majdi Hammami, Manef Abderrabba. Optimization of antioxidant and lycopene extraction from tomato pomace using Hansen solubility parameters and its application in chicken meat preservation.
Journal of food science.
2023 Aug; ?(?):. doi:
10.1111/1750-3841.16722
. [PMID: 37548649] - Gamal A Salem, Amany Abdel-Rahman Mohamed, Safaa I Khater, Ahmed E Noreldin, Manal Alosaimi, Wafa S Alansari, Ghalia Shamlan, Areej A Eskandrani, Marwa Mahmoud Awad, Rehab Ahmed Ahmed El-Shaer, Mohamed A Nassan, Mahmoud Mostafa, Tarek Khamis. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes.
Gene.
2023 Jul; 883(?):147670. doi:
10.1016/j.gene.2023.147670
. [PMID: 37516284] - Mohammad Zamani, Farimah Behmanesh Nia, Kimia Ghaedi, Saba Mohammadpour, Niusha Amirani, Kian Goudarzi, Kosar Hosseini, Matin Ghanavati, Damoon Ashtary-Larky. The effects of lycopene and tomato consumption on cardiovascular risk factors in adults: a Grade assessment systematic review and meta-analysis.
Current pharmaceutical design.
2023 Jul; ?(?):. doi:
10.2174/1381612829666230726112510
. [PMID: 37496241] - Pedro Brivaldo Viana da Silva, Lívia Beatriz Brenelli, Lilian Regina Barros Mariutti. Waste and by-products as sources of lycopene, phytoene, and phytofluene - Integrative review with bibliometric analysis.
Food research international (Ottawa, Ont.).
2023 07; 169(?):112838. doi:
10.1016/j.foodres.2023.112838
. [PMID: 37254412] - - Syeda Nuzhat Fatima Zaidi, - Zoya. Effect of lycopene supplementation on lipid profile, blood glucose and electrolyte homeostasis in thioacetamide induced liver cirrhosis.
Pakistan journal of pharmaceutical sciences.
2023 Jul; 36(4):1177-1182. doi:
. [PMID: 37599493]
- Shanshan Wang, Wenjiang He, Wenzhi Li, Jin-Rong Zhou, Zhiyun Du. Combination of Lycopene and Curcumin Synergistically Alleviates Testosterone-Propionate-Induced Benign Prostatic Hyperplasia in Sprague Dawley Rats via Modulating Inflammation and Proliferation.
Molecules (Basel, Switzerland).
2023 Jun; 28(13):. doi:
10.3390/molecules28134900
. [PMID: 37446563] - Emmanuel Ifeanyichukwu Ugwor, Adewale Segun James, Adio Jamiu Akamo, Dorcas Ibukun Akinloye, Emmanuel Obinna Ezenandu, Esther Ayobami Emmanuel, Regina Ngozi Ugbaja. Lycopene alleviates Western diet-induced elevations in anthropometrical indices of obesity, adipose lipids, and other nutritional parameters.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2023 Jun; 93(3):210-218. doi:
10.1024/0300-9831/a000719
. [PMID: 34190627] - Vanessa L Göttl, Boas Pucker, Volker F Wendisch, Nadja A Henke. Screening of Structurally Distinct Lycopene β-Cyclases for Production of the Cyclic C40 Carotenoids β-Carotene and Astaxanthin by Corynebacterium glutamicum.
Journal of agricultural and food chemistry.
2023 May; 71(20):7765-7776. doi:
10.1021/acs.jafc.3c01492
. [PMID: 37162369] - Zilong Chen, Zhiming Hong, Shengjie Wang, Junfeng Qiu, Quan Wang, Yangling Zeng, Haowei Weng. Effectiveness of non-pharmaceutical intervention on sperm quality: a systematic review and network meta-analysis.
Aging.
2023 05; 15(10):4253-4268. doi:
10.18632/aging.204727
. [PMID: 37199654] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Yage Liu, Yimiao Tian, Xuan Dai, Tianyuan Liu, Yueyi Zhang, Shan Wang, Hanfen Shi, Jiyuan Yin, Tianshu Xu, Ruyuan Zhu, Yanfei Zhang, Dandan Zhao, Sihua Gao, Xiang-Dong Wang, Lili Wang, Dongwei Zhang. Lycopene ameliorates islet function and down-regulates the TLR4/MyD88/NF-κB pathway in diabetic mice and Min6 cells.
