Neochlorogenic_acid (BioDeep_00000017236)
Main id: BioDeep_00000000106
human metabolite PANOMIX_OTCML-2023 blood metabolite
代谢物信息卡片
化学式: C16H18O9 (354.0950778)
中文名称: 5-咖啡酰奎尼酸, 5-咖啡酰奎宁酸, 新绿原酸
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1C(C(C(CC1(C(=O)O)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)O)O
InChI: InChI=1S/C16H18O9/c17-9-3-1-8(5-10(9)18)2-4-13(20)25-12-7-16(24,15(22)23)6-11(19)14(12)21/h1-5,11-12,14,17-19,21,24H,6-7H2,(H,22,23)/b4-2+/t11-,12-,14+,16-/m1/s1
描述信息
Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate.
Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available.
See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of).
A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid.
Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.
同义名列表
38 个代谢物同义名
CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1R-(1.ALPHA.,3.ALPHA.(E),4.ALPHA.,5.BETA.))-; CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1R-(1.ALPHA.,3.ALPHA.,4.ALPHA.,5.BETA.))-; CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1R-(1alpha,3alpha(E),4alpha,5beta))-; Cyclohexanecarboxylic acid, 3-((3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl)oxy)-1,4,5-trihydroxy-, (1R-(1alpha,3alpha,4alpha,5beta))-; (1R-(1.ALPHA.,3.ALPHA.,4.ALPHA.,5.BETA.))-3-((3-(3,4-DIHYDROXYPHENYL)-1-OXOALLYL)OXY)-1,4,5-TRIHYDROXYCYCLOHEXANECARBOXYLIC ACID; (1R-(1alpha,3alpha,4alpha,5beta))-3-((3-(3,4-Dihydroxyphenyl)-1-oxoallyl)oxy)-1,4,5-trihydroxycyclohexanecarboxylic acid; CYCLOHEXANECARBOXYLIC ACID, 3-(((2E)-3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPEN-1-YL)OXY)-1,4,5-TRIHYDROXY-, (1R,3R,4S,5R)-; Cyclohexanecarboxylic acid,3-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-1,4,5-trihydroxy-,(1R,3R,4S,5R)-; (1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid; 1D-[1(OH),3,4/5]-3-[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; (1R,3R,4S,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxycyclohexane-1-carboxylic acid; (1R,3R,4S,5R)-3-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy-1,4,5-trihydroxy-cyclohexanecarboxylic acid; (1R,3R,4S,5R)-3-[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyloxy]-1,4,5-trihydroxycyclohexanecarboxylic acid; Neochlorogenic acid, from Lonicera japonica, >=98.0\\% (HPLC); NEOCHLOROGENIC ACID (CONSTITUENT OF ST. JOHNS WORT) [DSC]; NEOCHLOROGENIC ACID (CONSTITUENT OF ST. JOHNS WORT); 5-O-(trans-3,4-Dihydroxycinnamoyl)-D-quinic acid; Neochlorogenic acid, analytical standard; trans-5-O-caffeoyl-D-quinic acid; trans-5-O-Caffeoylquinic acid; Quinic acid, 5-caffeoyl-, E-; trans-5-O-caffeoyl-D-quinate; 3-O-(E)-CAFFEOYLQUINIC ACID; trans-Neochlorogenic acid; 5-O-caffeoyl quinic acid; 5-O-caffeoylquinic acid; (E)-Neochlorogenic Acid; 5-Caffeoylquinic acid; 5-Caffeylquinic acid; Neochlorogenic acid; caffeoylquinic acid; Neochlorogenic-acid; neochlorogenic_acid; Nochlorogenic acid; Neochlorogenate; Neochlorogenic; ACon1_000392; 3-CQA
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:16384
- KEGG: C17147
- PubChem: 5280633
- HMDB: HMDB0240477
- ChEMBL: CHEMBL249450
- Wikipedia: Neochlorogenic_acid
- MeSH: 5-O-caffeoylquinic acid
- ChemIDplus: 0000906332
- chemspider: 308990
- CAS: 342811-68-1
- CAS: 202650-88-2
- CAS: 906-33-2
- medchemexpress: HY-N0722
- MetaboLights: MTBLC16384
- PubChem: 96023599
- KNApSAcK: C00030807
- NIKKAJI: J443.985F
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
98 个相关的物种来源信息
- 47965 - Acer truncatum: 10.3390/11121009
- 60095 - Antonia ovata: 10.1016/J.PHYTOCHEM.2009.11.007
- 401905 - Artemisia jacutica: 10.1007/BF00630225
- 947972 - Aster koraiensis: 10.1021/NP200646E
