Kurarinone (BioDeep_00000000403)

   

PANOMIX_OTCML-2023 Cytotoxicity natural product


代谢物信息卡片


(2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-8-[(2R)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-2,3-dihydro-4H-chromen-4-one

化学式: C26H30O6 (438.2042)
中文名称: 苦参黄素, 苦参酮
谱图信息: 最多检出来源 Chinese Herbal Medicine(otcml) 38.37%

分子结构信息

SMILES: c(c1C(C2)Oc(c(CC(C(C)=C)CC=C(C)C)3)c(c(cc3O)OC)C2=O)(cc(O)cc1)O
InChI: InChI=1S/C26H30O6/c1-14(2)6-7-16(15(3)4)10-19-21(29)12-24(31-5)25-22(30)13-23(32-26(19)25)18-9-8-17(27)11-20(18)28/h6,8-9,11-12,16,23,27-29H,3,7,10,13H2,1-2,4-5H3

描述信息

(2S)-(-)-kurarinone is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. It has a role as a metabolite and an antineoplastic agent. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4-hydroxyflavanones. It is functionally related to a (2S)-flavanone.
7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone is a natural product found in Albizia julibrissin, Cunila, and other organisms with data available.
A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells.
Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].
Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].

同义名列表

12 个代谢物同义名

(2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-8-[(2R)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-2,3-dihydro-4H-chromen-4-one; (2S)-2-[2,4-bis(oxidanyl)phenyl]-5-methoxy-8-[(2R)-5-methyl-2-prop-1-en-2-yl-hex-4-enyl]-7-oxidanyl-2,3-dihydrochromen-4-one; (2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-8-[(2R)-5-methyl-2-prop-1-en-2-ylhex-4-enyl]-2,3-dihydrochromen-4-one; (S)-2-(2,4-Dihydroxyphenyl)-7-hydroxy-5-methoxy-8-((R)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl)chroman-4-one; 7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone; Kurarinone, >=98\\% (HPLC); (2S)-(-)-kurarinone; (-)-kurarinone; norkurarinone; Kurarinone; J0U; 2-(2,4-Dihydroxyphenyl)-7-hydroxy-5-methoxy-8-(5-methyl-2-prop-1-en-2-ylhex-4-enyl)-2,3-dihydrochromen-4-one



