Asperuloside (BioDeep_00000000358)

 

Secondary id: BioDeep_00000342061

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate

化学式: C18H22O11 (414.1162)
中文名称: 车叶草苷, 车叶草甙, 曲霉苷
谱图信息: 最多检出来源 Viridiplantae(otcml) 35.39%

分子结构信息

SMILES: CC(=O)OCC1=CC2C3C1C(OC=C3C(=O)O2)OC4C(C(C(C(O4)CO)O)O)O
InChI: InChI=1S/C18H22O11/c1-6(20)25-4-7-2-9-12-8(16(24)27-9)5-26-17(11(7)12)29-18-15(23)14(22)13(21)10(3-19)28-18/h2,5,9-15,17-19,21-23H,3-4H2,1H3

描述信息

Asperuloside is a iridoid monoterpenoid glycoside isolated from Galium verum. It has a role as a metabolite. It is an iridoid monoterpenoid, a beta-D-glucoside, a monosaccharide derivative, an acetate ester and a gamma-lactone.
Asperuloside is a natural product found in Lasianthus curtisii, Galium spurium, and other organisms with data available.
See also: Galium aparine whole (part of).
A iridoid monoterpenoid glycoside isolated from Galium verum.
Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].
Asperuloside is an iridoid isolated from Hedyotis diffusa, with anti-inflammatory activity. Asperuloside inhibits inducible nitric oxide synthase (iNOS), suppresses NF-κB and MAPK signaling pathways[1].

同义名列表

17 个代谢物同义名

(2aS-(2aalpha,4aalpha,5alpha,7balpha))-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-1-oxo-1H-2,6-dioxacyclopent(cd)inden-4-ylmethyl acetate; 1H-2,6-dioxacyclopent(cd)inden-1-one, 4-((acetyloxy)methyl)-5-(beta-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-, (2aS-(2aalpha,5alpha,7balpha))-; (2AS,4AS,5S,7BS)-4-((ACETYLOXY)METHYL)-5-(.BETA.-D-GLUCOPYRANOSYLOXY)-2A,4A,5,7B-TETRAHYDRO-1H-2,6-DIOXACYCLOPENT(CD)INDEN-1-ONE; 1H-2,6-Dioxacyclopent[cd]inden-1-one, 4-[(acetyloxy)methyl]-5-(?-D-glucopyranosyloxy)-2a,4a,5,7b-tetrahydro-, (2aS,4aS,5S,7bS)-; (2AS,4AS,5S,7BS)-4-((ACETYLOXY)METHYL)-5-(beta-D-GLUCOPYRANOSYLOXY)-2A,4A,5,7B-TETRAHYDRO-1H-2,6-DIOXACYCLOPENT(CD)INDEN-1-ONE; [(2aS,4aS,5S,7bS)-5-(beta-D-glucopyranosyloxy)-1-oxo-2a,4a,5,7b-tetrahydro-1H-2,6-dioxacyclopenta[cd]inden-4-yl]methyl acetate; ((2aS,4aS,5S,7bS)-5-(beta-D-glucopyranosyloxy)-1-oxo-2a,4a,5,7b-tetrahydro-1H-2,6-dioxacyclopenta(cd)inden-4-yl)methyl acetate; IBIPGYWNOBGEMH-DILZHRMZSA-N; ASPERULOSIDE [MI]; rubichloric acid; UNII-V3CFI02X39; Asperuloside; V3CFI02X39; AC1Q608R; AC1L376M; [5-(hexopyranosyloxy)-1-oxo-2a,4a,5,7b-tetrahydro-1H-2,6-dioxacyclopenta[cd]inden-4-yl]methyl acetate; Asperuloside