- 144147 - Astragalus robustus: 10.1007/BF00600855
- 3505 - Betula pendula:
- 38787 - Betula pubescens:
- 36774 - Brassica oleracea var. italica: 10.1007/S00217-003-0664-9
- 1202986 - Calligonum leucocladum: 10.1007/BF00571239
- 4442 - Camellia sinensis:
- 626692 - Caragana spinosa: 10.1007/S10600-012-0124-5
- 61141 - Carallia brachiata: 10.1016/J.FITOTE.2004.09.019
- 1033235 - Centaurea bracteata:
- 41522 - Centaurea cyanus:
- 668807 - Centaurea horrida: 10.1016/S0305-1978(02)00055-8
- 13427 - Cichorium intybus: 10.1007/BF00564607
- 13442 - Coffea:
- 49390 - Coffea canephora:
- 392618 - Cunila: 10.1007/S00299-018-2303-8
- 1260347 - Cussonia arborea: 10.1055/S-2001-18338
- 117167 - Cyclocarya paliurus: 10.1016/J.FOODCHEM.2009.09.031
- 36609 - Cydonia:
- 36610 - Cydonia oblonga: 10.1016/J.FOODCHEM.2009.04.098
- 4265 - Cynara cardunculus:
- 4509 - Dactylis glomerata: 10.1016/J.PHYTOCHEM.2008.08.019
- 4039 - Daucus carota: 10.1021/JF020028P
- 244311 - Erigeron breviscapus: 10.1002/RCM.3166
- 102777 - Eupatorium perfoliatum: 10.3390/MOLECULES14010036
- 318062 - Euphorbia hirta: 10.1248/CPB.36.2940
- 142860 - Euphorbia tirucalli: 10.1248/CPB.39.1137
- 662809 - Ferula elaeochytris: 10.1016/J.PHYTOCHEM.2008.09.019
- 3746 - Fragaria:
- 3847 - Glycine max: 10.1007/BF00575726
- 4052 - Hedera helix: 10.1055/S-2006-957639
- 261786 - Helichrysum italicum: 10.1007/BF00629790
- 261805 - Helichrysum stoechas: 10.1016/S0731-7085(00)00431-3
- 9606 - Homo sapiens: -
- 23110 - Hydrangea macrophylla:
- 13569 - Hydrastis canadensis: 10.1021/NP049868J
- 140968 - Hypericum androsaemum:
- 65561 - Hypericum perforatum: 10.1055/S-2002-20053
- 282556 - Hypericum sikokumontanum: 10.1016/J.PHYTOCHEM.2008.11.006
- 185542 - Ilex paraguariensis:
- 4120 - Ipomoea batatas:
- 75953 - Lactuca indica: 10.1016/J.BMCL.2007.10.046
- 48039 - Laserpitium latifolium: 10.1007/BF00630451
- 1503365 - Lonicera bournei: 10.1055/S-2001-14337
- 105884 - Lonicera japonica: 10.1016/S0367-326X(00)00212-4
- 3750 - Malus domestica:
- 283210 - Malus pumila:
- 98504 - Matricaria chamomilla: 10.1007/BF02490607
- 72645 - Molineria capitulata: 10.1016/S0031-9422(06)80122-6
- 85232 - Morus nigra: 10.1021/JF703709R
- 4097 - Nicotiana tabacum: -
- 4097 - Nicotiana tabacum: 10.1371/JOURNAL.PONE.0151350
- 157934 - Ophiorrhiza pumila: 10.1016/S0040-4039(97)10404-X
- 694377 - Panzerina lanata: 10.1007/S10600-011-0065-4
- 49563 - Peucedanum japonicum:
- 101996 - Plantago coronopus: 10.1007/BF00567943
- 39414 - Plantago lanceolata: 10.1007/BF00567943
- 29818 - Plantago major: 10.1007/BF00567943
- 33090 - Plants: -
- 36596 - Prunus armeniaca: 10.1016/0031-9422(83)83029-5
- 42229 - Prunus avium:
- 140311 - Prunus cerasus:
- 3758 - Prunus domestica:
- 3755 - Prunus dulcis: 10.1021/JF020660I
- 3760 - Prunus persica:
- 323851 - Prunus persica var. nucipersica: 10.1021/JF0104681
- 22663 - Punica granatum: 10.3390/MOLECULES22101606
- 23211 - Pyrus communis: 10.1016/0031-9422(83)83029-5
- 362630 - Rhaponticum carthamoides:
- 78511 - Ribes nigrum: 10.1016/S0031-9422(00)80722-0
- 175228 - Ribes rubrum: 10.1016/S0031-9422(00)80722-0
- 135518 - Ribes uva-crispa: 10.1016/S0031-9422(00)80722-0
- 23216 - Rubus: 10.1016/S0031-9422(00)80722-0
- 32247 - Rubus idaeus: 10.1021/JF020028P
- 75099 - Rubus ulmifolius: 10.1016/S0378-8741(01)00363-4
- 92927 - Sarcandra glabra: 10.1016/J.FOODCHEM.2012.12.027
- 329783 - Solanum lycocarpum: 10.1016/J.PHYTOCHEM.2008.02.003
- 4081 - Solanum lycopersicum: 10.1021/JF020028P
- 329794 - Solanum paniculatum: 10.1016/S0040-4039(01)84159-9
- 4113 - Solanum tuberosum: 10.1016/J.PHYTOCHEM.2016.12.003
- 59297 - Solidago canadensis: 10.1002/CHIN.200828176