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

38 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 BCL2, BCL2L1, CASP12, CASP3, CASP8, CASP9, CCND1, PIK3C3, PIK3CA, STAT3, TYR
Endoplasmic reticulum membrane 2 BCL2, HMOX1
Mitochondrion membrane 1 BCL2L1
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 7 BCL2, CASP3, CASP8, CASP9, CCND1, HMOX1, STAT3
autophagosome 1 PIK3C3
cytosol 11 BCL2, BCL2L1, CASP3, CASP8, CASP9, CCND1, GPT, HMOX1, PIK3C3, PIK3CA, STAT3
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
centrosome 2 BCL2L1, CCND1
nucleoplasm 5 CASP3, CASP8, CCND1, HMOX1, STAT3
RNA polymerase II transcription regulator complex 1 STAT3
Cell membrane 1 TNF
Cytoplasmic side 2 BCL2L1, HMOX1
lamellipodium 2 CASP8, PIK3CA
cell surface 1 TNF
glutamatergic synapse 2 CASP3, PIK3C3
mitochondrial inner membrane 1 BCL2L1
neuronal cell body 2 CASP3, TNF
Cytoplasm, cytosol 1 BCL2L1
Lysosome 1 TYR
endosome 1 PIK3C3
plasma membrane 4 IFNLR1, PIK3CA, STAT3, TNF
synaptic vesicle membrane 1 BCL2L1
Membrane 4 BCL2, HMOX1, IFNLR1, PIK3C3
extracellular exosome 1 GPT
endoplasmic reticulum 4 BCL2, BCL2L1, CASP12, HMOX1
extracellular space 6 HMOX1, IGF1, IL10, IL17A, IL6, TNF
perinuclear region of cytoplasm 3 HMOX1, PIK3CA, TYR
bicellular tight junction 1 CCND1
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, BCL2L1, CASP8, CASP9
protein-containing complex 3 BCL2, CASP8, CASP9
intracellular membrane-bounded organelle 1 TYR
postsynaptic density 1 CASP3
Single-pass type I membrane protein 2 IFNLR1, TYR
Secreted 4 IGF1, IL10, IL17A, IL6
extracellular region 5 IGF1, IL10, IL17A, IL6, TNF
Mitochondrion outer membrane 2 BCL2, BCL2L1
Single-pass membrane protein 2 BCL2, BCL2L1
mitochondrial outer membrane 4 BCL2, BCL2L1, CASP8, HMOX1
Mitochondrion matrix 1 BCL2L1
mitochondrial matrix 1 BCL2L1
transcription regulator complex 1 STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 BCL2L1
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 BCL2L1
Nucleus membrane 3 BCL2, BCL2L1, CCND1
Bcl-2 family protein complex 2 BCL2, BCL2L1
nuclear membrane 3 BCL2, BCL2L1, CCND1
external side of plasma membrane 2 IL17A, TNF
Melanosome membrane 1 TYR
midbody 1 PIK3C3
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cell projection, lamellipodium 1 CASP8
Membrane raft 1 TNF
pore complex 1 BCL2
GABA-ergic synapse 1 PIK3C3
Peroxisome 1 PIK3C3
axoneme 1 PIK3C3
Late endosome 1 PIK3C3
chromatin 1 STAT3
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
cytoskeleton 1 CASP8
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Melanosome 1 TYR
cell body 1 CASP8
myelin sheath 1 BCL2
exocytic vesicle 1 IGF1
endoplasmic reticulum lumen 1 IL6
transcription repressor complex 1 CCND1
platelet alpha granule lumen 1 IGF1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
presynaptic endosome 1 PIK3C3
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
CD95 death-inducing signaling complex 1 CASP8
death-inducing signaling complex 2 CASP3, CASP8
ripoptosome 1 CASP8
cyclin-dependent protein kinase holoenzyme complex 1 CCND1
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
Autolysosome 1 PIK3C3
alphav-beta3 integrin-IGF-1-IGF1R complex 1 IGF1
insulin-like growth factor binding protein complex 1 IGF1
insulin-like growth factor ternary complex 1 IGF1
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
cyclin D1-CDK4 complex 1 CCND1
cyclin D1-CDK6 complex 1 CCND1
NLRP1 inflammasome complex 1 CASP12
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[Isoform Bcl-X(L)]: Mitochondrion inner membrane 1 BCL2L1