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

384 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 BCL2, CASP3, CASP4, GRIN2B, MAPK14, MAPK8, NLRP3, PTGS2, SMAD3, SREBF1, VDR
Peripheral membrane protein 3 CASP4, GORASP1, PTGS2
Endoplasmic reticulum membrane 5 BCL2, CASP4, GRIN2B, PTGS2, SREBF1
Nucleus 9 BCL2, CASP3, GABPA, MAPK14, MAPK8, NLRP3, SMAD3, SREBF1, VDR
cytosol 11 ACP5, BCL2, CASP3, CASP4, LEP, MAPK14, MAPK8, NLRP3, SMAD3, SREBF1, VDR
nucleoplasm 7 CASP3, GABPA, MAPK14, MAPK8, SMAD3, SREBF1, VDR
RNA polymerase II transcription regulator complex 1 VDR
Cell membrane 2 GRIN2B, TNF
Cytoplasmic side 2 CASP4, GORASP1
Multi-pass membrane protein 2 GRIN2B, SREBF1
Golgi apparatus membrane 3 GORASP1, NLRP3, SREBF1
Synapse 1 MAPK8
cell surface 3 ADIPOQ, GRIN2B, TNF
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 1 GORASP1
Golgi membrane 4 GORASP1, INS, NLRP3, SREBF1
neuronal cell body 2 CASP3, TNF
Cytoplasm, cytosol 2 CASP4, NLRP3
Lysosome 2 ACP5, GRIN2B
plasma membrane 4 CASP4, GRIN2B, SMAD3, TNF
Membrane 4 ACP5, BCL2, GRIN2B, NLRP3
axon 1 MAPK8
caveola 1 PTGS2
endoplasmic reticulum 6 ADIPOQ, BCL2, CASP4, NLRP3, PTGS2, SREBF1
extracellular space 6 ADIPOQ, COL2A1, IL6, INS, LEP, TNF
mitochondrion 4 BCL2, CASP4, MAPK14, NLRP3
protein-containing complex 4 BCL2, CASP4, PTGS2, SREBF1
Microsome membrane 1 PTGS2
postsynaptic density 2 CASP3, GRIN2B
Secreted 7 ADIPOQ, CASP4, COL2A1, IL6, INS, LEP, NLRP3
extracellular region 9 ADIPOQ, CASP4, COL2A1, IL6, INS, LEP, MAPK14, NLRP3, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
transcription regulator complex 1 SMAD3
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 COL2A1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
postsynaptic membrane 1 GRIN2B
Membrane raft 1 TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 GRIN2B
cis-Golgi network 1 GORASP1
basement membrane 1 COL2A1
collagen trimer 2 ADIPOQ, COL2A1
collagen-containing extracellular matrix 2 ADIPOQ, COL2A1
nuclear speck 1 MAPK14
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 2 CASP4, NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 2 PTGS2, SMAD3
nuclear outer membrane 1 PTGS2
Postsynaptic cell membrane 1 GRIN2B
Late endosome 1 GRIN2B
receptor complex 2 SMAD3, VDR
neuron projection 2 GRIN2B, PTGS2
chromatin 4 GABPA, SMAD3, SREBF1, VDR
phagocytic cup 1 TNF
cytoskeleton 1 GRIN2B
spindle pole 1 MAPK14
nuclear envelope 1 SREBF1
Endomembrane system 1 NLRP3
endosome lumen 1 INS
microtubule organizing center 1 NLRP3
Cytoplasmic vesicle membrane 1 SREBF1
Cell projection, dendrite 1 GRIN2B
myelin sheath 1 BCL2
synaptic membrane 1 GRIN2B
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 2 INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 COL2A1, IL6, INS, PTGS2
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
postsynaptic density membrane 1 GRIN2B
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
ER to Golgi transport vesicle membrane 1 SREBF1
heteromeric SMAD protein complex 1 SMAD3
SMAD protein complex 1 SMAD3
NMDA selective glutamate receptor complex 1 GRIN2B
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, COPII-coated vesicle membrane 1 SREBF1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
collagen type II trimer 1 COL2A1
collagen type XI trimer 1 COL2A1
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
NLRP1 inflammasome complex 1 CASP4
[Sterol regulatory element-binding protein 1]: Endoplasmic reticulum membrane 1 SREBF1
