Cafestol (BioDeep_00000404479)

Main id: BioDeep_00000000427

 

natural product PANOMIX_OTCML-2023


代谢物信息卡片


5A,8-METHANO-5AH-CYCLOHEPTA(5,6)NAPHTHO(2,1-B)FURAN-7-METHANOL, 3B,4,5,6,7,8,9,10,10A,10B,11,12-DODECAHYDRO-7-HYDROXY-10B-METHYL-, (3BS-(3B.ALPHA.,5A.BETA.,7.BETA.,8.BETA.,10A.ALPHA.,10B.BETA.))-

化学式: C20H28O3 (316.2038)
中文名称: 咖啡油醇, 咖啡醇
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: CC12CCC3=C(C1CCC45C2CCC(C4)C(C5)(CO)O)C=CO3
InChI: InChI=1S/C20H28O3/c1-18-7-5-16-14(6-9-23-16)15(18)4-8-19-10-13(2-3-17(18)19)20(22,11-19)12-21/h6,9,13,15,17,21-22H,2-5,7-8,10-12H2,1H3/t13-,15+,17-,18+,19-,20-/m0/s1

描述信息

Cafestol is an organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction). It has a role as a plant metabolite, an apoptosis inducer, a hypoglycemic agent, an angiogenesis inhibitor, an antineoplastic agent, an antioxidant and an anti-inflammatory agent. It is an organic heteropentacyclic compound, a tertiary alcohol, a diterpenoid, a member of furans and a primary alcohol.
Cafestol is a natural product found in Coffea arabica, Diplospora dubia, and other organisms with data available.
An organic heteropentacyclic compound and furan diterpenoid with formula C20H28O3 obtained from the unsaponifiable fraction of coffee oil (a lipid fraction obtained from coffee beans by organic solvent extraction).
Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].
Cafestol, one of the major components of coffee, is a coffee-specific diterpene from. Cafestol is a ERK inhibitor for AP-1-targeted activity against PGE2 production and the mRNA expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 cells. Cafestol has strong inhibitory activity on PGE2 production by suppressing the NF-kB activation pathway. Cafestol contributes to its beneficial effects through various biological activities such as chemopreventive, antitumorigenic, hepatoprotective, antioxidative and antiinflammatory effects[1].

同义名列表

11 个代谢物同义名

5A,8-METHANO-5AH-CYCLOHEPTA(5,6)NAPHTHO(2,1-B)FURAN-7-METHANOL, 3B,4,5,6,7,8,9,10,10A,10B,11,12-DODECAHYDRO-7-HYDROXY-10B-METHYL-, (3BS-(3B.ALPHA.,5A.BETA.,7.BETA.,8.BETA.,10A.ALPHA.,10B.BETA.))-; 5a,8-Methano-5aH-cyclohepta(5,6)naphtho(2,1-b)furan-7-methanol, 3b,4,5,6,7,8,9,10,10a,10b,11,12-dodecahydro-7-hydroxy-10b-methyl-, (3bS-(3balpha,5abeta,7beta,8beta,10aalpha,10bbeta))-; 5a,8-Methano-5aH-cyclohepta(5,6)naphtho(2,1-b)furan-7-methanol, 3b,4,5,6,7,8,9,10,10a,10b,11,12-dodecahydro-7-hydroxy-10b-methyl-, (3bS,5aS,7R,8R,10aR,10bS)-; (3bS,5aS,7R,8R,10aR,10bS)-7-(hydroxymethyl)-10b-methyl-3b,4,5,6,7,8,9,10,10a,10b,11,12-dodecahydro-5a,8-methanocyclohepta[5,6]naphtho[2,1-b]furan-7-ol; (1S,4S,12S,13R,16R,17R)-17-(hydroxymethyl)-12-methyl-8-oxapentacyclo[14.2.1.0(1,13).0(4,12).0(5,9)]nonadeca-5(9),6-dien-17-ol; (1S,4S,12S,13R,16R,17R)-17-(hydroxymethyl)-12-methyl-8-oxapentacyclo[14.2.1.01,13.04,12.05,9]nonadeca-5(9),6-dien-17-ol; CAFESTOL [MI]; (-)-cafestol; cafesterol; Cafestol; Cafestol



