1,2-Benzoquinone (BioDeep_00000004903)
Secondary id: BioDeep_00001868744
human metabolite Endogenous
代谢物信息卡片
化学式: C6H4O2 (108.0211284)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 0.9%
分子结构信息
SMILES: C1=CC(=O)C(=O)C=C1
InChI: InChI=1S/C6H4O2/c7-5-3-1-2-4-6(5)8/h1-4H
描述信息
1,2-Benzoquinone is a reactive electrophile that is an intermediate in benzene metabolism. It is substrate for the enzyme Catechol oxidase (EC 1.10.3.1) and can be generated from the oxidation of catechol. 1,2-Benzoquinone is capable of reacting with blood proteins to produce adducts.
1,2-Benzoquinone, also called ortho-benzoquinone or cyclohexa-3,5-diene-1,2-dione, is a ketone, with formula C6H4O2. It is one of the two isomers of quinone, the other being 1,4-benzoquinone. O-Quinone is found in tea.
同义名列表
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:17253
- KEGG: C02351
- PubChem: 11421
- HMDB: HMDB0012133
- Metlin: METLIN62804
- Wikipedia: 1,2-Benzoquinone
- MetaCyc: CPD-385
- foodb: FDB004549
- chemspider: 10941
- CAS: 20526-43-6
- CAS: 583-63-1
- PMhub: MS000017540
- PubChem: 5398
- 3DMET: B00429
- NIKKAJI: J7.445D
分类词条
相关代谢途径
Reactome(0)
代谢反应
102 个相关的代谢反应过程信息。
Reactome(0)
Plant Reactome(0)
INOH(0)
PlantCyc(100)
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
- o-diquinones biosynthesis:
O2 + catechol ⟶ 1,2-benzoquinone + H2O
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
2 个相关的物种来源信息
- 9606 - Homo sapiens: -
- 39354 - Salvia abrotanoides: 10.1016/J.BMC.2006.03.047
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hua Liu, Weidan Na, Ziping Liu, Xueqian Chen, Xingguang Su. A novel turn-on fluorescent strategy for sensing ascorbic acid using graphene quantum dots as fluorescent probe.
Biosensors & bioelectronics.
2017 Jun; 92(?):229-233. doi:
10.1016/j.bios.2017.02.005
. [PMID: 28222367] - Zhong-Ze Fang, Kristopher W Krausz, Fei Li, Jie Cheng, Naoki Tanaka, Frank J Gonzalez. Metabolic map and bioactivation of the anti-tumour drug noscapine.
British journal of pharmacology.
2012 Nov; 167(6):1271-86. doi:
10.1111/j.1476-5381.2012.02067.x
. [PMID: 22671862] - Katra Kolšek, Janez Mavri, Marija Sollner Dolenc. Reactivity of bisphenol A-3,4-quinone with DNA. A quantum chemical study.
Toxicology in vitro : an international journal published in association with BIBRA.
2012 Feb; 26(1):102-6. doi:
10.1016/j.tiv.2011.11.003
. [PMID: 22120823] - L P Hemachandra, P Madhubhani, R Chandrasena, P Esala, Shao-Nong Chen, Matthew Main, David C Lankin, Robert A Scism, Birgit M Dietz, Guido F Pauli, Gregory R J Thatcher, Judy L Bolton. Hops (Humulus lupulus) inhibits oxidative estrogen metabolism and estrogen-induced malignant transformation in human mammary epithelial cells (MCF-10A).
Cancer prevention research (Philadelphia, Pa.).
2012 Jan; 5(1):73-81. doi:
10.1158/1940-6207.capr-11-0348
. [PMID: 21997247] - Zuzana Kyselova. Toxicological aspects of the use of phenolic compounds in disease prevention.
Interdisciplinary toxicology.
2011 Dec; 4(4):173-83. doi:
10.2478/v10102-011-0027-5
. [PMID: 22319251] - Yiannis C Fiamegos, Panagiotis L Kastritis, Vassiliki Exarchou, Haley Han, Alexandre M J J Bonvin, Jacques Vervoort, Kim Lewis, Michael R Hamblin, George P Tegos. Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against gram-positive pathogenic bacteria.