Food & function.
2023 May; ?(?):. doi:
10.1039/d3fo00559c
. [PMID: 37165735] - Ya-Hui Wang, Yu-Qing Zhang, Rong-Rong Zhang, Fei-Yun Zhuang, Hui Liu, Zhi-Sheng Xu, Ai-Sheng Xiong. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root.
The Plant journal : for cell and molecular biology.
2023 May; ?(?):. doi:
10.1111/tpj.16275
. [PMID: 37158657] - Wenjing Su, Wenhao Xu, Enshuo Liu, Weike Su, Nikolay E Polyakov. Improving the Treatment Effect of Carotenoids on Alzheimer's Disease through Various Nano-Delivery Systems.
International journal of molecular sciences.
2023 Apr; 24(8):. doi:
10.3390/ijms24087652
. [PMID: 37108814] - Tingting Gu, Xiumei Zhang, Yongqiang Gong, Tiantian Zhang, Lili Hu, Yiyang Yu, Changyue Deng, Yaqing Xiao, Mingming Zheng, Yibin Zhou. An investigation into structural properties and stability of debranched starch-lycopene inclusion complexes with different branching degrees.
International journal of biological macromolecules.
2023 Apr; 233(?):123641. doi:
10.1016/j.ijbiomac.2023.123641
. [PMID: 36773868] - Ya-Hui Wang, Rong-Rong Zhang, Yue Yin, Guo-Fei Tan, Guang-Long Wang, Hui Liu, Jing Zhuang, Jian Zhang, Fei-Yun Zhuang, Ai-Sheng Xiong. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective.
Journal of advanced research.
2023 04; 46(?):31-47. doi:
10.1016/j.jare.2022.06.010
. [PMID: 35753652] - Johan Peter Woelber, Katharina Reichenbächer, Tara Groß, Kirstin Vach, Petra Ratka-Krüger, Valentin Bartha. Dietary and Nutraceutical Interventions as an Adjunct to Non-Surgical Periodontal Therapy-A Systematic Review.
Nutrients.
2023 Mar; 15(6):. doi:
10.3390/nu15061538
. [PMID: 36986267] - Lei Chen, Ming Xiang, Fen Wu, Yun Jiang, Qingxi Wu, Wenna Zhang, Wenqiang Guo, Bolin Cai, Li Liang, Songnan Li, Yan Chen, Xianfeng Du. Encapsulation of lycopene into electrospun nanofibers from whey protein isolate-Tricholoma lobayense polysaccharide complex stabilized emulsions: Structural characterization, storage stability, in vitro release, and cellular evaluation.
International journal of biological macromolecules.
2023 Mar; 238(?):123993. doi:
10.1016/j.ijbiomac.2023.123993
. [PMID: 36907295] - Chong Chen, Meng Zhang, Mingyue Zhang, Minmin Yang, Shanshan Dai, Qingwei Meng, Wei Lv, Kunyang Zhuang. ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbic acid accumulation in tomatoes during ripening.
Plant physiology.
2023 Mar; ?(?):. doi:
10.1093/plphys/kiad151
. [PMID: 36891812] - Jing Chen, Jing Tan, Xinyu Duan, Ying Wang, Jing Wen, Wei Li, Zhengguo Li, Guodong Wang, Haiyang Xu. Plastidial engineering with coupled farnesyl diphosphate pool reconstitution and enhancement for sesquiterpene biosynthesis in tomato fruit.
Metabolic engineering.
2023 Mar; 77(?):41-52. doi:
10.1016/j.ymben.2023.03.002
. [PMID: 36893914] - Sena Bakir, Robert D Hall, Ric C H de Vos, Roland Mumm, Çetin Kadakal, Esra Capanoglu. Effect of drying treatments on the global metabolome and health-related compounds in tomatoes.
Food chemistry.