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

43 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 ANG, APOB, APOE, BCL2, BCL2L1, CASP3, CYP2E1, HPGDS, MAPK14, MAPK8, MCL1, NFE2L2, NQO1
Peripheral membrane protein 1 CYP2E1
Endosome membrane 1 APOB
Endoplasmic reticulum membrane 5 APOB, BCL2, CYP2E1, CYP7A1, HMOX1
Mitochondrion membrane 1 BCL2L1
Nucleus 10 ANG, APOE, BCL2, CASP3, HMOX1, MAPK14, MAPK8, MCL1, NFE2L2, NQO1
cytosol 13 ANG, APOB, BCL2, BCL2L1, CASP3, GPT, HMOX1, HPGDS, MAPK14, MAPK8, MCL1, NFE2L2, NQO1
dendrite 2 APOE, NQO1
centrosome 2 BCL2L1, NFE2L2
nucleoplasm 7 CASP3, HMOX1, HPGDS, MAPK14, MAPK8, MCL1, NFE2L2
RNA polymerase II transcription regulator complex 1 NFE2L2
Cytoplasmic side 2 BCL2L1, HMOX1
Synapse 2 MAPK8, NQO1
cell surface 1 ICAM1
glutamatergic synapse 3 APOE, CASP3, MAPK14
Golgi apparatus 2 APOE, NFE2L2
Golgi membrane 1 INS
growth cone 1 ANG
mitochondrial inner membrane 2 BCL2L1, CYP2E1
neuronal cell body 5 ANG, APOB, APOE, CASP3, NQO1
smooth endoplasmic reticulum 1 APOB
Cytoplasm, cytosol 3 BCL2L1, NFE2L2, NQO1
plasma membrane 4 APOB, APOE, ICAM1, NFE2L2
synaptic vesicle membrane 1 BCL2L1
Membrane 6 APOE, BCL2, HMOX1, ICAM1, MCL1, NQO1
axon 1 MAPK8
extracellular exosome 4 APOB, APOE, GPT, ICAM1
endoplasmic reticulum 4 APOE, BCL2, BCL2L1, HMOX1
extracellular space 8 ANG, APOB, APOE, CCL2, CXCL8, HMOX1, ICAM1, INS
lysosomal lumen 1 APOB
perinuclear region of cytoplasm 1 HMOX1
mitochondrion 4 BCL2, BCL2L1, MAPK14, MCL1
protein-containing complex 1 BCL2
intracellular membrane-bounded organelle 4 APOB, CYP2E1, CYP7A1, HPGDS
Microsome membrane 2 CYP2E1, CYP7A1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 ICAM1
Secreted 6 ANG, APOB, APOE, CCL2, CXCL8, INS
extracellular region 7 ANG, APOB, APOE, CCL2, CXCL8, INS, MAPK14
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 4 BCL2, BCL2L1, CYP7A1, MCL1
mitochondrial outer membrane 4 BCL2, BCL2L1, HMOX1, MCL1
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 2 BCL2, BCL2L1
Bcl-2 family protein complex 3 BCL2, BCL2L1, MCL1
nuclear membrane 2 BCL2, BCL2L1
external side of plasma membrane 1 ICAM1
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 2 APOB, APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 2 APOB, APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 2 APOB, APOE
actin cytoskeleton 1 ANG
nucleolus 1 ANG
Early endosome 2 APOB, APOE
Mitochondrion inner membrane 1 CYP2E1
Membrane raft 1 ICAM1
pore complex 1 BCL2
focal adhesion 1 ICAM1
extracellular matrix 1 APOE
basement membrane 1 ANG
collagen-containing extracellular matrix 2 APOE, ICAM1
nuclear speck 1 MAPK14
chromatin 1 NFE2L2
mediator complex 1 NFE2L2
Chromosome 1 ANG
Secreted, extracellular space 1 APOE
Nucleus, nucleolus 1 ANG
spindle pole 1 MAPK14
blood microparticle 1 APOE
endosome lumen 2 APOB, INS
Lipid droplet 1 APOB
myosin complex 1 MCL1
Nucleus, nucleoplasm 1 MCL1
Melanosome 1 APOE
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 1 ANG
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 APOB, APOE, INS
endocytic vesicle 1 ANG
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
endoplasmic reticulum exit site 1 APOB
immunological synapse 1 ICAM1
Single-pass type IV membrane protein 1 HMOX1
clathrin-coated endocytic vesicle membrane 2 APOB, APOE
synaptic cleft 1 APOE
protein-DNA complex 1 NFE2L2
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 2 APOB, APOE
chylomicron remnant 2 APOB, APOE
intermediate-density lipoprotein particle 2 APOB, APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
angiogenin-PRI complex 1 ANG
mature chylomicron 1 APOB
BAD-BCL-2 complex 1 BCL2
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1