PloS one.
2011 Apr; 6(4):e18127. doi:
10.1371/journal.pone.0018127
. [PMID: 21483731] - C Apetrei, P Alessio, C J L Constantino, J A de Saja, M L Rodriguez-Mendez, F J Pavinatto, E Giuliani Ramos Fernandes, V Zucolotto, O N Oliveira. Biomimetic biosensor based on lipidic layers containing tyrosinase and lutetium bisphthalocyanine for the detection of antioxidants.
Biosensors & bioelectronics.
2011 Jan; 26(5):2513-9. doi:
10.1016/j.bios.2010.10.047
. [PMID: 21123042] - Hilde Jacobs, Mohamed Moalin, Aalt Bast, Wim J F van der Vijgh, Guido R M M Haenen. An essential difference between the flavonoids monoHER and quercetin in their interplay with the endogenous antioxidant network.
PloS one.
2010 Nov; 5(11):e13880. doi:
10.1371/journal.pone.0013880
. [PMID: 21079733] - Ercole L Cavalieri, Eleanor G Rogan. Is bisphenol A a weak carcinogen like the natural estrogens and diethylstilbestrol?.
IUBMB life.
2010 Oct; 62(10):746-51. doi:
10.1002/iub.376
. [PMID: 20945454] - Peter Kovacic. How safe is bisphenol A? Fundamentals of toxicity: metabolism, electron transfer and oxidative stress.
Medical hypotheses.
2010 Jul; 75(1):1-4. doi:
10.1016/j.mehy.2010.03.002
. [PMID: 20371154] - Colleen M Trantow, Adam Hedberg-Buenz, Sachiyo Iwashita, Steven A Moore, Michael G Anderson. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes.
PLoS genetics.
2010 Jul; 6(7):e1001008. doi:
10.1371/journal.pgen.1001008
. [PMID: 20617205] - Amit S Kalgutkar, David A Griffith, Tim Ryder, Hao Sun, Zhuang Miao, Jonathan N Bauman, Mary T Didiuk, Kosea S Frederick, Sabrina X Zhao, Chandra Prakash, John R Soglia, Scott W Bagley, Bruce M Bechle, Ryan M Kelley, Kenneth Dirico, Michael Zawistoski, Jianke Li, Robert Oliver, Angel Guzman-Perez, Kevin K C Liu, Daniel P Walker, John W Benbow, Joel Morris. Discovery tactics to mitigate toxicity risks due to reactive metabolite formation with 2-(2-hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3h)-one derivatives, potent calcium-sensing receptor antagonists and clinical candidate(s) for the treatment of osteoporosis.
Chemical research in toxicology.
2010 Jun; 23(6):1115-26. doi:
10.1021/tx100137n
. [PMID: 20507089] - M Jiménez-Atiénzar, M Pérez-Gilabert, J Cabanes, J Escribano, F Gandía-Herrero, F García-Carmona. A continuous spectrophotometric assay for determination of the aureusidin synthase activity of tyrosinase.
Phytochemical analysis : PCA.
2010 May; 21(3):273-8. doi:
10.1002/pca.1197
. [PMID: 20029997] - Kaoru Kinoshita, Tadayasu Togawa, Akira Hiraishi, Yuko Nakajima, Kiyotaka Koyama, Takao Narui, Li-Song Wang, Kunio Takahashi. Antioxidant activity of red pigments from the lichens Lethariella sernanderi, L. cashmeriana, and L. sinensis.
Journal of natural medicines.
2010 Jan; 64(1):85-8. doi:
10.1007/s11418-009-0364-2
. [PMID: 19802654] - Shu-Fang Li, Hai-Long Wu, A-Lin Xia, Shao-Hua Zhu, Jin-Fang Nie, Yong-Jie Yu, Ru-Qin Yu. Quantitative analysis of epinephrine in human plasma samples using kinetic fluorometric method combined with second-order calibration.