2023 Mar; 403(?):134123. doi:
10.1016/j.foodchem.2022.134123
. [PMID: 36358063] - Adewale S James, Regina N Ugbaja, Emmanuel I Ugwor, Funmilola C Thomas, Adio J Akamo, Dorcas I Akinloye, Ofem E Eteng, Shukurat K Salami, Esther A Emmanuel, Victory C Ugbaja. Lycopene abolishes palmitate-mediated myocardial inflammation in female Wistar rats via modulation of lipid metabolism, NF-κB signalling pathway, and augmenting the antioxidant systems.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2023 Mar; 33(3):671-681. doi:
10.1016/j.numecd.2022.11.026
. [PMID: 36646601] - Muhammad Fahad, Muhammad Tanveer Altaf, Amna Jamil, Abdul Basit, Muhammad Mudassir Aslam, Waqas Liaqat, Muhammad Nadeem Shah, Izhar Ullah, Heba I Mohamed. Functional characterization of transcriptional activator gene SIARRI in tomato reveals its role in fruit growth and ripening.
Transgenic research.
2023 Feb; ?(?):. doi:
10.1007/s11248-023-00337-x
. [PMID: 36806962] - Yanjie Song, Graham Teakle, Robert Lillywhite. Unravelling effects of red/far-red light on nutritional quality and the role and mechanism in regulating lycopene synthesis in postharvest cherry tomatoes.
Food chemistry.
2023 Feb; 414(?):135690. doi:
10.1016/j.foodchem.2023.135690
. [PMID: 36821918] - Reyhaneh Ghasemi Baghabrishami, Sayed Amir Hossein Goli. Tomato seed oil-enriched tomato juice: Effect of oil addition type and heat treatment on lycopene bioaccessibility and oxidative stability.
Food chemistry.
2023 Feb; 402(?):134217. doi:
10.1016/j.foodchem.2022.134217
. [PMID: 36116275] - Shi-Yong Zhu, Jun-Ze Jiang, Jia Lin, Lin Liu, Jian-Ying Guo, Jin-Long Li. Lycopene ameliorates atrazine-induced spatial learning and memory impairments by inhibiting ferroptosis in the hippocampus of mice.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2023 Feb; 174(?):113655. doi:
10.1016/j.fct.2023.113655
. [PMID: 36791905] - Oksal Macar, Tuğçe Kalefetoğlu Macar, Kültiğin Çavuşoğlu, Emine Yalçın, Kürşad Yapar. Lycopene: an antioxidant product reducing dithane toxicity in Allium cepa L.
Scientific reports.
2023 Feb; 13(1):2290. doi:
10.1038/s41598-023-29481-4
. [PMID: 36759547] - Qi Bian, Xue Jiao, Ye Chen, Hongwei Yu, Lidan Ye. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis.
Biotechnology and bioengineering.
2023 02; 120(2):536-552. doi:
10.1002/bit.28286
. [PMID: 36369967] - Chenxi Wu, Charles Marcus, Yoram Baum, Omer Kucuk, David M Schuster. Treatment Response to Lycopene in Recurrent Prostate Cancer Confirmed on 18F-Fluciclovine PET/CT.
Clinical nuclear medicine.
2023 Jan; ?(?):. doi:
10.1097/rlu.0000000000004547
. [PMID: 36728146] - Pottipadu John Elia Prashanth, Nambi Rajesh, Mulugu Apurva Nandin, Jinka Siva Kumar, Bosetty Anjana, Osman Basha Pinjari. Characterization of prolycopene-accumulated Tan406 mutant of Solanum lycopersicum.
Journal of biosciences.
2023; 48(?):. doi:
. [PMID: 38047489]
- Chiara M Posadinu, Monica Rodriguez, Paola Conte, Antonio Piga, Giovanna Attene. Fruit quality and shelf-life of Sardinian tomato (Solanum lycopersicum L.) landraces.
PloS one.
2023; 18(12):e0290166. doi:
10.1371/journal.pone.0290166
. [PMID: 38064465] - Jin-Song Ri, Chun-Sik Choe, Se-Hyok Choe, Kwang-Hyok Jong, Song-Nam Hong, Johannes Schleusener, Juergen Lademann, Maxim E Darvin. Lycopene, but not zeaxanthin, serves as a skeleton for the formation of an orthorhombic organization of intercellular lipids within the lamellae in the stratum corneum: Molecular dynamics simulations of the hydrated ceramide NS bilayer model.
Biochimica et biophysica acta. Biomembranes.
2023 01; 1865(1):184081. doi:
10.1016/j.bbamem.2022.184081
. [PMID: 36342013] - María Teresa Lafuente, Raúl Sampedro, Dinoraz Vélez, Paco Romero. Deficient copper availability on organoleptic and nutritional quality of tomato fruit.
