Itaconic acid (BioDeep_00000001657)
Secondary id: BioDeep_00000400449, BioDeep_00000413327
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019 Volatile Flavor Compounds
代谢物信息卡片
化学式: C5H6O4 (130.0266076)
中文名称: 衣康酸
谱图信息:
最多检出来源 Homo sapiens(blood) 1.35%
Last reviewed on 2024-07-01.
Cite this Page
Itaconic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/itaconic_acid (retrieved
2024-11-21) (BioDeep RN: BioDeep_00000001657). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=C)(CC(=O)O)C(=O)O
InChI: InChI=1S/C5H6O4/c1-3(5(8)9)2-4(6)7/h1-2H2,(H,6,7)(H,8,9)
描述信息
Itaconic acid is a dicarboxylic acid that is methacrylic acid in which one of the methyl hydrogens is substituted by a carboxylic acid group. It has a role as a fungal metabolite and a human metabolite. It is a dicarboxylic acid and an olefinic compound. It derives from a succinic acid. It is a conjugate acid of an itaconate(2-). This dicarboxylic acid is a white solid that is soluble in water, ethanol, and acetone. Historically, itaconic acid was obtained by the distillation of citric acid, but currently it is produced by fermentation. The name itaconic acid was devised as an anagram of aconitic acid, another derivative of citric acid. Itaconic acid, also known as itaconate, belongs to the class of organic compounds known as branched fatty acids. These are fatty acids containing a branched chain. Itaconic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Since the 1960s, it is produced industrially by the fermentation of carbohydrates such as glucose or molasses using fungi such as Aspergillus itaconicus or Aspergillus terreus. For A. terreus the itaconate pathway is mostly elucidated. The generally accepted route for itaconate is via glycolysis, tricarboxylic acid cycle, and a decarboxylation of cis-aconitate to itaconate via cis-aconitate-decarboxylase. The smut fungus Ustilago maydis uses an alternative route. Cis-aconitate is converted to the thermodynamically favoured trans-aconitate via aconitate-Δ-isomerase (Adi1). trans-Aconitate is further decarboxylated to itaconate by trans-aconitate-decarboxylase (Tad1). Itaconic acid is also produced in cells of macrophage lineage. It was shown that itaconate is a covalent inhibitor of the enzyme isocitrate lyase in vitro. As such, itaconate may possess antibacterial activities against bacteria expressing isocitrate lyase (such as Salmonella enterica and Mycobacterium tuberculosis). It is also sythesized in the laboratory, where dry distillation of citric acid affords itaconic anhydride, which undergoes hydrolysis to itaconic acid.
Itaconic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=97-65-4 (retrieved 2024-07-01) (CAS RN: 97-65-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Itaconic acid, a precursor of polymers, chemicals, and fuels, can be synthesized by many fungi. Itaconic acid also is a macrophage-specific metabolite. Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors[1][2].
同义名列表
21 个代谢物同义名
2-Hydroxy-3-naphthoyl-2-naphthylamine; 2-propene-1,2-dicarboxylic acid; 2-methylidenebutanedioic acid; Itaconic acid, disodium salt; Itaconic acid, calcium salt; 2-Propene-1,2-dicarboxylate; Itaconic acid, copper salt; propylenedicarboxylic acid; Itaconic acid, sodium salt; Methylenebutanedioic acid; 2-Methylenesuccinic acid; Methylenesuccinic acid; Propylenedicarboxylate; Methylenebutanedioate; 2-Methylenesuccinate; Methylenesuccinate; Itaconic acid; Itaconate; Itaconic acid; Itaconate; Itaconic acid
数据库引用编号
34 个数据库交叉引用编号
- ChEBI: CHEBI:30838
- KEGG: C00490
- PubChem: 811
- HMDB: HMDB0002092
- Metlin: METLIN44764
- ChEMBL: CHEMBL359159
- Wikipedia: Itaconic_acid