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2009 Oct; 25(10):1231-6. doi:
10.2116/analsci.25.1231
. [PMID: 19822969] - Ana Cristina Franzoi, Jairton Dupont, Almir Spinelli, Iolanda Cruz Vieira. Biosensor based on laccase and an ionic liquid for determination of rosmarinic acid in plant extracts.
Talanta.
2009 Feb; 77(4):1322-7. doi:
10.1016/j.talanta.2008.09.010
. [PMID: 19084643] - Jennifer L Billinsky, Michelle R Marcoux, Ed S Krol. Oxidation of the lignan nordihydroguaiaretic acid.
Chemical research in toxicology.
2007 Sep; 20(9):1352-8. doi:
10.1021/tx700205j
. [PMID: 17672511] - Yaico D Tanimoto de Albuquerque, Lucas Franco Ferreira. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes.
Analytica chimica acta.
2007 Jul; 596(2):210-21. doi:
10.1016/j.aca.2007.06.013
. [PMID: 17631099] - Yuichiro Tanaka, Leslie A Lesoon Wood, Robert V Cooney. Enhancement of intracellular gamma-tocopherol levels in cytokine-stimulated C3H 10T1/2 fibroblasts: relation to NO synthesis, isoprostane formation, and tocopherol oxidation.
BMC chemical biology.
2007 Jul; 7(?):2. doi:
10.1186/1472-6769-7-2
. [PMID: 17608946] - Kazuhiko Tamaki, Takeshi Tamaki, Takashi Yamazaki. Studies on the deodorization by mushroom (Agaricus bisporus) extract of garlic extract-induced oral malodor.
Journal of nutritional science and vitaminology.
2007 Jun; 53(3):277-86. doi:
10.3177/jnsv.53.277
. [PMID: 17874834] - Marimuthu Srinivasan, Adluri R Sudheer, Venugopal P Menon. Ferulic Acid: therapeutic potential through its antioxidant property.
Journal of clinical biochemistry and nutrition.
2007 Mar; 40(2):92-100. doi:
10.3164/jcbn.40.92
. [PMID: 18188410] - Yu-Sheng Lin, Roel Vermeulen, Chin H Tsai, Suramya Waidyanatha, Qing Lan, Nathaniel Rothman, Martyn T Smith, Luoping Zhang, Min Shen, Guilan Li, Songnian Yin, Sungkyoon Kim, Stephen M Rappaport. Albumin adducts of electrophilic benzene metabolites in benzene-exposed and control workers.
Environmental health perspectives.
2007 Jan; 115(1):28-34. doi:
10.1289/ehp.8948
. [PMID: 17366815] - Angel A J Torriero, Eloy Salinas, Eduardo J Marchevsky, Julio Raba, Juana J Silber. Penicillamine determination using a tyrosinase micro-rotating biosensor.
Analytica chimica acta.
2006 Nov; 580(2):136-42. doi:
10.1016/j.aca.2006.07.067
. [PMID: 17723765] - Ercole Cavalieri, Dhubajyoti Chakravarti, Joseph Guttenplan, Elizabeth Hart, James Ingle, Ryszard Jankowiak, Paola Muti, Eleanor Rogan, Jose Russo, Richard Santen, Thomas Sutter. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention.
Biochimica et biophysica acta.
2006 Aug; 1766(1):63-78. doi:
10.1016/j.bbcan.2006.03.001
. [PMID: 16675129] - Monica Sanchez-Gonzalez, John P N Rosazza. Biocatalytic synthesis of butein and sulfuretin by Aspergillus alliaceus.
Journal of agricultural and food chemistry.
2006 Jun; 54(13):4646-50. doi:
10.1021/jf060900k
. [PMID: 16787010] - Xin-sheng Wu, Yi-min Xie, Huan-bin Liu, Hong Wu. [Study on near-infrared absorption mechanism of alkali lignin].
Guang pu xue yu guang pu fen xi = Guang pu.