- 36599 - Sorbus aucuparia: 10.1007/S002170100328
- 3562 - Spinacia oleracea: 10.1007/BF00630375
- 80338 - Spondias mombin: 10.1016/0031-9422(92)80344-E
- 1060938 - Stachys palustris: 10.1007/BF00941699
- 2914000 - Torminalis glaberrima: 10.1016/J.PHYTOL.2011.02.005
- 69266 - Vaccinium corymbosum: 10.1016/S0031-9422(00)80722-0
- 237933 - Viburnum dilatatum: 10.1016/0031-9422(92)83751-J
- 157791 - Vigna radiata: 10.1007/BF00598601
- 29760 - Vitis vinifera: 10.1021/JF020028P
- 462589 - Werneria nubigena: 10.1016/S0031-9422(97)00341-5
- 318068 - Xanthium strumarium: 10.1016/J.PHYMED.2007.01.010
- 354529 - Zanthoxylum piperitum: 10.1271/BBB.50669
- 33090 - 苍耳子: -
- 13422 - 菊花: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ming-Chang Tsai, Chi-Chih Wang, I-Ning Tsai, Meng-Hsun Yu, Mon-Yuan Yang, Yi-Ju Lee, Kuei-Chuan Chan, Chau-Jong Wang. Improving the Effects of Mulberry Leaves and Neochlorogenic Acid on Glucotoxicity-Induced Hepatic Steatosis in High Fat Diet Treated db/db Mice.
Journal of agricultural and food chemistry.
2024 Mar; 72(12):6339-6346. doi:
10.1021/acs.jafc.3c09033
. [PMID: 38488910] - Nilofar, Tugce Duran, Abdullahi Ibrahim Uba, Aleksandra Cvetanović Kljakić, Jelena Božunović, Uroš Gašić, Abdelhakim Bouyahya, Evren Yıldiztugay, Claudio Ferrante, Gokhan Zengin. Extractions of aerial parts of Hippomarathrum scabrum with conventional and green methodologies: Chemical profiling, antioxidant, enzyme inhibition, and anti-cancer effects.
Journal of separation science.
2024 Jan; 47(1):e2300678. doi:
10.1002/jssc.202300678
. [PMID: 37994215] - Yoshiaki Amakura, Takashi Uchikura, Morio Yoshimura, Naoko Masumoto, Yuzo Nishizaki, Naoki Sugimoto. Chromatographic Evaluation and Characterization of Constituents of Sunflower Seed Extract Used as Food Additives.
Chemical & pharmaceutical bulletin.
2024; 72(1):93-97. doi:
10.1248/cpb.c23-00670
. [PMID: 38233137] - Tung-Wei Hung, Mon-Yuan Yang, Meng-Hsun Yu, I-Ning Tsai, Yung-Che Tsai, Kuei-Chuan Chan, Chau-Jong Wang. Mulberry leaf extract and neochlorogenic acid ameliorate glucolipotoxicity-induced diabetic nephropathy in high-fat diet-fed db/db mice.
Food & function.
2023 Oct; 14(19):8975-8986. doi:
10.1039/d3fo02640j
. [PMID: 37732507] - Izabela Caputo Assis Silva, Lucas Santos Azevedo, Ana Hortência Fonsêca Castro, Katyuce de Souza Farias, Vanessa Samúdio Santos Zanuncio, Denise Brentan Silva, Luciana Alves Rodrigues Dos Santos Lima. Chemical profile, antioxidant potential and toxicity of Smilax brasiliensis Sprengel (Smilacaceae) stems.
Food research international (Ottawa, Ont.).
2023 06; 168(?):112781. doi:
10.1016/j.foodres.2023.112781
. [PMID: 37120225] - Somruthai Chaowongdee, Srihunsa Malichan, Pornkanok Pongpamorn, Atchara Paemanee, Wanwisa Siriwan. Metabolic profiles of Sri Lankan cassava mosaic virus-infected and healthy cassava (Manihot esculenta Crantz) cultivars with tolerance and susceptibility phenotypes.
BMC plant biology.
2023 Apr; 23(1):178. doi:
10.1186/s12870-023-04181-3
. [PMID: 37020181] - Ai-Ping Deng, Yue Zhang, Yi-Han Wang, Jia-Chen Zhao, Jin-Xiu Qian, Li-Ping Kang, Tie-Gui Nan, Zhi-Lai Zhan. [Nature-effect transformation mechanism of mulberry leaves and silkworm droppings based on chemical composition analysis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Apr; 48(8):2160-2185. doi:
10.19540/j.cnki.cjcmm.20230114.102
. [PMID: 37282904] - Fan Wang, Bobby Lim-Ho Kong, Yun-Sang Tang, Hung-Kay Lee, Pang-Chui Shaw. Bioassay guided isolation of caffeoylquinic acids from the leaves of Ilex pubescens Hook. et Arn. and investigation of their anti-influenza mechanism.
Journal of ethnopharmacology.