文献列表

  • Suzana Tiemi Ivamoto-Suzuki, José Miguel Celedón, Macaire M S Yuen, Cíntia Sorane Good Kitzberger, Douglas Silva Domingues, Jörg Bohlmann, Luiz Filipe Protasio Pereira. Functional Characterization of ent-Copalyl Diphosphate Synthase and Kaurene Synthase Genes from Coffea arabica L. Journal of agricultural and food chemistry. 2023 Oct; ?(?):. doi: 10.1021/acs.jafc.2c09087. [PMID: 37816128]
  • Lukas Babylon, Julia Meißner, Gunter P Eckert. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease. International journal of molecular sciences. 2023 Jun; 24(12):. doi: 10.3390/ijms241210029. [PMID: 37373177]
  • Gaëlle Antoine, Virginie Vaissayre, Jean-Christophe Meile, Jim Payet, Geneviève Conéjéro, Laurent Costet, Isabelle Fock-Bastide, Thierry Joët, Stéphane Dussert. Diterpenes of Coffea seeds show antifungal and anti-insect activities and are transferred from the endosperm to the seedling after germination. Plant physiology and biochemistry : PPB. 2023 Jan; 194(?):627-637. doi: 10.1016/j.plaphy.2022.12.013. [PMID: 36535102]
  • Gustavo Galo Marcheafave, Cláudia Domiciano Tormena, Amelia Elena Terrile, Carlos Alberto Rossi Salamanca-Neto, Elen Romão Sartori, Miroslava Rakocevic, Roy Edward Bruns, Ieda Spacino Scarminio, Elis Daiane Pauli. Ecometabolic mixture design-fingerprints from exploratory multi-block data analysis in Coffea arabica beans from climate changes: Elevated carbon dioxide and reduced soil water availability. Food chemistry. 2021 Nov; 362(?):129716. doi: 10.1016/j.foodchem.2021.129716. [PMID: 34006394]
  • Tomoyuki Makino, Kouji Izumi, Kaoru Hiratsuka, Hiroshi Kano, Takashi Shimada, Taito Nakano, Suguru Kadomoto, Renato Naito, Hiroaki Iwamoto, Hiroshi Yaegashi, Kazuyoshi Shigehara, Yoshifumi Kadono, Hiroki Nakata, Yohei Saito, Kyoko Nakagawa-Goto, Norihiko Sakai, Yasunori Iwata, Takashi Wada, Atsushi Mizokami. Anti-proliferative and anti-migratory properties of coffee diterpenes kahweol acetate and cafestol in human renal cancer cells. Scientific reports. 2021 01; 11(1):675. doi: 10.1038/s41598-020-80302-4. [PMID: 33436830]
  • Jie Ji, Liwei Wu, Jiao Feng, Wenhui Mo, Jianye Wu, Qiang Yu, Sainan Li, Jie Zhang, Weiqi Dai, Xuanfu Xu, Yuqing Mao, Shizan Xu, Kan Chen, Jingjing Li, Chuanyong Guo. Cafestol preconditioning attenuates apoptosis and autophagy during hepatic ischemia-reperfusion injury by inhibiting ERK/PPARγ pathway. International immunopharmacology. 2020 Jul; 84(?):106529. doi: 10.1016/j.intimp.2020.106529. [PMID: 32344356]
  • Williara Queiroz de Oliveira, Nedio Jair Wurlitzer, Antonio Willian de Oliveira Araújo, Talita Aline Comunian, Maria do Socorro Rocha Bastos, Alessandra Lopes de Oliveira, Hilton César Rodrigues Magalhães, Hálisson Lucas Ribeiro, Raimundo Wilane de Figueiredo, Paulo Henrique Machado de Sousa. Complex coacervates of cashew gum and gelatin as carriers of green coffee oil: The effect of microcapsule application on the rheological and sensorial quality of a fruit juice. Food research international (Ottawa, Ont.). 2020 05; 131(?):109047. doi: 10.1016/j.foodres.2020.109047. [PMID: 32247484]
  • Federico Berti, Luciano Navarini, Elena Guercia, Ana Oreški, Alessandra Gasparini, Jeremy Scoltock, Cristina Forzato. Interaction of the Coffee Diterpenes Cafestol and 16-O-Methyl-Cafestol Palmitates with Serum Albumins. International journal of molecular sciences. 2020 Mar; 21(5):. doi: 10.3390/ijms21051823. [PMID: 32155814]
  • Renalison Farias-Pereira, Edward Kim, Yeonhwa Park. Cafestol increases fat oxidation and energy expenditure in Caenorhabditis elegans via DAF-12-dependent pathway. Food chemistry. 2020 Mar; 307(?):125537. doi: 10.1016/j.foodchem.2019.125537. [PMID: 31644978]