[Processed sterol regulatory element-binding protein 1]: Nucleus 1 SREBF1
[Isoform SREBP-1aDelta]: Nucleus 1 SREBF1
[Isoform SREBP-1cDelta]: Nucleus 1 SREBF1
non-canonical inflammasome complex 1 CASP4
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Hong Che, Linlin Li, Bingjie Zhao, Lian Hu, Li Xiao, Peijia Liu, Songshan Liu, Zhufa Hou. Asperuloside alleviates cyclophosphamide-induced myelosuppression by promoting AMPK/mTOR pathway-mediated autophagy. Journal of biochemical and molecular toxicology. 2024 Feb; 38(2):e23641. doi: 10.1002/jbt.23641. [PMID: 38348709]
  • Qi Chen, Qinjun Zhang, Amel Thanina Amrouche, Weisu Huang, Baiyi Lu. Asperuloside, the bioactive compound in the edible Eucommia ulmoides male flower, delays muscle aging by daf-16 mediated improvement in mitochondrial dysfunction. Food & function. 2023 May; ?(?):. doi: 10.1039/d3fo01024d. [PMID: 37212195]
  • Qi Shen, Yonger Chen, Jiaxi Shi, Chaoying Pei, Shuxian Chen, Song Huang, Weirong Li, Xuguang Shi, Jian Liang, Shaozhen Hou. Asperuloside alleviates lipid accumulation and inflammation in HFD-induced NAFLD via AMPK signaling pathway and NLRP3 inflammasome. European journal of pharmacology. 2023 Mar; 942(?):175504. doi: 10.1016/j.ejphar.2023.175504. [PMID: 36641101]
  • Yong-Er Chen, Shi-Jie Xu, Ying-Yu Lu, Shu-Xian Chen, Xian-Hua Du, Shao-Zhen Hou, Hai-Yang Huang, Jian Liang. Asperuloside suppressing oxidative stress and inflammation in DSS-induced chronic colitis and RAW 264.7 macrophages via Nrf2/HO-1 and NF-κB pathways. Chemico-biological interactions. 2021 Aug; 344(?):109512. doi: 10.1016/j.cbi.2021.109512. [PMID: 33974900]
  • Raquel Bridi, Gilsane Lino von Poser, Miguel Gómez, Marcelo E Andia, Juan Esteban Oyarzún, Paula Núñez, Ariadsna Jael Vasquez Arias, Christian Espinosa-Bustos. Hepatoprotective species from the Chilean medicinal flora: Junellia spathulata (Verbenaceae). Journal of ethnopharmacology. 2021 Mar; 267(?):113543. doi: 10.1016/j.jep.2020.113543. [PMID: 33152429]
  • Muhammad Ishaq, Duyen Tran, Yijia Wu, Krzysztof Nowak, Bianca J Deans, Joycelin Tan Zhu Xin, Hui Lin Loh, Wen Ying Ng, Chin Wen Yee, Benjamin Southam, Silvia Vicenzi, Cameron Randall, Cheng Yang, Ee Tan, Manideepika Pasupuleti, Avneet Kaur Grewal, Tauseef Ahmad, Madhur Shastri, Carmelo Vicario, Maurizio Ronci, Mariachiara Zuccarini, Martin Bleasel, Paul Scowen, William Raffaeli, Gianvicenzo D'Andrea, Dinesh Kumar Chellappan, Glenn Jacobson, Alex C Bissember, Jason A Smith, Raj Eri, Juan Canales, Miguel Iglesias, Nuri Guven, Vanni Caruso. Asperuloside Enhances Taste Perception and Prevents Weight Gain in High-Fat Fed Mice. Frontiers in endocrinology. 2021; 12(?):615446. doi: 10.3389/fendo.2021.615446. [PMID: 33927690]
  • Maria Giulia Manzione, Miquel Martorell, Farukh Sharopov, Namrata Ganesh Bhat, Nanjangud Venkatesh Anil Kumar, Patrick Valere Tsouh Fokou, Raffaele Pezzani. Phytochemical and pharmacological properties of asperuloside, a systematic review. European journal of pharmacology. 2020 Sep; 883(?):173344. doi: 10.1016/j.ejphar.2020.173344. [PMID: 32659300]
  • Chao Rong, Wu Wei, Tian Yu-Hong. Asperuloside exhibits a novel anti-leukemic activity by triggering ER stress-regulated apoptosis via targeting GRP78. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2020 May; 125(?):109819. doi: 10.1016/j.biopha.2020.109819. [PMID: 32106370]