- MetaCyc: ITACONATE
- KNApSAcK: C00033964
- foodb: FDB012645
- chemspider: 789
- CAS: 97-65-4
- MoNA: PS078103
- MoNA: KO001184
- MoNA: KO001185
- MoNA: PR100773
- MoNA: PS078102
- MoNA: PS078107
- MoNA: KO001186
- MoNA: KO001187
- MoNA: KO001183
- MoNA: PS078101
- PMhub: MS000000932
- ChEBI: CHEBI:17240
- LipidMAPS: LMFA01170063
- PDB-CCD: ITN
- 3DMET: B01264
- NIKKAJI: J38.149G
- RefMet: Itaconic acid
- medchemexpress: HY-Y0520
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-480
- PubChem: 3773
- KNApSAcK: 17240
- LOTUS: LTS0092941
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
5 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(5)
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
PharmGKB(0)
33 个相关的物种来源信息
- 5204 - Basidiomycota: LTS0092941
- 2759 - Eukaryota: LTS0092941
- 3803 - Fabaceae: LTS0092941
- 4751 - Fungi: LTS0092941
- 9606 - Homo sapiens: -
- 4677 - Liliaceae: LTS0092941
- 4447 - Liliopsida: LTS0092941
- 4688 - Lilium: LTS0092941
- 4690 - Lilium longiflorum: 10.1016/0031-9422(81)83095-6
- 4690 - Lilium longiflorum: LTS0092941
- 3867 - Lotus: LTS0092941
- 47247 - Lotus corniculatus: LTS0092941
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0092941
- 3398 - Magnoliopsida: LTS0092941
- 3877 - Medicago: LTS0092941
- 3879 - Medicago sativa: 10.3389/FPLS.2017.01208
- 3879 - Medicago sativa: LTS0092941
- 278655 - Pycnandra: LTS0092941
- 280718 - Pycnandra acuminata: 10.1016/J.PHYTOCHEM.2007.07.001
- 280718 - Pycnandra acuminata: LTS0092941
- 3737 - Sapotaceae: LTS0092941
- 35493 - Streptophyta: LTS0092941
- 58023 - Tracheophyta: LTS0092941
- 5268 - Ustilaginaceae: LTS0092941
- 5257 - Ustilaginomycetes: LTS0092941
- 5269 - Ustilago: LTS0092941
- 63396 - Ustilago cynodontis: 10.1080/00021369.1990.10870333
- 63396 - Ustilago cynodontis: LTS0092941
- 5270 - Ustilago maydis: 10.1111/1751-7915.12329
- 5270 - Ustilago maydis: LTS0092941
- 33090 - Viridiplantae: LTS0092941
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yannick Cyr, Fazli K Bozal, José Gabriel Barcia Durán, Alexandra A C Newman, Letizia Amadori, Panagiotis Smyrnis, Morgane Gourvest, Dayasagar Das, Michael Gildea, Ravneet Kaur, Tracy Zhang, Kristin M Wang, Richard Von Itter, P Martin Schlegel, Samantha D Dupuis, Bernard F Sanchez, Ann Marie Schmidt, Edward A Fisher, Coen van Solingen, Chiara Giannarelli, Kathryn J Moore. The IRG1-itaconate axis protects from cholesterol-induced inflammation and atherosclerosis.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Apr; 121(15):e2400675121. doi:
10.1073/pnas.2400675121
. [PMID: 38564634] - Hongtao Tie, Ge Kuang, Xia Gong, Lidan Zhang, Zizuo Zhao, Shengwang Wu, Wenya Huang, Xiahong Chen, Yinglin Yuan, Zhenhan Li, Hongzhong Li, Li Zhang, Jingyuan Wan, Bin Wang. LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways.
Clinical immunology (Orlando, Fla.).
2024 04; 261(?):110167. doi:
10.1016/j.clim.2024.110167
. [PMID: 38453127] - Rabina Mainali, Nancy Buechler, Cristian Otero, Laken Edwards, Chia-Chi Key, Cristina Furdui, Matthew A Quinn. Itaconate stabilizes CPT1a to enhance lipid utilization during inflammation.
eLife.
2024 Feb; 12(?):. doi:
10.7554/elife.92420
. [PMID: 38305778] - Tanja Eberhart, Federico Uchenna Stanley, Luisa Ricci, Tiziana Chirico, Roberto Ferrarese, Sofia Sisti, Alessandra Scagliola, Andreina Baj, Sylvia Badurek, Andreas Sommer, Rachel Culp-Hill, Monika Dzieciatkowska, Engy Shokry, David Sumpton, Angelo D'Alessandro, Nicola Clementi, Nicasio Mancini, Simone Cardaci. ACOD1 deficiency offers protection in a mouse model of diet-induced obesity by maintaining a healthy gut microbiota.
Cell death & disease.