  • Naila Albertina de Oliveira, Thaisa Meira Sandini, Heber Peleg Cornelio-Santiago, Elaine Cristina Lanzoni Martinelli, Leonila Ester Reinert Raspantini, Paulo Cesar Raspantini, Cláudia Momo, Alessandra Lopes de Oliveira, Heidge Fukumasu. Acute and subacute (28 days) toxicity of green coffee oil enriched with diterpenes cafestol and kahweol in rats. Regulatory toxicology and pharmacology : RTP. 2020 Feb; 110(?):104517. doi: 10.1016/j.yrtph.2019.104517. [PMID: 31707131]
  • Yaqi Ren, Chunlan Wang, Jiakun Xu, Shuaiyu Wang. Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties. International journal of molecular sciences. 2019 Aug; 20(17):. doi: 10.3390/ijms20174238. [PMID: 31480213]
  • Amaia Iriondo-DeHond, Fresia Santillan Cornejo, Beatriz Fernandez-Gomez, Gema Vera, Eduardo Guisantes-Batan, Sergio Gomez Alonso, Manuel Ignacio San Andres, Sebastian Sanchez-Fortun, Laura Lopez-Gomez, Jose Antonio Uranga, Raquel Abalo, Maria Dolores Del Castillo. Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds. Nutrients. 2019 Jun; 11(6):. doi: 10.3390/nu11061411. [PMID: 31234581]
  • Filipe Corrêa Guizellini, Gustavo Galo Marcheafave, Miroslava Rakocevic, Roy Edward Bruns, Ieda Spacino Scarminio, Patricia Kaori Soares. PARAFAC HPLC-DAD metabolomic fingerprint investigation of reference and crossed coffees. Food research international (Ottawa, Ont.). 2018 11; 113(?):9-17. doi: 10.1016/j.foodres.2018.06.070. [PMID: 30195550]
  • Gustavo C Sant'Ana, Luiz F P Pereira, David Pot, Suzana T Ivamoto, Douglas S Domingues, Rafaelle V Ferreira, Natalia F Pagiatto, Bruna S R da Silva, Lívia M Nogueira, Cintia S G Kitzberger, Maria B S Scholz, Fernanda F de Oliveira, Gustavo H Sera, Lilian Padilha, Jean-Pierre Labouisse, Romain Guyot, Pierre Charmetant, Thierry Leroy. Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Scientific reports. 2018 01; 8(1):465. doi: 10.1038/s41598-017-18800-1. [PMID: 29323254]
  • Jessica Brunquell, Stephanie Morris, Alana Snyder, Sandy D Westerheide. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell stress & chaperones. 2018 01; 23(1):65-75. doi: 10.1007/s12192-017-0824-7. [PMID: 28674941]
  • Pedram Shokouh, Per Bendix Jeppesen, Kjeld Hermansen, Natalja P Nørskov, Christoffer Laustsen, Stephen Jacques Hamilton-Dutoit, Haiyun Qi, Hans Stødkilde-Jørgensen, Søren Gregersen. A Combination of Coffee Compounds Shows Insulin-Sensitizing and Hepatoprotective Effects in a Rat Model of Diet-Induced Metabolic Syndrome. Nutrients. 2017 Dec; 10(1):. doi: 10.3390/nu10010006. [PMID: 29271886]
  • Mery Yovana Rendón, Maria Brígida Dos Santos Scholz, Neura Bragagnolo. Is cafestol retained on the paper filter in the preparation of filter coffee?. Food research international (Ottawa, Ont.). 2017 10; 100(Pt 1):798-803. doi: 10.1016/j.foodres.2017.08.013. [PMID: 28873752]
  • Fredrik Brustad Mellbye, Per Bendix Jeppesen, Pedram Shokouh, Christoffer Laustsen, Kjeld Hermansen, Søren Gregersen. Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice. Journal of natural products. 2017 08; 80(8):2353-2359. doi: 10.1021/acs.jnatprod.7b00395. [PMID: 28763212]
  • Suzana T Ivamoto, Leonardo M Sakuray, Lucia P Ferreira, Cíntia S G Kitzberger, Maria B S Scholz, David Pot, Thierry Leroy, Luiz G E Vieira, Douglas S Domingues, Luiz F P Pereira. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant physiology and biochemistry : PPB. 2017 Feb; 111(?):340-347. doi: 10.1016/j.plaphy.2016.12.004. [PMID: 28002787]
  • Urszula Złotek, Monika Karaś, Urszula Gawlik-Dziki, Urszula Szymanowska, Barbara Baraniak, Anna Jakubczyk. Antioxidant activity of the aqueous and methanolic extracts of coffee beans (Coffea arabica L.). Acta scientiarum polonorum. Technologia alimentaria. 2016 Jul; 15(3):281-288. doi: 10.17306/j.afs.2016.3.27. [PMID: 28071027]
  • Roseane Maria Maia Santos, Darcy Roberto Andrade Lima. Coffee consumption, obesity and type 2 diabetes: a mini-review. European journal of nutrition. 2016 Jun; 55(4):1345-58. doi: 10.1007/s00394-016-1206-0. [PMID: 27026242]