  • Yinghan Chan, Sin Wi Ng, Joycelin Zhu Xin Tan, Gaurav Gupta, Murtaza M Tambuwala, Hamid A Bakshi, Harish Dureja, Kamal Dua, Muhammad Ishaq, Vanni Caruso, Dinesh Kumar Chellappan. Emerging therapeutic potential of the iridoid molecule, asperuloside: A snapshot of its underlying molecular mechanisms. Chemico-biological interactions. 2020 Jan; 315(?):108911. doi: 10.1016/j.cbi.2019.108911. [PMID: 31786185]
  • Phi Hung Tran, Viet Dung Le, Thi Ha Do, Thi Luyen Nguyen, Phuong Thao Nguyen, Trong Thong Nguyen, Tien Dat Nguyen. Anti-inflammatory constituents from Psychotria prainii H. Lév. Natural product research. 2019 Mar; 33(5):695-700. doi: 10.1080/14786419.2017.1408095. [PMID: 29212359]
  • Jiaming Qiu, Gefu Chi, Qianchao Wu, Yanlei Ren, Chengzhen Chen, Haihua Feng. Pretreatment with the compound asperuloside decreases acute lung injury via inhibiting MAPK and NF-κB signaling in a murine model. International immunopharmacology. 2016 Feb; 31(?):109-15. doi: 10.1016/j.intimp.2015.12.013. [PMID: 26710167]
  • Wenjing Zhu, Mingqun Pang, Liuyi Dong, Xueying Huang, Shuangmiao Wang, Lanlan Zhou. Anti-inflammatory and immunomodulatory effects of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats. Life sciences. 2012 Oct; 91(11-12):369-376. doi: 10.1016/j.lfs.2012.08.013. [PMID: 22910180]
  • Weixin Jiang, Di Jin, Zhixiong Li, Zhaolin Sun, Mingcang Chen, Bin Wu, Chenggang Huang. Characterization of multiple absorbed constituents in rats after oral administration of Paederia scandens decoction. Biomedical chromatography : BMC. 2012 Jul; 26(7):863-8. doi: 10.1002/bmc.1743. [PMID: 22860258]
  • Andreas Berger, Hannes Fasshuber, Johann Schinnerl, Wolfgang Robien, Lothar Brecker, Karin Valant-Vetschera. Iridoids as chemical markers of false ipecac (Ronabea emetica), a previously confused medicinal plant. Journal of ethnopharmacology. 2011 Dec; 138(3):756-61. doi: 10.1016/j.jep.2011.10.024. [PMID: 22041104]
  • T Hirata, T Kobayashi, A Wada, T Ueda, T Fujikawa, H Miyashita, T Ikeda, S Tsukamoto, T Nohara. Anti-obesity compounds in green leaves of Eucommia ulmoides. Bioorganic & medicinal chemistry letters. 2011 Mar; 21(6):1786-91. doi: 10.1016/j.bmcl.2011.01.060. [PMID: 21324693]
  • Hisae Oku, Yuko Ogawa, Emiko Iwaoka, Kyoko Ishiguro. Allergy-preventive effects of chlorogenic acid and iridoid derivatives from flower buds of Lonicera japonica. Biological & pharmaceutical bulletin. 2011; 34(8):1330-3. doi: 10.1248/bpb.34.1330. [PMID: 21804227]
  • Rosa Quirantes-Piné, David Arráez-Román, Antonio Segura-Carretero, Alberto Fernández-Gutiérrez. Characterization of phenolic and other polar compounds in a lemon verbena extract by capillary electrophoresis-electrospray ionization-mass spectrometry. Journal of separation science. 2010 Sep; 33(17-18):2818-27. doi: 10.1002/jssc.201000228. [PMID: 20715141]
  • Ying Ma, Lan-Lan Zhou, Hai-Yan Yan, Mei Liu. Effects of extracts from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on MSU crystal-induced rats gouty arthritis. The American journal of Chinese medicine. 2009; 37(4):669-83. doi: 10.1142/s0192415x09007156. [PMID: 19655406]
  • Pawadee Noiarsa, Somsak Ruchirawat, Hideaki Otsuka, Tripetch Kanchanapoom. Chemical constituents from Oldenlandia corymbosa L. of Thai origin. Journal of natural medicines. 2008 Apr; 62(2):249-50. doi: 10.1007/s11418-007-0212-1. [PMID: 18404335]