2023 Mar; 309(?):116322. doi:
10.1016/j.jep.2023.116322
. [PMID: 36868436] - Lionel Paillat, Eric Bordier, Alexandre Guepet, Joaquim Lima, Samia Boudah, Ashleigh Murtaugh. Development and Validation of an On-Line HPLC-DAD-Antioxidant Assay (ORAC)/ESI-HRMS System to Identify Antioxidant Compounds in Complex Mixtures.
Journal of chromatographic science.
2023 Feb; ?(?):. doi:
10.1093/chromsci/bmad007
. [PMID: 36752411] - Fei Sun, Xiang-Qin Wu, Yue Qi, Xing-Yu Chen, Yu-Hua Cao, Jian-Gang Wang, Shu-Mei Wang, Sheng-Wang Liang. [Application of partial least squares algorithm to explore bioactive components of crude and stir-baked hawthorn for invigorating spleen and promoting digestion].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Feb; 48(4):958-965. doi:
10.19540/j.cnki.cjcmm.20220712.302
. [PMID: 36872266] - Ewa Skała, Monika Anna Olszewska, Joanna Makowczyńska, Agnieszka Kicel. Effect of Sucrose Concentration on Rhaponticum carthamoides (Willd.) Iljin Transformed Root Biomass, Caffeoylquinic Acid Derivative, and Flavonoid Production.
International journal of molecular sciences.
2022 Nov; 23(22):. doi:
10.3390/ijms232213848
. [PMID: 36430325] - Nikola Horvacki, Filip Andrić, Uroš Gašić, Dejan Đurović, Živoslav Tešić, Milica Fotirić Akšić, Dušanka Milojković-Opsenica. Phenolic Compounds as Phytochemical Tracers of Varietal Origin of Some Autochthonous Apple Cultivars Grown in Serbia.
Molecules (Basel, Switzerland).
2022 Nov; 27(21):. doi:
10.3390/molecules27217651
. [PMID: 36364475] - Xueqing Xie, Lifei Gu, Wanyi Xu, Xiean Yu, Guo Yin, Jue Wang, Yibao Jin, Lijun Wang, Bing Wang, Tiejie Wang. Integrating Anti-Influenza Virus Activity and Chemical Pattern Recognition to Explore the Quality Evaluation Method of Lonicerae Japonicae Flos.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185789
. [PMID: 36144525] - Juan Tang, Qing Zhang, Dan Wu, Si-Ying Chen, Yi Chen, Yue-Ting Li, Lin Zheng, Yong Huang, Yan-Yu Lan, Yong-Lin Wang, Zi-Peng Gong. [Potential pharmacodynamic substances of Laportea bulbifera in treatment of rheumatoid arthritis based on serum pharmacochemistry and pharmacology].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(17):4755-4764. doi:
10.19540/j.cnki.cjcmm.20220609.201
. [PMID: 36164883] - Tsung-Yuan Yang, Yi-Liang Wu, Meng-Hsun Yu, Tung-Wei Hung, Kuei-Chuan Chan, Chau-Jong Wang. Mulberry Leaf and Neochlorogenic Acid Alleviates Glucolipotoxicity-Induced Oxidative Stress and Inhibits Proliferation/Migration via Downregulating Ras and FAK Signaling Pathway in Vascular Smooth Muscle Cell.
Nutrients.
2022 Jul; 14(15):. doi:
10.3390/nu14153006
. [PMID: 35893859] - Meng-Hsun Yu, Tung-Wei Hung, Chi-Chih Wang, Sheng-Wen Wu, Tzu-Wei Yang, Ching-Yu Yang, Tsui-Hwa Tseng, Chau-Jong Wang. Neochlorogenic Acid Attenuates Hepatic Lipid Accumulation and Inflammation via Regulating miR-34a In Vitro.
International journal of molecular sciences.
2021 Dec; 22(23):. doi:
10.3390/ijms222313163
. [PMID: 34884968] - Jing Li, Lu Dou, Shuangfeng Chen, Honghao Zhou, Fangzheng Mou. Neochlorogenic acid: an anti-HIV active compound identified by screening of Cortex Mori [Morus Alba L. (Moraceae)].
Pharmaceutical biology.
2021 Dec; 59(1):1517-1527. doi:
10.1080/13880209.2021.1995005
. [PMID: 34714196] - Yonglu Li, Xin Yu, Lingchi Deng, Su Zhou, Yaxuan Wang, Xiaodong Zheng, Qiang Chu. Neochlorogenic acid anchors MCU-based calcium overload for cancer therapy.
Food & function.
2021 Nov; 12(22):11387-11398. doi:
10.1039/d1fo01393a
. [PMID: 34672304] - Daniela D Herrera-Balandrano, Trust Beta, Zhi Chai, Xiaoxiao Zhang, Ying Li, Wuyang Huang. Effect of in vitro gastro-intestinal digestion on the phenolic composition and antioxidant capacity of Burdock roots at different harvest time.
Food chemistry.