  • Luciana Souza Guzzo, Marina Gomes Miranda E Castor, Andrea de Castro Perez, Igor Dimitri Gama Duarte, Thiago Roberto Lima Romero. Natural Diterpenes from Coffee, Cafestol, and Kahweol Induce Peripheral Antinoceception by Adrenergic System Interaction. Planta medica. 2016 Jan; 82(1-2):106-12. doi: 10.1055/s-0035-1558084. [PMID: 26460671]
  • Fábio Junior Moreira Novaes, Silvia Siag Oigman, Rodrigo Octavio Mendonça Alves de Souza, Claudia Moraes Rezende, Francisco Radler de Aquino Neto. New approaches on the analyses of thermolabile coffee diterpenes by gas chromatography and its relationship with cup quality. Talanta. 2015 Jul; 139(?):159-66. doi: 10.1016/j.talanta.2014.12.025. [PMID: 25882422]
  • Chuan-Pu Shen, Jian-Guang Luo, Ming-Hua Yang, Ling-Yi Kong. Cafestol-Type Diterpenoids from the Twigs of Tricalysia fruticosa with Potential Anti-inflammatory Activity. Journal of natural products. 2015 Jun; 78(6):1322-9. doi: 10.1021/acs.jnatprod.5b00165. [PMID: 26052978]
  • S M Woo, K-J Min, B R Seo, J-O Nam, K S Choi, Y H Yoo, T K Kwon. Cafestol overcomes ABT-737 resistance in Mcl-1-overexpressed renal carcinoma Caki cells through downregulation of Mcl-1 expression and upregulation of Bim expression. Cell death & disease. 2014 Nov; 5(?):e1514. doi: 10.1038/cddis.2014.472. [PMID: 25375379]
  • Iziar A Ludwig, Michael N Clifford, Michael E J Lean, Hiroshi Ashihara, Alan Crozier. Coffee: biochemistry and potential impact on health. Food & function. 2014 Aug; 5(8):1695-717. doi: 10.1039/c4fo00042k. [PMID: 24671262]
  • Agnes Chartier, Mathieu Beaumesnil, Alessandra Lopes de Oliveira, Claire Elfakir, Stephane Bostyn. Optimization of the isolation and quantitation of kahweol and cafestol in green coffee oil. Talanta. 2013 Dec; 117(?):102-11. doi: 10.1016/j.talanta.2013.07.053. [PMID: 24209317]
  • S S Oigman, R O M A de Souza, H M Dos Santos Júnior, A M C Hovell, L Hamerski, C M Rezende. Microwave-assisted methanolysis of green coffee oil. Food chemistry. 2012 Sep; 134(2):999-1004. doi: 10.1016/j.foodchem.2012.03.007. [PMID: 23107719]
  • Nasheen Naidoo, Cynthia Chen, Salome A Rebello, Karl Speer, E Shyong Tai, Jeanette Lee, Sandra Buchmann, Isabelle Koelling-Speer, Rob M van Dam. Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: a survey and cross sectional study. Nutrition journal. 2011 May; 10(?):48. doi: 10.1186/1475-2891-10-48. [PMID: 21569629]
  • Min Jung Choi, Eun Jung Park, Jung Hwa Oh, Kyoung-Jin Min, Eun Sun Yang, Young Ho Kim, Tae Jin Lee, Sang Hyun Kim, Yung Hyun Choi, Jong-Wook Park, Taeg Kyu Kwon. Cafestol, a coffee-specific diterpene, induces apoptosis in renal carcinoma Caki cells through down-regulation of anti-apoptotic proteins and Akt phosphorylation. Chemico-biological interactions. 2011 Apr; 190(2-3):102-8. doi: 10.1016/j.cbi.2011.02.013. [PMID: 21334318]
  • Kien Trinh, Laurie Andrews, James Krause, Tyler Hanak, Daewoo Lee, Michael Gelb, Leo Pallanck. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson's disease through an NRF2-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2010 Apr; 30(16):5525-32. doi: 10.1523/jneurosci.4777-09.2010. [PMID: 20410106]
  • Rafael Carlos Eloy Dias, Fernanda Gonçalves Campanha, Luiz Gonzaga Esteves Vieira, Lucia Pires Ferreira, David Pot, Pierre Marraccini, Marta De Toledo Benassi. Evaluation of kahweol and cafestol in coffee tissues and roasted coffee by a new high-performance liquid chromatography methodology. Journal of agricultural and food chemistry. 2010 Jan; 58(1):88-93. doi: 10.1021/jf9027427. [PMID: 19928990]