2024 Feb; 15(2):105. doi:
10.1038/s41419-024-06483-2
. [PMID: 38302438] - Tabea Helm, Thilo Stausberg, Martina Previati, Philipp Ernst, Bianca Klein, Tobias Busche, Jörn Kalinowski, Daniel Wibberg, Wolfgang Wiechert, Lien Claerhout, Nick Wierckx, Stephan Noack. Itaconate Production from Crude Substrates with U. maydis: Scale-up of an Industrially Relevant Bioprocess.
Microbial cell factories.
2024 Jan; 23(1):29. doi:
10.1186/s12934-024-02295-3
. [PMID: 38245756] - Kimberly C Paul, Keren Zhang, Douglas I Walker, Janet Sinsheimer, Yu Yu, Cynthia Kusters, Irish Del Rosario, Aline Duarte Folle, Adrienne M Keener, Jeff Bronstein, Dean P Jones, Beate Ritz. Untargeted serum metabolomics reveals novel metabolite associations and disruptions in amino acid and lipid metabolism in Parkinson's disease.
Molecular neurodegeneration.
2023 Dec; 18(1):100. doi:
10.1186/s13024-023-00694-5
. [PMID: 38115046] - Kerui Fan, Kun Chen, Xinyan Zan, Ying Zhi, Xue Zhang, Xinyue Zhang, Jinghuan Qiu, Gang Liu, Longjiang Li, Li Tang, Kai Hu, Jingyuan Wan, Xianqiong Gong, Yongqiang Yang, Li Zhang. Negative regulation of pro-apoptotic AMPK/JNK pathway by itaconate in mice with fulminant liver injury.
Cell death & disease.
2023 07; 14(7):486. doi:
10.1038/s41419-023-06001-w
. [PMID: 37524706] - Jonathan M Weiss, Erika M Palmieri, Marieli Gonzalez-Cotto, Ian A Bettencourt, Emily L Megill, Nathaniel W Snyder, Daniel W McVicar. Itaconic acid underpins hepatocyte lipid metabolism in non-alcoholic fatty liver disease in male mice.
Nature metabolism.
2023 Jun; ?(?):. doi:
10.1038/s42255-023-00801-2
. [PMID: 37308721] - Ting Zhang, Qianru Rao, Manyun Dai, Zhanxuan E Wu, Qi Zhao, Fei Li. Tripterygium wilfordii protects against an animal model of autoimmune hepatitis.
Journal of ethnopharmacology.
2023 Jun; 309(?):116365. doi:
10.1016/j.jep.2023.116365
. [PMID: 36907478] - Ce Geng, Zhigang Jin, Meng Gu, Jibin Li, Shen Tang, Qiang Guo, Yunpeng Zhang, Wei Zhang, Yuezhong Li, Xuenian Huang, Xuefeng Lu. Microbial production of trans-aconitic acid.
Metabolic engineering.
2023 Jun; ?(?):. doi:
10.1016/j.ymben.2023.06.007
. [PMID: 37315711] - Xue Zhang, Ying Zhi, Xinyan Zan, Kerui Fan, Kun Chen, Shuang Zhao, Xinyi Dai, Longjiang Li, Yongqiang Yang, Kai Hu, Xianqiong Gong, Li Zhang. Immune response gene 1 deficiency aggravates high fat diet-induced nonalcoholic fatty liver disease via promotion of redox-sensitive AKT suppression.
Biochimica et biophysica acta. Molecular basis of disease.
2023 Jan; 1869(4):166656. doi:
10.1016/j.bbadis.2023.166656
. [PMID: 36706797] - Nadezhda Fedotcheva, Natalia Beloborodova. Influence of Microbial Metabolites and Itaconic Acid Involved in Bacterial Inflammation on the Activity of Mitochondrial Enzymes and the Protective Role of Alkalization.
International journal of molecular sciences.
2022 Aug; 23(16):. doi:
10.3390/ijms23169069
. [PMID: 36012366] - Xin Zhu, Yinhang Zhang, Yingzhuo Zhao, Lijuan Tao, Haiying Liu, Weiguo Dong, Guiqin Yang, Lin Li. Effects of dietary supplementation with itaconic acid on the growth performance, nutrient digestibility, slaughter variables, blood biochemical parameters, and intestinal morphology of broiler chickens.
Poultry science.