2021 Oct; 358(?):129897. doi:
10.1016/j.foodchem.2021.129897
. [PMID: 33915426] - Pengwei Zhuang, Lijuan Xie, Yidan Zhang, Yu Yuan, Hui Liu, Chenghao Bi, Huan Zhao, Yubo Li, Yanjun Zhang. Inhibition of desmoglein-1 by aspirin leads to synthetic lethality of keratinocytes in Shuanghuanglian-induced cutaneous eruption response.
Toxicology letters.
2021 Oct; 349(?):145-154. doi:
10.1016/j.toxlet.2021.06.005
. [PMID: 34126182] - Maizatul Hasyima Omar, Rocío González Barrio, Gema Pereira-Caro, Tahani Mazyad Almutairi, Alan Crozier. In vitro catabolism of 3',4'-dihydroxycinnamic acid by human colonic microbiota.
International journal of food sciences and nutrition.
2021 Jun; 72(4):511-517. doi:
10.1080/09637486.2020.1850650
. [PMID: 33238790] - Jie Li, Shao-Ping Wang, Yu-Qi Wang, Lei Shi, Ze-Kun Zhang, Fan Dong, Hao-Ran Li, Jia-Yu Zhang, Yu-Qing Man. Comparative metabolism study on chlorogenic acid, cryptochlorogenic acid and neochlorogenic acid using UHPLC-Q-TOF MS coupled with network pharmacology.
Chinese journal of natural medicines.
2021 Mar; 19(3):212-224. doi:
10.1016/s1875-5364(21)60023-7
. [PMID: 33781455] - Young Soo Jang, Hyun-Yong Kim, Guanglei Zuo, Eun Hee Lee, Sung Kwon Kang, Soon Sung Lim. Constituents from Solidago virgaurea var. gigantea and their inhibitory effect on lipid accumulation.
Fitoterapia.
2020 Oct; 146(?):104683. doi:
10.1016/j.fitote.2020.104683
. [PMID: 32634454] - Giovanna Piluzza, Maria Giovanna Molinu, Giovanni Antonio Re, Leonardo Sulas. Phenolic compounds content and antioxidant capacity in cardoon achenes from different head orders.
Natural product research.
2020 Jul; 34(14):2071-2075. doi:
10.1080/14786419.2019.1569009
. [PMID: 30721088] - Xiao-Han Gao, Sun-Dong Zhang, Li-Tao Wang, Liang Yu, Xue-Lian Zhao, Hai-Yan Ni, Yan-Qiu Wang, Jian-Dong Wang, Chun-Hua Shan, Yu-Jie Fu. Anti-Inflammatory Effects of Neochlorogenic Acid Extract from Mulberry Leaf (Morus alba L.) Against LPS-Stimulated Inflammatory Response through Mediating the AMPK/Nrf2 Signaling Pathway in A549 Cells.
Molecules (Basel, Switzerland).
2020 Mar; 25(6):. doi:
10.3390/molecules25061385
. [PMID: 32197466] - Fen Yang, Ji Fang Gong, Lin Shen, Chen Zhang, Fu Rong Kou, Jing Gao, Yan Li, Guo Bing Xu. Development of an LC-MS/MS method for quantitative analysis of Chlorogenic acid in human plasma and its application to a pharmacokinetic study in Chinese patients with advanced solid tumor.
Journal of pharmaceutical and biomedical analysis.
2020 Jan; 177(?):112809. doi:
10.1016/j.jpba.2019.112809
. [PMID: 31541942] - B M Popović, B Blagojević, R Ždero Pavlović, N Mićić, S Bijelić, B Bogdanović, A Mišan, Catarina M M Duarte, Ana Teresa Serra. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis.
Food chemistry.
2020 Jan; 302(?):125373. doi:
10.1016/j.foodchem.2019.125373
. [PMID: 31442706] - Spyridon Petropoulos, Ângela Fernandes, Carla Pereira, Nikos Tzortzakis, Josiana Vaz, Marina Soković, Lillian Barros, Isabel C F R Ferreira. Bioactivities, chemical composition and nutritional value of Cynara cardunculus L. seeds.
Food chemistry.
2019 Aug; 289(?):404-412. doi:
10.1016/j.foodchem.2019.03.066
. [PMID: 30955630] - Claudia Mariana Castillo-Fraire, Pascal Poupard, Sophie Guilois-Dubois, Erika Salas, Sylvain Guyot. Preparative fractionation of 5'-O-caffeoylquinic acid oxidation products using centrifugal partition chromatography and their investigation by mass spectrometry.
Journal of chromatography. A.
2019 May; 1592(?):19-30. doi:
10.1016/j.chroma.2019.01.071
. [PMID: 30738615] - Giulia Martelli, Daria Giacomini. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds.
European journal of medicinal chemistry.
2018 Oct; 158(?):91-105. doi:
10.1016/j.ejmech.2018.09.009
. [PMID: 30205261] - Takaaki Ito, Kin-Ichi Oyama, Kumi Yoshida. Direct Observation of Hydrangea Blue-Complex Composed of 3-O-Glucosyldelphinidin, Al3+ and 5-O-Acylquinic Acid by ESI-Mass Spectrometry.