2006 Jun; 26(6):1031-3. doi:
"
. [PMID: 16961223] - Katherine E Liney, Josephine A Hagger, Charles R Tyler, Michael H Depledge, Tamara S Galloway, Susan Jobling. Health effects in fish of long-term exposure to effluents from wastewater treatment works.
Environmental health perspectives.
2006 Apr; 114 Suppl 1(?):81-9. doi:
10.1289/ehp.8058
. [PMID: 16818251] - Mercedes Jiménez-Atiénzar, Josefa Escribano, Juana Cabanes, Fernando Gandía-Herrero, Francisco García-Carmona. Oxidation of the flavonoid eriodictyol by tyrosinase.
Plant physiology and biochemistry : PPB.
2005 Sep; 43(9):866-73. doi:
10.1016/j.plaphy.2005.07.010
. [PMID: 16289948] - Cristina Gaspar-Marques, M Fátima Simões, Benjamín Rodríguez. A trihomoabietane diterpenoid from Plectranthus grandidentatus and an unusual addition of acetone to the ortho-quinone system of cryptotanshinone.
Journal of natural products.
2005 Sep; 68(9):1408-11. doi:
10.1021/np0580457
. [PMID: 16180825] - Yusuke Sawai, Jae-Hak Moon, Kanzo Sakata, Naoharu Watanabe. Effects of structure on radical-scavenging abilities and antioxidative activities of tea polyphenols: NMR analytical approach using 1,1-diphenyl-2-picrylhydrazyl radicals.
Journal of agricultural and food chemistry.
2005 May; 53(9):3598-604. doi:
10.1021/jf040423a
. [PMID: 15853407] - John C L Erve, Mats A Svensson, Hans von Euler-Chelpin, Eva Klasson-Wehler. Characterization of glutathione conjugates of the remoxipride hydroquinone metabolite NCQ-344 formed in vitro and detection following oxidation by human neutrophils.
Chemical research in toxicology.
2004 Apr; 17(4):564-71. doi:
10.1021/tx034238n
. [PMID: 15089099] - Samuel Park, Timothy J Geddes, Jonathan A Javitch, Donald M Kuhn. Dopamine prevents nitration of tyrosine hydroxylase by peroxynitrite and nitrogen dioxide: is nitrotyrosine formation an early step in dopamine neuronal damage?.
The Journal of biological chemistry.
2003 Aug; 278(31):28736-42. doi:
10.1074/jbc.m304362200
. [PMID: 12771134] - Wendy R Russell, Mark J Burkitt, Lorraine Scobbie, Andrew Chesson. Radical formation and coupling of hydroxycinnamic acids containing 1,2-dihydroxy substituents.
Bioorganic chemistry.
2003 Jun; 31(3):206-15. doi:
10.1016/s0045-2068(03)00042-7
. [PMID: 12818230] - Majid Y Moridani, Sophia S Cheon, Sumsullah Khan, Peter J O'Brien. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes.
Chemico-biological interactions.
2003 Jan; 142(3):317-33. doi:
10.1016/s0009-2797(02)00125-4
. [PMID: 12453669] - Takashi Tanaka, Chie Mine, Sayaka Watarumi, Toshihiro Fujioka, Kunihide Mihashi, Ying-Jun Zhang, Isao Kouno. Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins.
Journal of natural products.
2002 Nov; 65(11):1582-7. doi:
10.1021/np020245k
. [PMID: 12444680] - M Y Moridani, S S Cheon, S Khan, P J O'Brien. Metabolic activation of 4-hydroxyanisole by isolated rat hepatocytes.
Drug metabolism and disposition: the biological fate of chemicals.
2002 Oct; 30(10):1063-9. doi:
10.1124/dmd.30.10.1063
. [PMID: 12228181] - Tianhong Chen, Heather D Embree, Li-Qun Wu, Gregory F Payne. In vitro protein-polysaccharide conjugation: tyrosinase-catalyzed conjugation of gelatin and chitosan.
Biopolymers.