2022 Apr; 101(4):101732. doi:
10.1016/j.psj.2022.101732
. [PMID: 35176702] - Peng Zhang, Xiaotong Wang, Qiliang Peng, Yesheng Jin, Gaolong Shi, Zhihai Fan, Zhiqiang Zhou. Four-Octyl Itaconate Protects Chondrocytes against H2O2-Induced Oxidative Injury and Attenuates Osteoarthritis Progression by Activating Nrf2 Signaling.
Oxidative medicine and cellular longevity.
2022; 2022(?):2206167. doi:
10.1155/2022/2206167
. [PMID: 35126808] - Qingqing Ke, Caifeng Shi, Yunhui Lv, Lulu Wang, Jing Luo, Lei Jiang, Junwei Yang, Yang Zhou. SGLT2 inhibitor counteracts NLRP3 inflammasome via tubular metabolite itaconate in fibrosis kidney.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2022 01; 36(1):e22078. doi:
10.1096/fj.202100909rr
. [PMID: 34918381] - Prajwal Kulal, Vishalakshi Badalamoole. Evaluation of gum ghatti-g-poly(itaconic acid) magnetite nanocomposite as an adsorbent material for water purification.
International journal of biological macromolecules.
2021 Dec; 193(Pt B):2232-2242. doi:
10.1016/j.ijbiomac.2021.11.055
. [PMID: 34780891] - Fauzia Rehman, Ikram Ullah Khan, Syed Haroon Khalid, Sajid Asghar, Muhammad Irfan, Ikrima Khalid, Akhtar Rasul, Huma Mahmood, Abid Mehmood Yousaf, Yasser Shahzad, Muhammad Mudassar, Noor Ul Amin Mohsin. Optimization, in vitro release and toxicity evaluation of novel pH sensitive itaconic acid-g-poly(acrylamide)/sterculia gum semi-interpenetrating networks.
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences.
2021 Jun; 29(1):171-184. doi:
10.1007/s40199-021-00395-8
. [PMID: 33899162] - Hatice Taşpınar Demir, Emine Bezirci, Johanna Becker, Hamed Hosseinpour Tehrani, Emrah Nikerel, Nick Wierck, Mustafa Türker. High level production of itaconic acid at low pH by Ustilago maydis with fed-batch fermentation.
Bioprocess and biosystems engineering.
2021 Apr; 44(4):749-758. doi:
10.1007/s00449-020-02483-6
. [PMID: 33392747] - Mei Sano, Tomonari Tanaka, Hitomi Ohara, Yuji Aso. Itaconic acid derivatives: structure, function, biosynthesis, and perspectives.
Applied microbiology and biotechnology.
2020 Nov; 104(21):9041-9051. doi:
10.1007/s00253-020-10908-1
. [PMID: 32945901] - Ulf H Beier, Erum A Hartung, Seth Concors, Paul T Hernandez, Zhonglin Wang, Caroline Perry, Joseph A Baur, Michelle R Denburg, Wayne W Hancock, Terence P Gade, Matthew H Levine. Tissue metabolic profiling shows that saccharopine accumulates during renal ischemic-reperfusion injury, while kynurenine and itaconate accumulate in renal allograft rejection.
Metabolomics : Official journal of the Metabolomic Society.
2020 05; 16(5):65. doi:
10.1007/s11306-020-01682-2
. [PMID: 32367163] - Pietro Marchese, Nipun Mahajan, Enda O'Connell, Howard Fearnhead, Maria Tuohy, Janusz Krawczyk, Olivier P Thomas, Frank Barry, Mary J Murphy. A Novel High-Throughput Screening Platform Identifies Itaconate Derivatives from Marine Penicillium antarcticum as Inhibitors of Mesenchymal Stem Cell Differentiation.
Marine drugs.
2020 Apr; 18(4):. doi:
10.3390/md18040192
. [PMID: 32260516] - Nick Wierckx, Gennaro Agrimi, Peter Stephensen Lübeck, Matthias G Steiger, Nuno Pereira Mira, Peter J Punt. Metabolic specialization in itaconic acid production: a tale of two fungi.
Current opinion in biotechnology.
2020 04; 62(?):153-159. doi:
10.1016/j.copbio.2019.09.014
. [PMID: 31689647] - Thekla Cordes, Alfredo Lucas, Ajit S Divakaruni, Anne N Murphy, Pedro Cabrales, Christian M Metallo. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury.
Molecular metabolism.