Molecules (Basel, Switzerland).
2018 Jun; 23(6):. doi:
10.3390/molecules23061424
. [PMID: 29895788] - Eszter Laczkó-Zöld, Andrea Komlósi, Timea Ülkei, Erzsébet Fogarasi, Mircea Croitoru, Ibolya Fülöp, Erzsébet Domokos, Ruxandra Ştefănescu, Erzsébet Varga. Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity.
Acta biologica Hungarica.
2018 Jun; 69(2):156-169. doi:
10.1556/018.69.2018.2.5
. [PMID: 29888668] - Jorma Kim, Maija Pälijärvi, Maarit Karonen, Juha-Pekka Salminen. Oxidatively Active Plant Phenolics Detected by UHPLC-DAD-MS after Enzymatic and Alkaline Oxidation.
Journal of chemical ecology.
2018 May; 44(5):483-496. doi:
10.1007/s10886-018-0949-x
. [PMID: 29637492] - Renato Socodato, Camila C Portugal, Artur Rodrigues, Joana Henriques, Carla Rodrigues, Cláudia Figueira, João B Relvas. Redox tuning of Ca2+ signaling in microglia drives glutamate release during hypoxia.
Free radical biology & medicine.
2018 04; 118(?):137-149. doi:
10.1016/j.freeradbiomed.2018.02.036
. [PMID: 29501565] - Monika Kalinowska, Ewelina Bajko, Marzena Matejczyk, Piotr Kaczyński, Bożena Łozowicka, Włodzimierz Lewandowski. The Study of Anti-/Pro-Oxidant, Lipophilic, Microbial and Spectroscopic Properties of New Alkali Metal Salts of 5-O-Caffeoylquinic Acid.
International journal of molecular sciences.
2018 Feb; 19(2):. doi:
10.3390/ijms19020463
. [PMID: 29401704] - Przemysław Sitarek, Tomasz Kowalczyk, Patricia Rijo, Adam J Białas, Marzena Wielanek, Halina Wysokińska, Catarina Garcia, Monika Toma, Tomasz Śliwiński, Ewa Skała. Over-Expression of AtPAP1 Transcriptional Factor Enhances Phenolic Acid Production in Transgenic Roots of Leonurus sibiricus L. and Their Biological Activities.
Molecular biotechnology.
2018 Jan; 60(1):74-82. doi:
10.1007/s12033-017-0048-1
. [PMID: 29196986] - Yuan Gao, Shuai Ma, Meng Wang, Xiao-Yuan Feng. Characterization of Free, Conjugated, and Bound Phenolic Acids in Seven Commonly Consumed Vegetables.
Molecules (Basel, Switzerland).
2017 Nov; 22(11):. doi:
10.3390/molecules22111878
. [PMID: 29104269] - Alessandro Palmioli, Carlotta Ciaramelli, Renata Tisi, Michela Spinelli, Gaia De Sanctis, Elena Sacco, Cristina Airoldi. Natural Compounds in Cancer Prevention: Effects of Coffee Extracts and Their Main Polyphenolic Component, 5-O-Caffeoylquinic Acid, on Oncogenic Ras Proteins.
Chemistry, an Asian journal.
2017 Sep; 12(18):2457-2466. doi:
10.1002/asia.201700844
. [PMID: 28719146] - Maja Mikulic-Petkovsek, Boris Krska, Biljana Kiprovski, Robert Veberic. Bioactive Components and Antioxidant Capacity of Fruits from Nine Sorbus Genotypes.
Journal of food science.
2017 Mar; 82(3):647-658. doi:
10.1111/1750-3841.13643
. [PMID: 28182841] - Jesús Santana-Gálvez, Luis Cisneros-Zevallos, Daniel A Jacobo-Velázquez. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome.
Molecules (Basel, Switzerland).
2017 Feb; 22(3):. doi:
10.3390/molecules22030358
. [PMID: 28245635] - Zida Karim, Melvin Holmes, Caroline Orfila. Inhibitory effect of chlorogenic acid on digestion of potato starch.
Food chemistry.
2017 Feb; 217(?):498-504. doi:
10.1016/j.foodchem.2016.08.058
. [PMID: 27664664] - Spyridon A Petropoulos, Efi Levizou, Georgia Ntatsi, Ângela Fernandes, Konstantinos Petrotos, Konstantinos Akoumianakis, Lillian Barros, Isabel C F R Ferreira. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L.
Food chemistry.
2017 Jan; 214(?):129-136. doi:
10.1016/j.foodchem.2016.07.080
. [PMID: 27507457] - Nivedita Banerjee, Hyemee Kim, Stephen T Talcott, Nancy D Turner, David H Byrne, Susanne U Mertens-Talcott. Plum polyphenols inhibit colorectal aberrant crypt foci formation in rats: potential role of the miR-143/protein kinase B/mammalian target of rapamycin axis.
Nutrition research (New York, N.Y.).