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Zhaocheng Li, Minling Lin, Yadi Li, Jing Shao, Ruiting Huang, Yongyi Qiu, Yi Liu, Lei Chen. Total flavonoids of Sophora flavescens and kurarinone ameliorated ulcerative colitis by regulating Th17/Treg cell homeostasis. Journal of ethnopharmacology. 2022 Oct; 297(?):115500. doi: 10.1016/j.jep.2022.115500. [PMID: 35863614]
  • Cheng-Peng Sun, Jun-Jun Zhou, Zhen-Long Yu, Xiao-Kui Huo, Juan Zhang, Christophe Morisseau, Bruce D Hammock, Xiao-Chi Ma. Kurarinone alleviated Parkinson's disease via stabilization of epoxyeicosatrienoic acids in animal model. Proceedings of the National Academy of Sciences of the United States of America. 2022 03; 119(9):. doi: 10.1073/pnas.2118818119. [PMID: 35217618]
  • Kuo-Tung Tang, Chi-Chien Lin, Shih-Chao Lin, Jou-Hsuan Wang, Sen-Wei Tsai. Kurarinone Attenuates Collagen-Induced Arthritis in Mice by Inhibiting Th1/Th17 Cell Responses and Oxidative Stress. International journal of molecular sciences. 2021 Apr; 22(8):. doi: 10.3390/ijms22084002. [PMID: 33924467]
  • Yiqian Huang, Huashan Lin, Yaping Chen, Xiaosong Huang. Pharmacokinetic and bioavailability study of kurarinone in dog plasma by UHPLC-MS/MS. Biomedical chromatography : BMC. 2020 Nov; 34(11):e4945. doi: 10.1002/bmc.4945. [PMID: 32656774]
  • Rui Guo, Xiaoxiao Zhang, Jin Su, Haiyu Xu, Yanqiong Zhang, Fangbo Zhang, Defeng Li, Yi Zhang, Xuefeng Xiao, Shuangcheng Ma, Hongjun Yang. Identifying potential quality markers of Xin-Su-Ning capsules acting on arrhythmia by integrating UHPLC-LTQ-Orbitrap, ADME prediction and network target analysis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2018 May; 44(?):117-128. doi: 10.1016/j.phymed.2018.01.019. [PMID: 29526583]
  • Peng Jiang, Xiuwen Zhang, Yutong Huang, Nengneng Cheng, Yueming Ma. Hepatotoxicity Induced by Sophora flavescens and Hepatic Accumulation of Kurarinone, a Major Hepatotoxic Constituent of Sophora flavescens in Rats. Molecules (Basel, Switzerland). 2017 Oct; 22(11):. doi: 10.3390/molecules22111809. [PMID: 29068394]
  • Zhixin Yang, Wenjun Zhang, Xia Li, Baisong Shan, Jiajia Liu, Weizhe Deng. Determination of sophoraflavanone G and kurarinone in rat plasma by UHPLC-MS/MS and its application to a pharmacokinetic study. Journal of separation science. 2016 Nov; 39(22):4344-4353. doi: 10.1002/jssc.201600681. [PMID: 27808456]
  • Wenchao Zhou, Aili Cao, Li Wang, Dazheng Wu. Kurarinone Synergizes TRAIL-Induced Apoptosis in Gastric Cancer Cells. Cell biochemistry and biophysics. 2015 May; 72(1):241-9. doi: 10.1007/s12013-014-0444-0. [PMID: 25524636]
  • Wei-min Zhang, Rui-fang Li, Jian-fei Qiu, Zhi-yin Zhang, Hong-bo Wang, Lu Bian, Jia-hui Lei. Determination of kurarinone in rat plasma by UPLC-MS/MS. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2015 Apr; 986-987(?):31-4. doi: 10.1016/j.jchromb.2015.02.005. [PMID: 25703950]
  • Tatsunori Sasaki, Wei Li, Koji Higai, Tran Hong Quang, Young Ho Kim, Kazuo Koike. Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescens. Planta medica. 2014 May; 80(7):557-60. doi: 10.1055/s-0034-1368400. [PMID: 24782228]
  • Chao-Yun Wang, Xian-Yong Bai, Chun-Hua Wang. Traditional Chinese medicine: a treasured natural resource of anticancer drug research and development. The American journal of Chinese medicine. 2014; 42(3):543-59. doi: 10.1142/s0192415x14500359. [PMID: 24871650]
  • Qianqian Yu, Nengneng Cheng, Xiaojun Ni. Identifying 2 prenylflavanones as potential hepatotoxic compounds in the ethanol extract of Sophora flavescens. Journal of food science. 2013 Nov; 78(11):T1830-4. doi: 10.1111/1750-3841.12275. [PMID: 24245902]
  • Chi Zhang, Yue Ma, Hui-Min Gao, Xiao-Qian Liu, Liang-Mian Chen, Qi-Wei Zhang, Zhi-Min Wang, An-Ping Li. [Non-alkaloid components from Sophora flavescens]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2013 Oct; 38(20):3520-4. doi: . [PMID: 24490565]