  • Ting Shen, Jaehwi Lee, Eunji Lee, Seong Hwan Kim, Tae Woong Kim, Jae Youl Cho. Cafestol, a coffee-specific diterpene, is a novel extracellular signal-regulated kinase inhibitor with AP-1-targeted inhibition of prostaglandin E2 production in lipopolysaccharide-activated macrophages. Biological & pharmaceutical bulletin. 2010; 33(1):128-32. doi: 10.1248/bpb.33.128. [PMID: 20045950]
  • Maria De Lucia, Lucia Panzella, Dominique Melck, Italo Giudicianni, Andrea Motta, Alessandra Napolitano, Marco d'Ischia. Differential reactivity of purified bioactive coffee furans, cafestol and kahweol, with acidic nitrite: product characterization and factors controlling nitrosation versus ring-opening pathways. Chemical research in toxicology. 2009 Dec; 22(12):1922-8. doi: 10.1021/tx900224x. [PMID: 19894707]
  • Kyung Jin Lee, Jea Ho Choi, Hye Gwang Jeong. Hepatoprotective and antioxidant effects of the coffee diterpenes kahweol and cafestol on carbon tetrachloride-induced liver damage in mice. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2007 Nov; 45(11):2118-25. doi: 10.1016/j.fct.2007.05.010. [PMID: 17590492]
  • Kyung Jin Lee, Hye Gwang Jeong. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicology letters. 2007 Sep; 173(2):80-7. doi: 10.1016/j.toxlet.2007.06.008. [PMID: 17689207]
  • Marie-Louise Ricketts, Mark V Boekschoten, Arja J Kreeft, Guido J E J Hooiveld, Corina J A Moen, Michael Müller, Rune R Frants, Soemini Kasanmoentalib, Sabine M Post, Hans M G Princen, J Gordon Porter, Martijn B Katan, Marten H Hofker, David D Moore. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Molecular endocrinology (Baltimore, Md.). 2007 Jul; 21(7):1603-16. doi: 10.1210/me.2007-0133. [PMID: 17456796]
  • Christophe Cavin, Thierry Delatour, Maricel Marin-Kuan, Daisy Holzhäuser, Larry Higgins, Claudine Bezençon, Gabriela Guignard, Sylviane Junod, Janique Richoz-Payot, Eric Gremaud, John D Hayes, Sandra Nestler, Peter Mantle, Benoît Schilter. Reduction in antioxidant defenses may contribute to ochratoxin A toxicity and carcinogenicity. Toxicological sciences : an official journal of the Society of Toxicology. 2007 Mar; 96(1):30-9. doi: 10.1093/toxsci/kfl169. [PMID: 17110534]
  • M V Boekschoten, S T J van Cruchten, T G Kosmeijer-Schuil, M B Katan. [Negligible amounts of cholesterol-raising diterpenes in coffee made with coffee pads in comparison with unfiltered coffee]. Nederlands tijdschrift voor geneeskunde. 2006 Dec; 150(52):2873-5. doi: . [PMID: 17319220]
  • Jane V Higdon, Balz Frei. Coffee and health: a review of recent human research. Critical reviews in food science and nutrition. 2006; 46(2):101-23. doi: 10.1080/10408390500400009. [PMID: 16507475]
  • Mark V Boekschoten, Maaike K Hofman, Rien Buytenhek, Evert G Schouten, Hans M G Princen, Martijn B Katan. Coffee oil consumption increases plasma levels of 7alpha-hydroxy-4-cholesten-3-one in humans. The Journal of nutrition. 2005 Apr; 135(4):785-9. doi: 10.1093/jn/135.4.785. [PMID: 15795435]
  • Trine Ranheim, Bente Halvorsen. Coffee consumption and human health--beneficial or detrimental?--Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus. Molecular nutrition & food research. 2005 Mar; 49(3):274-84. doi: 10.1002/mnfr.200400109. [PMID: 15704241]
  • Wolfgang W Huber, Wolfram Parzefall. Modification of N-acetyltransferases and glutathione S-transferases by coffee components: possible relevance for cancer risk. Methods in enzymology. 2005; 401(?):307-41. doi: 10.1016/s0076-6879(05)01020-7. [PMID: 16399395]
  • Maaike K Hofman, Rianne M Weggemans, Peter L Zock, Evert G Schouten, Martijn B Katan, Hans M G Princen. CYP7A1 A-278C polymorphism affects the response of plasma lipids after dietary cholesterol or cafestol interventions in humans. The Journal of nutrition. 2004 Sep; 134(9):2200-4. doi: 10.1093/jn/134.9.2200. [PMID: 15333704]