2020 02; 32(?):122-135. doi:
10.1016/j.molmet.2019.11.019
. [PMID: 32029222] - Yongxing Hu, Tianpei Cai, Haijuan Zhang, Jia Chen, Zhan Li, Liang Zhao, Zuguang Li, Hongdeng Qiu. Two copolymer-grafted silica stationary phases prepared by surface thiol-ene click reaction in deep eutectic solvents for hydrophilic interaction chromatography.
Journal of chromatography. A.
2020 Jan; 1609(?):460446. doi:
10.1016/j.chroma.2019.460446
. [PMID: 31420178] - Ramakrishnan Gnanasekaran, Balaji Dhandapani, Jayaraj Iyyappan. Improved itaconic acid production by Aspergillus niveus using blended algal biomass hydrolysate and glycerol as substrates.
Bioresource technology.
2019 Jul; 283(?):297-302. doi:
10.1016/j.biortech.2019.03.107
. [PMID: 30921582] - Bidyadhar Sethy, Chung-Fan Hsieh, Ta-Jen Lin, Po-Yuan Hu, Yu-Li Chen, Chia-Yi Lin, Sung-Nain Tseng, Jim-Tong Horng, Pei-Wen Hsieh. Design, Synthesis, and Biological Evaluation of Itaconic Acid Derivatives as Potential Anti-Influenza Agents.
Journal of medicinal chemistry.
2019 03; 62(5):2390-2403. doi:
10.1021/acs.jmedchem.8b01683
. [PMID: 30753063] - Hua Liu, Yu Feng, Min Xu, Jian Yang, Zhichun Wang, Guangfu Di. Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide.
Cell communication and signaling : CCS.
2018 11; 16(1):81. doi:
10.1186/s12964-018-0294-2
. [PMID: 30442144] - Luca Perico, Christina M Wyatt, Ariela Benigni. A new BEACON of hope for the treatment of inflammation? The endogenous metabolite itaconate as an alternative activator of the KEAP1-Nrf2 system.
Kidney international.
2018 10; 94(4):646-649. doi:
10.1016/j.kint.2018.07.018
. [PMID: 30243306] - Ákos P Molnár, Zoltán Németh, István S Kolláth, Erzsébet Fekete, Michel Flipphi, Norbert Ág, Áron Soós, Béla Kovács, Erzsébet Sándor, Christian P Kubicek, Levente Karaffa. High oxygen tension increases itaconic acid accumulation, glucose consumption, and the expression and activity of alternative oxidase in Aspergillus terreus.
Applied microbiology and biotechnology.
2018 Oct; 102(20):8799-8808. doi:
10.1007/s00253-018-9325-6
. [PMID: 30141084] - Deepak Pathania, Chetna Verma, Poonam Negi, Inderjeet Tyagi, Mohammad Asif, Nadavala Siva Kumar, Ebrahim H Al-Ghurabi, Shilpi Agarwal, Vinod Kumar Gupta. Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin.
Carbohydrate polymers.
2018 Sep; 196(?):262-271. doi:
10.1016/j.carbpol.2018.05.040
. [PMID: 29891295] - Mieke Nieder-Heitmann, Kathleen F Haigh, Johann F Görgens. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses.
Bioresource technology.
2018 Aug; 262(?):159-168. doi:
10.1016/j.biortech.2018.04.075
. [PMID: 29704763] - Vinod Kumar Gupta, Swadeep Sood, Shilpi Agarwal, Adesh K Saini, Deepak Pathania. Antioxidant activity and controlled drug delivery potential of tragacanth gum-cl- poly (lactic acid-co-itaconic acid) hydrogel.
International journal of biological macromolecules.
2018 Feb; 107(Pt B):2534-2543. doi:
10.1016/j.ijbiomac.2017.10.138
. [PMID: 29107749] - Chun Tang, Xiaohua Wang, Yingying Xie, Xiaoyan Cai, Na Yu, Yudan Hu, Zhihua Zheng. 4-Octyl Itaconate Activates Nrf2 Signaling to Inhibit Pro-Inflammatory Cytokine Production in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology.
2018; 51(2):979-990. doi:
10.1159/000495400
. [PMID: 30466076] - Takashi Hato, Amy Zollman, Zoya Plotkin, Tarek M El-Achkar, Bernhard F Maier, S Louise Pay, Shataakshi Dube, Pablo Cabral, Momoko Yoshimoto, Jeanette McClintick, Pierre C Dagher. Endotoxin Preconditioning Reprograms S1 Tubules and Macrophages to Protect the Kidney.
Journal of the American Society of Nephrology : JASN.