  • Eui-Seok Chong, Gi Byoung Hwang, Chu Won Nho, Bo Mi Kwon, Jung Eun Lee, Sungchul Seo, Gwi-Nam Bae, Jae Hee Jung. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles. The Science of the total environment. 2013 Feb; 444(?):110-4. doi: 10.1016/j.scitotenv.2012.11.075. [PMID: 23262327]
  • Wim Vanden Berghe, An De Naeyer, Nathalie Dijsselbloem, Jean-Pierre David, Denis De Keukeleire, Guy Haegeman. Attenuation of ERK/RSK2-driven NFκB gene expression and cancer cell proliferation by kurarinone, a lavandulyl flavanone isolated from Sophora flavescens ait. roots. Endocrine, metabolic & immune disorders drug targets. 2011 Sep; 11(3):247-61. doi: 10.2174/187153011796429790. [PMID: 21831037]
  • Elizabeth A Mazzio, Fran Close, Karam F A Soliman. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. International journal of molecular sciences. 2011 Jan; 12(1):506-69. doi: 10.3390/ijms12010506. [PMID: 21340000]
  • Azhar Rasul, Bo Yu, Long-Fei Yang, Muhammad Ali, Muhammad Khan, Tonghui Ma, Hong Yang. Induction of mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and Nor-kurarinone isolated from Sophora flavescens. Asian Pacific journal of cancer prevention : APJCP. 2011; 12(10):2499-504. doi: . [PMID: 22320946]
  • Jong-Min Han, Yue-Yan Jin, Hoi Young Kim, Ki Hun Park, Woo Song Lee, Tae-Sook Jeong. Lavandulyl flavonoids from Sophora flavescens suppress lipopolysaccharide-induced activation of nuclear factor-kappaB and mitogen-activated protein kinases in RAW264.7 cells. Biological & pharmaceutical bulletin. 2010; 33(6):1019-23. doi: 10.1248/bpb.33.1019. [PMID: 20522970]
  • S J Park, K W Nam, H J Lee, E Y Cho, U Koo, W Mar. Neuroprotective effects of an alkaloid-free ethyl acetate extract from the root of Sophora flavescens Ait. against focal cerebral ischemia in rats. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2009 Nov; 16(11):1042-51. doi: 10.1016/j.phymed.2009.03.017. [PMID: 19427179]
  • Tae-Sook Jeong, Young Bae Ryu, Hoi Young Kim, Marcus John Curtis-Long, Sojin An, So Jin An, Jin Hwan Lee, Woo Song Lee, Ki Hun Park. Low density lipoprotein (LDL)-antioxidant flavonoids from roots of Sophora flavescens. Biological & pharmaceutical bulletin. 2008 Nov; 31(11):2097-102. doi: 10.1248/bpb.31.2097. [PMID: 18981580]
  • Hyun Ah Jung, Na Young Yoon, Sam Sik Kang, Yeong Sik Kim, Jae Sue Choi. Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. The Journal of pharmacy and pharmacology. 2008 Sep; 60(9):1227-36. doi: 10.1211/jpp.60.9.0016. [PMID: 18718128]
  • Y B Ryu, I M Westwood, N S Kang, H Y Kim, J H Kim, Y H Moon, K H Park. Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2008 Aug; 15(8):612-8. doi: 10.1016/j.phymed.2007.09.022. [PMID: 17951038]
  • Wei Li, Hong Liang, Ting Yin, Bin Wang, Yu-Ying Zhao. [Main flavonoids from Sophora flavescenes]. Yao xue xue bao = Acta pharmaceutica Sinica. 2008 Aug; 43(8):833-7. doi: . [PMID: 18956776]
  • Hyun Ah Jung, Da-Mi Jeong, Hae Young Chung, Hyun Ae Lim, Ji Young Kim, Na Young Yoon, Jae Sue Choi. Re-evaluation of the antioxidant prenylated flavonoids from the roots of Sophora flavescens. Biological & pharmaceutical bulletin. 2008 May; 31(5):908-15. doi: 10.1248/bpb.31.908. [PMID: 18451517]
  • Sook Kyung Hyun, Won-Hee Lee, Da Mi Jeong, Youngsoo Kim, Jae Sue Choi. Inhibitory effects of kurarinol, kuraridinol, and trifolirhizin from Sophora flavescens on tyrosinase and melanin synthesis. Biological & pharmaceutical bulletin. 2008 Jan; 31(1):154-8. doi: 10.1248/bpb.31.154. [PMID: 18175961]