2016 10; 36(10):1105-1113. doi:
10.1016/j.nutres.2016.06.008
. [PMID: 27865352] - Jin-qian Yu, Zhao-ping Wang, Heng Zhu, Gang Li, Xiao Wang. [Chemical constituents of Lonicera japonica roots and their anti-inflammatory effects].
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 07; 51(7):1110-6. doi:
. [PMID: 29897205]
- Ting Tan, Chang-Jiang-Sheng Lai, Hui OuYang, Ming-Zhen He, Yulin Feng. Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae Japonicae.
Journal of pharmaceutical and biomedical analysis.
2016 Feb; 120(?):134-41. doi:
10.1016/j.jpba.2015.12.019
. [PMID: 26730510] - Laurent Léotoing, Fabien Wauquier, Marie-Jeanne Davicco, Patrice Lebecque, David Gaudout, Stéphane Rey, Xavier Vitrac, Laurent Massenat, Salim Rashidi, Yohann Wittrant, Véronique Coxam. The phenolic acids of Agen prunes (dried plums) or Agen prune juice concentrates do not account for the protective action on bone in a rat model of postmenopausal osteoporosis.
Nutrition research (New York, N.Y.).
2016 Feb; 36(2):161-73. doi:
10.1016/j.nutres.2015.10.002
. [PMID: 26574736] - Kang Huang, Xiu-ci Liang, Ying-li Zhong, Wan-yan He, Zheng Wang. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription.
Journal of the science of food and agriculture.
2015 Jul; 95(9):1903-10. doi:
10.1002/jsfa.6896
. [PMID: 25186103] - Martino Forino, Gian Carlo Tenore, Luciana Tartaglione, Dell'Aversano Carmela, Ettore Novellino, Patrizia Ciminiello. (1S,3R,4S,5R)5-O-Caffeoylquinic acid: isolation, stereo-structure characterization and biological activity.
Food chemistry.
2015 Jul; 178(?):306-10. doi:
10.1016/j.foodchem.2015.01.109
. [PMID: 25704716] - Dorota Wianowska, Rafał Typek, Andrzej L Dawidowicz. Chlorogenic acid stability in pressurized liquid extraction conditions.
Journal of AOAC International.
2015 Mar; 98(2):415-21. doi:
10.5740/jaoacint.14-200
. [PMID: 25905748] - Valentina Sinisi, Cristina Forzato, Nicola Cefarin, Luciano Navarini, Federico Berti. Interaction of chlorogenic acids and quinides from coffee with human serum albumin.
Food chemistry.
2015 Feb; 168(?):332-40. doi:
10.1016/j.foodchem.2014.07.080
. [PMID: 25172718] - Jian Chen, Sven Mangelinckx, Li Ma, Zhengtao Wang, Weilin Li, Norbert De Kimpe. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity.
Fitoterapia.
2014 Dec; 99(?):1-6. doi:
10.1016/j.fitote.2014.08.015
. [PMID: 25172103] - Andrzej L Dawidowicz, Rafal Typek. Transformation of 5-O-caffeoylquinic acid in blueberries during high-temperature processing.
Journal of agricultural and food chemistry.
2014 Nov; 62(45):10889-95. doi:
10.1021/jf503993q
. [PMID: 25336323] - Shidong Kan, Matt Wan Man Cheung, Yanling Zhou, Wing Shing Ho. Effects of boiling on chlorogenic acid and the liver protective effects of its main products against CCl₄-induced toxicity in vitro.
Journal of food science.
2014 Feb; 79(2):C147-54. doi:
10.1111/1750-3841.12350
. [PMID: 24456346] - Ines Septi Arsiningtyas, Maria D P T Gunawan-Puteri, Eisuke Kato, Jun Kawabata. Identification of α-glucosidase inhibitors from the leaves of Pluchea indica (L.) Less., a traditional Indonesian herb: promotion of natural product use.
Natural product research.
2014; 28(17):1350-3. doi:
10.1080/14786419.2014.904306
. [PMID: 24697406] - A Tresserra-Rimbau, A Medina-Remón, J Pérez-Jiménez, M A Martínez-González, M I Covas, D Corella, J Salas-Salvadó, E Gómez-Gracia, J Lapetra, F Arós, M Fiol, E Ros, L Serra-Majem, X Pintó, M A Muñoz, G T Saez, V Ruiz-Gutiérrez, J Warnberg, R Estruch, R M Lamuela-Raventós. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2013 Oct; 23(10):953-9. doi:
10.1016/j.numecd.2012.10.008
. [PMID: 23332727] - Luigi Ornano, Alessandro Venditti, Mauro Ballero, Cinzia Sanna, Luana Quassinti, Massimo Bramucci, Giulio Lupidi, Fabrizio Papa, Sauro Vittori, Filippo Maggi, Armanodoriano Bianco. Chemopreventive and antioxidant activity of the chamazulene-rich essential oil obtained from Artemisia arborescens L. growing on the Isle of La Maddalena, Sardinia, Italy.
Chemistry & biodiversity.