  • Zhitao Liang, Mingfang He, Wangfun Fong, Zhihong Jiang, Zhongzhen Zhao. A comparable, chemical and pharmacological analysis of the traditional Chinese medicinal herbs Oldenlandia diffusa and O. corymbosa and a new valuation of their biological potential. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2008 Apr; 15(4):259-67. doi: 10.1016/j.phymed.2008.01.003. [PMID: 18339527]
  • Zhi-Tao Liang, Zhi-Hong Jiang, Kelvin Sze-Yin Leung, Zhong-Zhen Zhao. Determination of iridoid glucosides for quality assessment of Herba Oldenlandiae by high-performance liquid chromatography. Chemical & pharmaceutical bulletin. 2006 Aug; 54(8):1131-7. doi: 10.1248/cpb.54.1131. [PMID: 16880657]
  • Bin Li, Dong-Ming Zhang, Yong-Ming Luo, Xiao-Guang Chen. Three new and antitumor anthraquinone glycosides from Lasianthus acuminatissimus MERR. Chemical & pharmaceutical bulletin. 2006 Mar; 54(3):297-300. doi: 10.1248/cpb.54.297. [PMID: 16508180]
  • Bin Li, Dong-Ming Zhang, Yong-Ming Luo. [Chemical constituents from root of Lasianthus acuminatissimus I]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Jan; 31(2):133-5. doi: . [PMID: 16570801]
  • Bozhanka Mikhova, Helmut Duddeck, Rilka Taskova, Maya Mitova, Kalina Alipieva. Oxygenated bisabolane fucosides from Carthamus lanatus L. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2004 Mar; 59(3-4):244-8. doi: 10.1515/znc-2004-3-422. [PMID: 15241935]
  • Yoshio Takeda, Hideko Shimizu, Toshiya Masuda, Eiji Hirata, Takakazu Shinzato, Masahiko Bando, Hideaki Otsuka. Lasianthionosides A-C, megastigmane glucosides from leaves of Lasianthus fordii. Phytochemistry. 2004 Feb; 65(4):485-9. doi: 10.1016/j.phytochem.2003.08.025. [PMID: 14759546]
  • Jae Hyeok Lee, Chung Hwan Ku, Nam-In Baek, Sung-Hoon Kim, Hee Wook Park, Dae Keun Kim. Phytochemical constituents from Diodia teres. Archives of pharmacal research. 2004 Jan; 27(1):40-3. doi: 10.1007/bf02980043. [PMID: 14969336]
  • Hasan Kirmizibekmez, Ihsan Caliş, Pinar Akbay, Otto Sticher. Iridoid and bisiridoid glycosides from Globularia cordifolia. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2003 May; 58(5-6):337-41. doi: 10.1515/znc-2003-5-608. [PMID: 12872925]
  • Yoshio Takeda, Hideko Shimidzu, Kenta Mizuno, Sachiyo Inouchi, Toshiya Masuda, Eiji Hirata, Takakazu Shinzato, Mitsunori Aramoto, Hideaki Otsuka. An iridoid glucoside dimer and a non-glycosidic iridoid from the leaves of Lasianthus wallichii. Chemical & pharmaceutical bulletin. 2002 Oct; 50(10):1395-7. doi: 10.1248/cpb.50.1395. [PMID: 12372873]
  • Dang Ngoc Quang, Toshihiro Hashimoto, Masami Tanaka, Nguyen Xuan Dung, Yoshinori Asakawa. Iridoid glucosides from roots of Vietnamese Paederia scandens. Phytochemistry. 2002 Jul; 60(5):505-14. doi: 10.1016/s0031-9422(02)00096-1. [PMID: 12052517]
  • Sui-Kiong Ling, Akiko Komorita, Takashi Tanaka, Toshihiro Fujioka, Kunihide Mihashi, Isao Kouno. Sulfur-containing bis-iridoid glucosides and iridoid glucosides from Saprosmas cortechinii. Journal of natural products. 2002 May; 65(5):656-60. doi: 10.1021/np010479o. [PMID: 12027736]
  • I Caliş, H Kirmizibekmez, O Sticher. Iridoid glycosides from Globularia trichosantha. Journal of natural products. 2001 Jan; 64(1):60-4. doi: 10.1021/np0003591. [PMID: 11170667]
  • T Nakamura, Y Nakazawa, S Onizuka, S Satoh, A Chiba, K Sekihashi, A Miura, N Yasugahira, Y F Sasaki. Antimutagenicity of Tochu tea (an aqueous extract of Eucommia ulmoides leaves): 1. The clastogen-suppressing effects of Tochu tea in CHO cells and mice. Mutation research. 1997 Jan; 388(1):7-20. doi: 10.1016/s1383-5718(96)00096-4. [PMID: 9025787]