  • Ming-Yu Sun, Jian Zuo, Ji-Feng Duan, Jun Han, Shi-Ming Fan, Wei Zhang, Li-Fang Zhu, Ming-Hui Yao. [Antitumor activities of kushen flavonoids in vivo and in vitro]. Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine. 2008 Jan; 6(1):51-9. doi: 10.3736/jcim20080111. [PMID: 18184547]
  • Lei Zhang, Liang Xu, Shan-Shan Xiao, Qiong-Feng Liao, Qing Li, Jian Liang, Xiao-Hui Chen, Kai-Shun Bi. Characterization of flavonoids in the extract of Sophora flavescens Ait. by high-performance liquid chromatography coupled with diode-array detector and electrospray ionization mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2007 Sep; 44(5):1019-28. doi: 10.1016/j.jpba.2007.04.019. [PMID: 17658714]
  • Hong-Yu Gao, Xiao-Feng He, Ju-Fang Shao. [Effect of kurarinone on renal tubular epithelial cell-mesenchyma trans-differentiation in rats with renal interstitial fibrosis]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2007 Jun; 27(6):535-9. doi: . [PMID: 17633368]
  • Seizo Sato, Jiro Takeo, Chihiro Aoyama, Hiroyuki Kawahara. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorganic & medicinal chemistry. 2007 May; 15(10):3445-9. doi: 10.1016/j.bmc.2007.03.011. [PMID: 17374486]
  • Xiang-Lan Piao, Xiang Shu Piao, Sung Woo Kim, Jeong Hill Park, Hyun Young Kim, Shao-Qing Cai. Identification and characterization of antioxidants from Sophora flavescens. Biological & pharmaceutical bulletin. 2006 Sep; 29(9):1911-5. doi: 10.1248/bpb.29.1911. [PMID: 16946508]
  • Zheng-Shun Pan, Qiong-Hua Yu, Hong Yan, Yangbao Zhang. [Clinical study on treatment of chronic hepatitis B by kurarinone combined with interferon alpha-1b]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2005 Aug; 25(8):700-3. doi: . [PMID: 16152825]
  • Li Chen, Xiaofang Cheng, Wenyuan Shi, Qingyi Lu, Vay Liang Go, David Heber, Lili Ma. Inhibition of growth of Streptococcus mutans, methicillin-resistant Staphylococcus aureus, and vancomycin-resistant enterococci by kurarinone, a bioactive flavonoid isolated from Sophora flavescens. Journal of clinical microbiology. 2005 Jul; 43(7):3574-5. doi: 10.1128/jcm.43.7.3574-3575.2005. [PMID: 16000511]
  • Seung Woong Lee, Hyun Sun Lee, Jung Yeon Nam, Oh Eok Kwon, Jin Ah Baek, Jong Sun Chang, Mun-Chual Rho, Young Kook Kim. Kurarinone isolated from Sophora flavescens Ait inhibited MCP-1-induced chemotaxis. Journal of ethnopharmacology. 2005 Mar; 97(3):515-9. doi: 10.1016/j.jep.2004.12.006. [PMID: 15740889]
  • Mee Jung Jung, Sam Sik Kang, Hyun Ah Jung, Goon Ja Kim, Jae Sue Choi. Isolation of flavonoids and a cerebroside from the stem bark of Albizzia julibrissin. Archives of pharmacal research. 2004 Jun; 27(6):593-9. doi: 10.1007/bf02980155. [PMID: 15283458]
  • Mi Yeon Chung, Mun-Chual Rho, Jeong Suk Ko, Shi Yong Ryu, Kyung Hee Jeune, Koanhoi Kim, Hyun Sun Lee, Young Kook Kim. In vitro inhibition of diacylglycerol acyltransferase by prenylflavonoids from Sophora flavescens. Planta medica. 2004 Mar; 70(3):258-60. doi: 10.1055/s-2004-815545. [PMID: 15114505]
  • Soo Jin Kim, Kun Ho Son, Hyun Wook Chang, Sam Sik Kang, Hyun Pyo Kim. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Biological & pharmaceutical bulletin. 2003 Sep; 26(9):1348-50. doi: 10.1248/bpb.26.1348. [PMID: 12951485]
  • Jong Keun Son, Ji Soo Park, Jeong Ah Kim, Youngsoo Kim, See Ryun Chung, Seung Ho Lee. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta medica. 2003 Jun; 69(6):559-61. doi: 10.1055/s-2003-40643. [PMID: 12865979]
  • T H Kang, S J Jeong, W G Ko, N Y Kim, B H Lee, M Inagaki, T Miyamoto, R Higuchi, Y C Kim. Cytotoxic lavandulyl flavanones from Sophora flavescens. Journal of natural products. 2000 May; 63(5):680-1. doi: 10.1021/np990567x. [PMID: 10843587]