  • Gerlinde Scharf, Sonja Prustomersky, Siegfried Knasmuller, Rolf Schulte-Hermann, Wolfgang W Huber. Enhancement of glutathione and g-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant-derived food and beverage components in the human hepatoma cell line HepG2. Nutrition and cancer. 2003; 45(1):74-83. doi: 10.1207/s15327914nc4501_9. [PMID: 12791507]
  • C Cavin, D Holzhaeuser, G Scharf, A Constable, W W Huber, B Schilter. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2002 Aug; 40(8):1155-63. doi: 10.1016/s0278-6915(02)00029-7. [PMID: 12067578]
  • Wolfgang W Huber, Sonja Prustomersky, Evert Delbanco, Maria Uhl, Gerlinde Scharf, Robert J Turesky, Ricarda Thier, Rolf Schulte-Hermann. Enhancement of the chemoprotective enzymes glucuronosyl transferase and glutathione transferase in specific organs of the rat by the coffee components kahweol and cafestol. Archives of toxicology. 2002 May; 76(4):209-17. doi: 10.1007/s00204-002-0322-1. [PMID: 12029384]
  • Wolfgang W Huber, Gerlinde Scharf, Walter Rossmanith, Sonja Prustomersky, Bettina Grasl-Kraupp, Barbara Peter, Robert J Turesky, Rolf Schulte-Hermann. The coffee components kahweol and cafestol induce gamma-glutamylcysteine synthetase, the rate limiting enzyme of chemoprotective glutathione synthesis, in several organs of the rat. Archives of toxicology. 2002 Jan; 75(11-12):685-94. doi: 10.1007/s00204-001-0295-5. [PMID: 11876501]
  • R M Weggemans, P L Zock, J M Ordovas, J Pedro-Botet, M B Katan. Apoprotein E genotype and the response of serum cholesterol to dietary fat, cholesterol and cafestol. Atherosclerosis. 2001 Feb; 154(3):547-55. doi: 10.1016/s0021-9150(00)00720-6. [PMID: 11257255]
  • B de Roos, M J Caslake, A F Stalenhoef, D Bedford, P N Demacker, M B Katan, C J Packard. The coffee diterpene cafestol increases plasma triacylglycerol by increasing the production rate of large VLDL apolipoprotein B in healthy normolipidemic subjects. The American journal of clinical nutrition. 2001 Jan; 73(1):45-52. doi: 10.1093/ajcn/73.1.45. [PMID: 11124749]
  • B De Roos, A Van Tol, R Urgert, L M Scheek, T Van Gent, R Buytenhek, H M Princen, M B Katan. Consumption of French-press coffee raises cholesteryl ester transfer protein activity levels before LDL cholesterol in normolipidaemic subjects. Journal of internal medicine. 2000 Sep; 248(3):211-6. doi: 10.1046/j.1365-2796.2000.00728.x. [PMID: 10971787]
  • S M Post, B de Roos, M Vermeulen, L Afman, M C Jong, V E Dahlmans, L M Havekes, F Stellaard, M B Katan, H M Princen. Cafestol increases serum cholesterol levels in apolipoprotein E*3-Leiden transgenic mice by suppression of bile acid synthesis. Arteriosclerosis, thrombosis, and vascular biology. 2000 Jun; 20(6):1551-6. doi: 10.1161/01.atv.20.6.1551. [PMID: 10845871]
  • R M Weggemans, P L Zock, R Urgert, M B Katan. Differences between men and women in the response of serum cholesterol to dietary changes. European journal of clinical investigation. 1999 Oct; 29(10):827-34. doi: 10.1046/j.1365-2362.1999.00524.x. [PMID: 10583424]
  • B de Roos, J K Sawyer, M B Katan, L L Rudel. Validity of animal models for the cholesterol-raising effects of coffee diterpenes in human subjects. The Proceedings of the Nutrition Society. 1999 Aug; 58(3):551-7. doi: 10.1017/s0029665199000725. [PMID: 10604186]
  • B de Roos, M B Katan. Possible mechanisms underlying the cholesterol-raising effect of the coffee diterpene cafestol. Current opinion in lipidology. 1999 Feb; 10(1):41-5. doi: 10.1097/00041433-199902000-00008. [PMID: 10095989]
  • B De Roos, S Meyboom, T G Kosmeijer-Schuil, M B Katan. Absorption and urinary excretion of the coffee diterpenes cafestol and kahweol in healthy ileostomy volunteers. Journal of internal medicine. 1998 Dec; 244(6):451-60. doi: 10.1046/j.1365-2796.1998.00386.x. [PMID: 9893098]
  • B Halvorsen, T Ranheim, M S Nenseter, A C Huggett, C A Drevon. Effect of a coffee lipid (cafestol) on cholesterol metabolism in human skin fibroblasts. Journal of lipid research. 1998 Apr; 39(4):901-12. doi: . [PMID: 9555953]