Plant science : an international journal of experimental plant biology.
2023 Jan; 326(?):111537. doi:
10.1016/j.plantsci.2022.111537
. [PMID: 36400126] - L M Khomich, I B Perova, K I Eller. [Natural pigments in fruit and vegetable juices: the content of anthocyanins, carotenoids and betalaines].
Voprosy pitaniia.
2023; 92(6):128-134. doi:
10.33029/0042-8833-2023-92-6-128-134
. [PMID: 38198426] - Chao Wang, Yinxin Fu, Yi Cao, Jialu Huang, Hongyi Lin, Peiyi Shen, David Julian McClements, Lingyu Han, Tiantian Zhao, Xiaoxuan Yan, Qian Li. Enhancement of lycopene bioaccessibility in tomatoes using excipient emulsions: Effect of dark tea polysaccharides.
Food research international (Ottawa, Ont.).
2023 01; 163(?):112123. doi:
10.1016/j.foodres.2022.112123
. [PMID: 36596089] - Bianca R Silva, José R V Silva. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development.
Animal reproduction science.
2022 Dec; 249(?):107186. doi:
10.1016/j.anireprosci.2022.107186
. [PMID: 36638648] - Sarita Pal, Disha Sharma, Narayan Prasad Yadav. Plant leads for mitigation of oral submucous fibrosis: Current scenario and future prospect.
Oral diseases.
2022 Dec; ?(?):. doi:
10.1111/odi.14485
. [PMID: 36565439] - Wei Kang, Xiao Ma, Deepika Kakarla, Huawei Zhang, Yunming Fang, Baizhu Chen, Kongfu Zhu, Danni Zheng, Zhiyue Wu, Bo Li, Chuang Xue. Organizing Enzymes on Self-Assembled Protein Cages for Cascade Reactions.
Angewandte Chemie (International ed. in English).
2022 12; 61(52):e202214001. doi:
10.1002/anie.202214001
. [PMID: 36288455] - Dong-Min Kang, Ji-Min Kwon, Woo-Jin Jeong, Yu Jin Jung, Kwon Kyoo Kang, Mi-Jeong Ahn. Antioxidant Constituents and Activities of the Pulp with Skin of Korean Tomato Cultivars.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27248741
. [PMID: 36557874] - Meijie Li, Qifeng Wen, Shuzhe Lv, Rumeng Yang, Tao Cheng, Zhaobao Wang, Jianming Yang. Co-biosynthesis of germacrene A, a precursor of β-elemene, and lycopene in engineered Escherichia coli.
Applied microbiology and biotechnology.
2022 Dec; 106(24):8053-8066. doi:
10.1007/s00253-022-12257-7
. [PMID: 36374331] - Kangqi Sang, Junjie Li, Xiangjie Qian, Jingquan Yu, Yanhong Zhou, Xiaojian Xia. The APETALA2a/DWARF/BRASSINAZOLE-RESISTANT 1 module contributes to carotenoid synthesis in tomato fruits.
The Plant journal : for cell and molecular biology.
2022 12; 112(5):1238-1251. doi:
10.1111/tpj.16009
. [PMID: 36271694] - Lina Baz, Salha Algarni, Mona Al-Thepyani, Abdullah Aldairi, Hana Gashlan. Lycopene Improves Metabolic Disorders and Liver Injury Induced by a Hight-Fat Diet in Obese Rats.
Molecules (Basel, Switzerland).
2022 Nov; 27(22):. doi:
10.3390/molecules27227736
. [PMID: 36431836] - Slaven Jurić, Kristina Vlahoviček-Kahlina, Ozana Jurić, Sanja Fabek Uher, Nenad Jalšenjak, Marko Vinceković. Increasing the lycopene content and bioactive potential of tomato fruits by application of encapsulated biological and chemical agents.
Food chemistry.
2022 Nov; 393(?):133341. doi:
10.1016/j.foodchem.2022.133341
. [PMID: 35661601] - Qingwei Meng, Yiming Zhang, Jibo Li, Baoming Shi, Qingquan Ma, Anshan Shan. Lycopene Affects Intestinal Barrier Function and the Gut Microbiota in Weaned Piglets via Antioxidant Signaling Regulation.