2018 01; 29(1):104-117. doi:
10.1681/asn.2017060624
. [PMID: 29018138] - Albert H Alberts, Gadi Rothenberg. Plantics-GX: a biodegradable and cost-effective thermoset plastic that is 100\% plant-based.
Faraday discussions.
2017 09; 202(?):111-120. doi:
10.1039/c7fd00054e
. [PMID: 28829085] - Vijay Chaitanya Ganta, Min Hyub Choi, Anna Kutateladze, Todd E Fox, Charles R Farber, Brian H Annex. A MicroRNA93-Interferon Regulatory Factor-9-Immunoresponsive Gene-1-Itaconic Acid Pathway Modulates M2-Like Macrophage Polarization to Revascularize Ischemic Muscle.
Circulation.
2017 Jun; 135(24):2403-2425. doi:
10.1161/circulationaha.116.025490
. [PMID: 28356443] - Jiao Zeng, Shengquan Liu, Menglin Wang, Shouzhuo Yao, Yingzhuang Chen. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography.
Electrophoresis.
2017 05; 38(9-10):1325-1333. doi:
10.1002/elps.201600526
. [PMID: 28211065] - Muhammad Khurram Shahzad, Tali Hussain, Sabiha Karim, Nasir Abbas, Nadeem Irfan Bukhari. RELATIVE BIOAVAILABILITY OF RISEDRONATE SODIUM ADMINISTERED IN SUPERABSORBENT COPOLYMER PARTICLES VERSUS ORAL SOLUTION TO NORMAL HEALTHY RABBITS.
Acta poloniae pharmaceutica.
2016 Sep; 73(5):1267-1274. doi:
NULL
. [PMID: 29638067] - Svetlana V Kamzolova, Ramil K Allayarov, Julia N Lunina, Igor G Morgunov. The effect of oxalic and itaconic acids on threo-Ds-isocitric acid production from rapeseed oil by Yarrowia lipolytica.
Bioresource technology.
2016 Apr; 206(?):128-133. doi:
10.1016/j.biortech.2016.01.092
. [PMID: 26851896] - Saeed Ghanbarzadeh, Arash Khorrami, Zhaleh Pourmoazzen, Sanam Arami. Plasma stable, pH-sensitive non-ionic surfactant vesicles simultaneously enhance antiproliferative effect and selectivity of Sirolimus.
Pharmaceutical development and technology.
2015 May; 20(3):279-87. doi:
10.3109/10837450.2013.860553
. [PMID: 24266760] - S V Kamzolova, Y N Lunin, R K Allayarov, I F Puntus, I A Laptev, V A Samojlenko, I G Morgunov. [Biosynthesis of isocitric acid by the yeast yarrowia lipolytica and its regulation].
Prikladnaia biokhimiia i mikrobiologiia.
2015 Mar; 51(2):251-7. doi:
10.7868/s0555109915020075
. [PMID: 26027362] - Saeed Ghanbarzadeh, Sanam Arami, Zhaleh Pourmoazzen, Arash Khorrami. Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes.
Colloids and surfaces. B, Biointerfaces.
2014 Mar; 115(?):323-30. doi:
10.1016/j.colsurfb.2013.12.024
. [PMID: 24394948] - Laura van der Straat, Marloes Vernooij, Marieke Lammers, Willy van den Berg, Tom Schonewille, Jan Cordewener, Ingrid van der Meer, Andries Koops, Leo H de Graaff. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger.
Microbial cell factories.
2014 Jan; 13(?):11. doi:
10.1186/1475-2859-13-11
. [PMID: 24438100] - Kotaro Satoh, Dong-Hyung Lee, Kanji Nagai, Masami Kamigaito. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.
Macromolecular rapid communications.
2014 Jan; 35(2):161-167. doi:
10.1002/marc.201300638
. [PMID: 24243816] - Liwei Tan, Xu Xu, Jia Song, Feng Luo, Zhiyong Qian. Synthesis, characterization, and acute oral toxicity evaluation of pH-sensitive hydrogel based on MPEG, poly(ε-caprolactone), and itaconic acid.
BioMed research international.
2013; 2013(?):239838. doi:
10.1155/2013/239838
. [PMID: 24364030] - Sun Hwa Hong, Hyun Duck Jeong, Bongjin Jung, Eun Young Lee. Analysis and quantification of ammonia-oxidizing bacteria community with amoA gene in sewage treatment plants.