  • S M Post, E C de Wit, H M Princen. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arteriosclerosis, thrombosis, and vascular biology. 1997 Nov; 17(11):3064-70. doi: 10.1161/01.atv.17.11.3064. [PMID: 9409294]
  • A C Rustan, B Halvorsen, T Ranheim, C A Drevon. Cafestol (a coffee lipid) decreases uptake of low-density lipoprotein (LDL) in human skin fibroblasts and liver cells. Annals of the New York Academy of Sciences. 1997 Sep; 827(?):158-62. doi: 10.1111/j.1749-6632.1997.tb51830.x. [PMID: 9329750]
  • A van Tol, R Urgert, R de Jong-Caesar, T van Gent, L M Scheek, B de Roos, M B Katan. The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans. Atherosclerosis. 1997 Jul; 132(2):251-4. doi: 10.1016/s0021-9150(97)00099-3. [PMID: 9242972]
  • R Urgert, M P Weusten-van der Wouw, R Hovenier, S Meyboom, A C Beynen, M B Katan. Diterpenes from coffee beans decrease serum levels of lipoprotein(a) in humans: results from four randomised controlled trials. European journal of clinical nutrition. 1997 Jul; 51(7):431-6. doi: 10.1038/sj.ejcn.1600414. [PMID: 9234024]
  • R Urgert, N Essed, G van der Weg, T G Kosmeijer-Schuil, M B Katan. Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases. The American journal of clinical nutrition. 1997 Feb; 65(2):519-24. doi: 10.1093/ajcn/65.2.519. [PMID: 9022539]
  • R Urgert, M B Katan. The cholesterol-raising factor from coffee beans. Annual review of nutrition. 1997; 17(?):305-24. doi: 10.1146/annurev.nutr.17.1.305. [PMID: 9240930]
  • R Urgert, M B Katan. The cholesterol-raising factor from coffee beans. Journal of the Royal Society of Medicine. 1996 Nov; 89(11):618-23. doi: 10.1177/014107689608901107. [PMID: 9135590]
  • R Urgert, T G Kosmeijer-Schuil, M B Katan. Intake levels, sites of action and excretion routes of the cholesterol-elevating diterpenes from coffee beans in humans. Biochemical Society transactions. 1996 Aug; 24(3):800-6. doi: 10.1042/bst0240800. [PMID: 8878851]
  • T Ranheim, B Halvorsen, A C Huggett, R Blomhoff, C A Drevon. Effect of a coffee lipid (cafestol) on regulation of lipid metabolism in CaCo-2 cells. Journal of lipid research. 1995 Oct; 36(10):2079-89. doi: . [PMID: 8576635]
  • A H Terpstra, M B Katan, M P Weusten-van der Wouw, R J Nicolosi, A C Beynen. Coffee oil consumption does not affect serum cholesterol in rhesus and cebus monkeys. The Journal of nutrition. 1995 Sep; 125(9):2301-6. doi: 10.1093/jn/125.9.2301. [PMID: 7666246]
  • J van Rooij, G H van der Stegen, R C Schoemaker, C Kroon, J Burggraaf, L Hollaar, T F Vroon, A H Smelt, A F Cohen. A placebo-controlled parallel study of the effect of two types of coffee oil on serum lipids and transaminases: identification of chemical substances involved in the cholesterol-raising effect of coffee. The American journal of clinical nutrition. 1995 Jun; 61(6):1277-83. doi: 10.1093/ajcn/61.6.1277. [PMID: 7762531]
  • R Urgert, A G Schulz, M B Katan. Effects of cafestol and kahweol from coffee grounds on serum lipids and serum liver enzymes in humans. The American journal of clinical nutrition. 1995 Jan; 61(1):149-54. doi: 10.1093/ajcn/61.1.149. [PMID: 7825527]
  • M P Weusten-Van der Wouw, M B Katan, R Viani, A C Huggett, R Liardon, R Liardon, P G Lund-Larsen, D S Thelle, I Ahola, A Aro. Identity of the cholesterol-raising factor from boiled coffee and its effects on liver function enzymes. Journal of lipid research. 1994 Apr; 35(?):721-33. doi: . [PMID: 7911820]
  • H Heckers, U Göbel, U Kleppel. End of the coffee mystery: diterpene alcohols raise serum low-density lipoprotein cholesterol and triglyceride levels. Journal of internal medicine. 1994 Feb; 235(2):192-3. doi: 10.1111/j.1365-2796.1994.tb01058.x. [PMID: 8308487]