The Journal of nutrition.
2022 11; 152(11):2396-2408. doi:
10.1093/jn/nxac208
. [PMID: 36774106] - Xiao Pan, Xiaoyan Niu, Yaping Li, Yupei Yao, Lirong Han. Preventive Mechanism of Lycopene on Intestinal Toxicity Caused by Cyclophosphamide Chemotherapy in Mice by Regulating TLR4-MyD88/TRIF-TRAF6 Signaling Pathway and Gut-Liver Axis.
Nutrients.
2022 Oct; 14(21):. doi:
10.3390/nu14214467
. [PMID: 36364730] - Yu Zhang, Huangying Shu, Muhammad Ali Mumtaz, Yuanyuan Hao, Lin Li, Yongjie He, Weiheng Jin, Caichao Li, Yan Zhou, Xu Lu, Huizhen Fu, Zhiwei Wang. Transcriptome and Metabolome Analysis of Color Changes during Fruit Development of Pepper (Capsicum baccatum).
International journal of molecular sciences.
2022 Oct; 23(20):. doi:
10.3390/ijms232012524
. [PMID: 36293402] - Fan Li, Xiaowei Gong, Yupeng Liang, Lijuan Peng, Xiulin Han, Mengliang Wen. Characteristics of a new carotenoid cleavage dioxygenase NtCCD10 derived from Nicotiana tabacum.
Planta.
2022 Oct; 256(5):100. doi:
10.1007/s00425-022-04013-y
. [PMID: 36251100] - Mahmut Doğan, Kültiğin Çavuşoğlu, Emine Yalçin, Ali Acar. Comprehensive toxicity screening of Pazarsuyu stream water containing heavy metals and protective role of lycopene.
Scientific reports.
2022 10; 12(1):16615. doi:
10.1038/s41598-022-21081-y
. [PMID: 36198753] - Mengliu Luo, Meiqing Mai, Wanhan Song, Qianhua Yuan, Xiaoling Feng, Enqin Xia, Honghui Guo. The Antiaging Activities of Phytochemicals in Dark-Colored Plant Foods: Involvement of the Autophagy- and Apoptosis-Associated Pathways.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911038
. [PMID: 36232338] - Taotao Dai, David Julian McClements, Xiaoqin Niu, Xiaojuan Guo, Jian Sun, Xuemei He, Chengmei Liu, Jun Chen. Whole tomato juice produced by a novel industrial-scale microfluidizer: Effect on physical properties and in vitro lycopene bioaccessibility.
Food research international (Ottawa, Ont.).
2022 09; 159(?):111608. doi:
10.1016/j.foodres.2022.111608
. [PMID: 35940802] - Canying Li, Jie Zhu, Yuan Cheng, Jiabao Hou, Lei Sun, Yonghong Ge. Acibenzolar-S-methyl activates mitogen-activated protein kinase cascade to mediate chlorophyll and carotenoid metabolisms in the exocarp of Docteur Jules Guyot pears.
Journal of the science of food and agriculture.
2022 Aug; 102(11):4435-4445. doi:
10.1002/jsfa.11797
. [PMID: 35092628] - Monica Butnariu, Cristina Quispe, Javad Sharifi-Rad, Eduardo Pons-Fuster, Pia Lopez-Jornet, Wissam Zam, Tuyelee Das, Abhijit Dey, Manoj Kumar, Marius Pentea, Ali H Eid, Almagul Umbetova, Jen-Tsung Chen. Naturally-Occurring Bioactives in Oral Cancer: Preclinical and Clinical Studies, Bottlenecks and Future Directions.
Frontiers in bioscience (Scholar edition).
2022 08; 14(3):24. doi:
10.31083/j.fbs1403024
. [PMID: 36137983] - Emmanuel Ifeanyichukwu Ugwor, Regina Ngozi Ugbaja, Adewale Segun James, Oluwatosin Adebisi Dosumu, Funmilola Clara Thomas, Emmanuel Obinna Ezenandu, Richmond Emeka Graham. Inhibition of fat accumulation, lipid dysmetabolism, cardiac inflammation, and improved nitric oxide signalling mediate the protective effects of lycopene against cardio-metabolic disorder in obese female rats.
Nutrition research (New York, N.Y.).