2013 Aug; 10(8):1464-74. doi:
10.1002/cbdv.201200435
. [PMID: 23939794] - Gina Borges, Michael E J Lean, Susan A Roberts, Alan Crozier. Bioavailability of dietary (poly)phenols: a study with ileostomists to discriminate between absorption in small and large intestine.
Food & function.
2013 Apr; 4(5):754-62. doi:
10.1039/c3fo60024f
. [PMID: 23471276] - Andrzej L Dawidowicz, Rafal Typek. Formation of ester and amine derivatives of 5-O-caffeoylquinic acid in the process of its simulated extraction.
Journal of agricultural and food chemistry.
2012 Dec; 60(50):12289-95. doi:
10.1021/jf3029682
. [PMID: 23176346] - Roberto J Avena-Bustillos, Wen-Xian Du, Rachelle Woods, Donald Olson, Andrew P Breksa, Tara H McHugh. Ultraviolet-B light treatment increases antioxidant capacity of carrot products.
Journal of the science of food and agriculture.
2012 Aug; 92(11):2341-8. doi:
10.1002/jsfa.5635
. [PMID: 22419219] - Sang Min Kim, Je-Seung Jeon, Suk Woo Kang, Yu-Jin Jung, Lin Na Ly, Byung-Hun Um. Content of antioxidative caffeoylquinic acid derivatives in field-grown Ligularia fischeri (Ledeb.) Turcz and responses to sunlight.
Journal of agricultural and food chemistry.
2012 Jun; 60(22):5597-603. doi:
10.1021/jf300976y
. [PMID: 22583553] - Natalina Cavaco Bicho, Antóanto Eduardo Leitão, José Cochicho Ramalho, Nuno Bartolomeu De Alvarenga, Fernando Cebola Lidon. Identification of nutritional descriptors of roasting intensity in beverages of Arabica and Robusta coffee beans.
International journal of food sciences and nutrition.
2011 Dec; 62(8):865-71. doi:
10.3109/09637486.2011.588594
. [PMID: 22032554] - Carlos-Eduardo Narváez-Cuenca, Tomas F M Kuijpers, Jean-Paul Vincken, Pieter de Waard, Harry Gruppen. New insights into an ancient antibrowning agent: formation of sulfophenolics in sodium hydrogen sulfite-treated potato extracts.
Journal of agricultural and food chemistry.
2011 Sep; 59(18):10247-55. doi:
10.1021/jf202624q
. [PMID: 21854040] - Ute Boettler, Katharina Sommerfeld, Nadine Volz, Gudrun Pahlke, Nicole Teller, Veronika Somoza, Roman Lang, Thomas Hofmann, Doris Marko. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression.
The Journal of nutritional biochemistry.
2011 May; 22(5):426-40. doi:
10.1016/j.jnutbio.2010.03.011
. [PMID: 20655719] - Chunhui Ma, Bruce D Whitaker, Edward J Kennelly. New 5-O-caffeoylquinic acid derivatives in fruit of the wild eggplant relative Solanum viarum.
Journal of agricultural and food chemistry.
2010 Oct; 58(20):11036-42. doi:
10.1021/jf102963f
. [PMID: 20886887] - Everton Fernando Zanoelo, Cristina Benincá. Chemical kinetics of 5-o-caffeoylquinic acid in superheated steam: effect of isomerization on mate (Ilex paraguariensis) manufacturing.
Journal of agricultural and food chemistry.
2009 Dec; 57(24):11564-9. doi:
10.1021/jf903388a
. [PMID: 19938862] - A Gugliucci, Deborah H Markowicz Bastos, John Schulze, Marina F Ferreira Souza. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins.
Fitoterapia.
2009 Sep; 80(6):339-44. doi:
10.1016/j.fitote.2009.04.007
. [PMID: 19409454] - Young Hae Choi, Hye Kyong Kim, Huub J M Linthorst, Johan G Hollander, Alfons W M Lefeber, Cornelis Erkelens, Jean-Marc Nuzillard, Robert Verpoorte. NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves.
Journal of natural products.
2006 May; 69(5):742-8. doi:
10.1021/np050535b
. [PMID: 16724833] - Ting Han, Hui-Liang Li, Yuan Hu, Qiao-Yan Zhang, Bao-Kang Huang, Han-Chen Zheng, Khalid Rahman, Lu-Ping Qin. Phenolic acids in Fructus Xanthii and determination of contents of total phenolic acids in different species and populations of Xanthium in China.
Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine.
2006 Mar; 4(2):194-8. doi:
10.3736/jcim20060217
. [PMID: 16529699] - Ari Tolonen, Topi Joutsamo, Sampo Mattlla, Terttu Kämäräinen, Jorma Jalonen. Identification of isomeric dicaffeoylquinic acids from Eleutherococcus senticosus using HPLC-ESI/TOF/MS and 1H-NMR methods.
Phytochemical analysis : PCA.
2002 Nov; 13(6):316-28. doi:
10.1002/pca.663
. [PMID: 12494749]