2002 Sep; 64(6):292-302. doi:
10.1002/bip.10196
. [PMID: 12124847] - Beata Gasowska, Hubert Wojtasek, Józef Hurek, Marcin Drag, Kornel Nowak, Paweł Kafarski. Redox reaction between amino-(3,4-dihydroxyphenyl)methyl phosphonic acid and dopaquinone is responsible for the apparent inhibitory effect on tyrosinase.
European journal of biochemistry.
2002 Aug; 269(16):4098-104. doi:
10.1046/j.1432-1033.2002.03103.x
. [PMID: 12180986] - T Masuda, Y Inaba, Y Takeda. Antioxidant mechanism of carnosic acid: structural identification of two oxidation products.
Journal of agricultural and food chemistry.
2001 Nov; 49(11):5560-5. doi:
10.1021/jf010693i
. [PMID: 11714360] - R Todorovic, P Devanesan, S Higginbotham, J Zhao, M L Gross, E G Rogan, E L Cavalieri. Analysis of potential biomarkers of estrogen-initiated cancer in the urine of Syrian golden hamsters treated with 4-hydroxyestradiol.
Carcinogenesis.
2001 Jun; 22(6):905-11. doi:
10.1093/carcin/22.6.905
. [PMID: 11375897] - I N Pessah, C Beltzner, S W Burchiel, G Sridhar, T Penning, W Feng. A bioactive metabolite of benzo[a]pyrene, benzo[a]pyrene-7,8-dione, selectively alters microsomal Ca2+ transport and ryanodine receptor function.
Molecular pharmacology.
2001 Mar; 59(3):506-13. doi:
10.1124/mol.59.3.506
. [PMID: 11179446] - D S Hsu, P Y Hsu, C C Liao. The first total synthesis of (+/-)-eremopetasidione.
Organic letters.
2001 Jan; 3(2):263-5. doi:
10.1021/ol000355n
. [PMID: 11430050] - S Waidyanatha, K Yeowell-O'Connell, S M Rappaport. A new assay for albumin and hemoglobin adducts of 1,2- and 1,4-benzoquinones.
Chemico-biological interactions.
1998 Sep; 115(2):117-39. doi:
10.1016/s0009-2797(98)00067-2
. [PMID: 9826945] - T A McDonald, S Waidyanatha, S M Rappaport. Measurement of adducts of benzoquinone with hemoglobin and albumin.
Carcinogenesis.
1993 Sep; 14(9):1927-32. doi:
10.1093/carcin/14.9.1927
. [PMID: 8403220] - G T Maslova, T L Boboriko. [Effect of antioxidants on the status of the antioxidative system in cerebral ischemia and reperfusion injury].
Ukrainskii biokhimicheskii zhurnal (1978).
1990 Nov; 62(6):101-5. doi:
. [PMID: 2087787]
- A I Potapovich, V A Kostiuk. [Antioxidative effect of o-benzoquinone derivatives during CCl4-induced lipid peroxidation in the rat liver].
Biokhimiia (Moscow, Russia).
1988 Feb; 53(2):233-7. doi:
"
. [PMID: 3370249] - V A Kostiuk, E F Lunets. [Inhibition of lipid peroxidation by derivatives of o-benzoquinone in liver microsomes].
Biokhimiia (Moscow, Russia).
1983 Sep; 48(9):1491-5. doi:
"
. [PMID: 6626609] - D L Garver, D M Davis, H Dekirmenjian, S Ericksen, L Gosenfeld, J Haraszti. Dystonic reactions following neuroleptics: time course and proposed mechanisms.
Psychopharmacologia.
1976 May; 47(2):199-201. doi:
10.1007/bf00735822
. [PMID: 5743] - C C IRVING, H R GUTMANN. Protein binding of model quinone imides. II. The interaction of some o-quinone imides with crystalline bovine serum albumin.
The Journal of biological chemistry.
1959 Nov; 234(?):2878-84. doi:
10.1016/s0021-9258(18)69687-5
. [PMID: 13853024]