2022 08; 104(?):140-153. doi:
10.1016/j.nutres.2022.05.009
. [PMID: 35780523] - Jwalit J Nayak, Sidra Anwar, Priti Krishna, Zhong-Hua Chen, Jonathan M Plett, Eloise Foo, Christopher I Cazzonelli. Tangerine tomato roots show increased accumulation of acyclic carotenoids, less abscisic acid, drought sensitivity, and impaired endomycorrhizal colonization.
Plant science : an international journal of experimental plant biology.
2022 Aug; 321(?):111308. doi:
10.1016/j.plantsci.2022.111308
. [PMID: 35696908] - Congyi Zhu, Cheng Peng, Diyang Qiu, Jiwu Zeng. Metabolic Profiling and Transcriptional Analysis of Carotenoid Accumulation in a Red-Fleshed Mutant of Pummelo (Citrus grandis).
Molecules (Basel, Switzerland).
2022 Jul; 27(14):. doi:
10.3390/molecules27144595
. [PMID: 35889470] - Jia Wang, Ting Li, Mengling Li, Dongxing Shi, Xintong Tan, Fubin Qiu. Lycopene attenuates D-galactose-induced insulin signaling impairment by enhancing mitochondrial function and suppressing the oxidative stress/inflammatory response in mouse kidneys and livers.
Food & function.
2022 Jul; 13(14):7720-7729. doi:
10.1039/d2fo00706a
. [PMID: 35762205] - Aneta Otocka-Kmiecik. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression.
Nutrients.
2022 Jul; 14(14):. doi:
10.3390/nu14142842
. [PMID: 35889799] - Mehmet Kirisci, Bulent Guneri, Muhammed Seyithanoglu, Ulku Kazanci. Lycopene hampers lung injury due to skeletal muscle ischemia-reperfusion in rat model.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2022 Jul; 92(3-4):240-247. doi:
10.1024/0300-9831/a000678
. [PMID: 32856544] - Miriam Distefano, Christof B Steingass, Cherubino Leonardi, Francesco Giuffrida, Ralf Schweiggert, Rosario P Mauro. Effects of a plant-derived biostimulant application on quality and functional traits of greenhouse cherry tomato cultivars.
Food research international (Ottawa, Ont.).
2022 07; 157(?):111218. doi:
10.1016/j.foodres.2022.111218
. [PMID: 35761540] - Mihaela Popescu, Petrica Iancu, Valentin Plesu, Maria Cristina Todasca, Gabriela Olimpia Isopencu, Costin Sorin Bildea. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction.
Molecules (Basel, Switzerland).
2022 Jun; 27(13):. doi:
10.3390/molecules27134191
. [PMID: 35807434] - Attila Bácsi, Renáta Lucas, Máté István Sütő, Mónika Szklenár, Torsten Bohn, Ralph Rühl. An immune-shift induced by lycopene; from an eosinophil-dominant type towards an eosinophil/neutrophil-co-dominant type of airway inflammation.
Food & function.
2022 Jun; 13(12):6534-6544. doi:
10.1039/d2fo00875k
. [PMID: 35642947] - Katalin Szabo, Bernadette-Emőke Teleky, Floricuta Ranga, Ioana Roman, Hattab Khaoula, Emna Boudaya, Amina Ben Ltaief, Wael Aouani, Mangkorn Thiamrat, Dan Cristian Vodnar. Carotenoid Recovery from Tomato Processing By-Products through Green Chemistry.
Molecules (Basel, Switzerland).
2022 Jun; 27(12):. doi:
10.3390/molecules27123771
. [PMID: 35744898] - Ana C L Rocha, Maria C Bortoletto, Andréia C da Costa, Luiza K M Oyafuso, Adriana Sanudo, Luciana Y Tomita. Low serum lycopene, and adequate α-tocopherol levels in patients with psoriasis: A cross-sectional study.
Nutrition and health.
2022 Jun; 28(2):239-248. doi:
10.1177/02601060211014127
. [PMID: 33960217] - Hayra D Avianggi, Retno Indar, Diah Adriani, Puguh Riyanto, Muslimin Muslimin, Liza Afriliana, Kabulrachman Kabulrachman. The effectiveness of tomato extract on superoxide dismutase (SOD) and severity degree of patients with melasma.
Italian journal of dermatology and venereology.
2022 Jun; 157(3):262-269. doi:
10.23736/s2784-8671.22.07152-3
. [PMID: 35707866] - Semiha Dede, Vedat Turkoglu, Zehra Bas. The inhibitory effects of lycopene and thymoquinone on angiotensin converting enzyme from human plasma (An in vitro study).
Pakistan journal of pharmaceutical sciences.
2022 May; 35(3):801-805. doi:
NULL
. [PMID: 35791479] - Hussein G Daood, Szilvia Ráth, Gábor Palotás, Gábor Halász, Kamiran Hamow, Lajos Helyes. Efficient HPLC Separation on a Core-C30 Column with MS2 Characterization of Isomers, Derivatives and Unusual Carotenoids from Tomato Products.
Journal of chromatographic science.
2022 Apr; 60(4):336-347. doi:
10.1093/chromsci/bmab085
. [PMID: 34184033] - Hongmin Lu, Heng Su, Yachen Liu, Kai Yin, Dongxu Wang, Baoying Li, Yu Wang, Mingwei Xing. NLRP3 inflammasome is involved in the mechanism of the mitigative effect of lycopene on sulfamethoxazole-induced inflammatory damage in grass carp kidneys.
Fish & shellfish immunology.
2022 Apr; 123(?):348-357. doi:
10.1016/j.fsi.2022.03.018
. [PMID: 35314330] - Nancy E Moran, Jennifer M Thomas-Ahner, Joshua W Smith, Ceasar Silva, Noor A Hason, John W Erdman, Steven K Clinton. β-Carotene Oxygenase 2 Genotype Modulates the Impact of Dietary Lycopene on Gene Expression during Early TRAMP Prostate Carcinogenesis.
The Journal of nutrition.
2022 04; 152(4):950-960. doi:
10.1093/jn/nxab445
. [PMID: 34964896] - Paula Aguilera, Ninozhka Becerra, Marysol Alvear, Nancy Ortiz, Alessandra Turrini, Concepción Azcón-Aguilar, Miguel López-Gómez, Juan K Romero, Mariajosé Massri, Alex Seguel, María de La Luz Mora, Fernando Borie. Arbuscular mycorrhizal fungi from acidic soils favors production of tomatoes and lycopene concentration.
Journal of the science of food and agriculture.
2022 Apr; 102(6):2352-2358. doi:
10.1002/jsfa.11573
. [PMID: 34636032] - Brian T Scarpitti, Chureeporn Chitchumroonchokchai, Steven K Clinton, Zachary D Schultz. In Vitro Imaging of Lycopene Delivery to Prostate Cancer Cells.
Analytical chemistry.
2022 03; 94(12):5106-5112. doi:
10.1021/acs.analchem.1c05442
. [PMID: 35289593] - Qun Wang, Ling Wang, Abdullah, Wenni Tian, Mingyue Song, Yong Cao, Jie Xiao. Co-delivery of EGCG and lycopene via a pickering double emulsion induced synergistic hypolipidemic effect.
Food & function.
2022 Mar; 13(6):3419-3430. doi:
10.1039/d2fo00169a
. [PMID: 35234799] - Jiuyan Zhang, Yuan Zhao, Ning Sun, Manyu Song, Yongping Chen, Lin Li, Hailin Cui, Haotian Yang, Chuqiao Wang, Haiyang Zhang, Honggang Fan. Lycopene Alleviates Chronic Stress-Induced Spleen Apoptosis and Immunosuppression via Inhibiting the Notch Signaling Pathway in Rats.
Journal of agricultural and food chemistry.
2022 Mar; 70(9):2889-2897. doi:
10.1021/acs.jafc.1c07550
. [PMID: 35212537] - Shu Yu, Michelle Li, Jorge Dubcovsky, Li Tian. Mutant combinations of lycopene ɛ-cyclase and β-carotene hydroxylase 2 homoeologs increased β-carotene accumulation in endosperm of tetraploid wheat (Triticum turgidum L.) grains.
Plant biotechnology journal.
2022 03; 20(3):564-576. doi:
10.1111/pbi.13738
. [PMID: 34695292] - Sylwia Przybylska, Grzegorz Tokarczyk. Lycopene in the Prevention of Cardiovascular Diseases.
International journal of molecular sciences.
2022 Feb; 23(4):. doi:
10.3390/ijms23041957
. [PMID: 35216071]