Journal of microbiology and biotechnology.
2012 Sep; 22(9):1193-201. doi:
10.4014/jmb.1204.04047
. [PMID: 22814491] - Idriss Bakas, Najwa Ben Oujji, Ewa Moczko, Georges Istamboulie, Sergey Piletsky, Elena Piletska, Ihya Ait-Ichou, Elhabib Ait-Addi, Thierry Noguer, Régis Rouillon. Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil.
Analytica chimica acta.
2012 Jul; 734(?):99-105. doi:
10.1016/j.aca.2012.05.013
. [PMID: 22704478] - Emily B Merewitz, Hongmei Du, Wenjuan Yu, Yimin Liu, Thomas Gianfagna, Bingru Huang. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation.
Journal of experimental botany.
2012 Feb; 63(3):1315-28. doi:
10.1093/jxb/err372
. [PMID: 22131157] - Bao-Yu Huang, Yu-Cheng Chen, Guan-Ren Wang, Chuen-Ying Liu. Preparation and evaluation of a monolithic molecularly imprinted polymer for the chiral separation of neurotransmitters and their analogues by capillary electrochromatography.
Journal of chromatography. A.
2011 Feb; 1218(6):849-55. doi:
10.1016/j.chroma.2010.12.054
. [PMID: 21208621] - C Lopez, B Claude, Ph Morin, J-P Max, R Pena, J-P Ribet. Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts.
Analytica chimica acta.
2011 Jan; 683(2):198-205. doi:
10.1016/j.aca.2010.09.051
. [PMID: 21167971] - Apollinaire Tsopmo, Alister D Muir. Chemical profiling of lentil (Lens culinaris Medik.) Cultivars and isolation of compounds.
Journal of agricultural and food chemistry.
2010 Aug; 58(15):8715-21. doi:
10.1021/jf101412y
. [PMID: 20617853] - N B Tavakalyan, A G Karapetyan, A S Pogosyan, A K Abrahamyan, A Corti, A Pompella, A Mihranyan. Influence of unsaturated carbonic acids on hemocompatibility and cytotoxicity of poly-vinylacetate based co-polymers.
Journal of materials science. Materials in medicine.
2010 May; 21(5):1693-702. doi:
10.1007/s10856-010-4020-x
. [PMID: 20162328] - Hendrik Führs, Stefanie Götze, André Specht, Alexander Erban, Sébastien Gallien, Dimitri Heintz, Alain Van Dorsselaer, Joachim Kopka, Hans-Peter Braun, Walter J Horst. Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon.
Journal of experimental botany.
2009; 60(6):1663-78. doi:
10.1093/jxb/erp034
. [PMID: 19286915] - Jan B van Beilen, Yves Poirier. Production of renewable polymers from crop plants.
The Plant journal : for cell and molecular biology.
2008 May; 54(4):684-701. doi:
10.1111/j.1365-313x.2008.03431.x
. [PMID: 18476872] - E Y Park, J H Zhang, S Tajima, L Dwiarti. Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology.
Journal of applied microbiology.
2007 Aug; 103(2):468-76. doi:
10.1111/j.1365-2672.2006.03264.x
. [PMID: 17650208] - Yasunori Ohashi, Yoshihiko Kan, Takahito Watanabe, Yoichi Honda, Takashi Watanabe. Redox silencing of the Fenton reaction system by an alkylitaconic acid, ceriporic acid B produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora.
Organic & biomolecular chemistry.
2007 Mar; 5(5):840-7. doi:
10.1039/b614379b
. [PMID: 17315072] - Mehlika Pulat, Ayhan Ekmekci, Belma Aslim. The release of bovine serum albumin from polyurethane based hydrophilic and hydrophobic disks and microbiological interactions.
Bio-medical materials and engineering.
2006; 16(2):147-56. doi:
. [PMID: 16477123]
- M Iqbal, A Saeed. Novel method for cell immobilization and its application for production of organic acid.
Letters in applied microbiology.
2005; 40(3):178-82. doi:
10.1111/j.1472-765x.2004.01646.x
. [PMID: 15715641] - Akiko Sakai, Aki Kusumoto, Yoshinobu Kiso, Eisuke Furuya. Itaconate reduces visceral fat by inhibiting fructose 2,6-bisphosphate synthesis in rat liver.
Nutrition (Burbank, Los Angeles County, Calif.).
2004 Nov; 20(11-12):997-1002. doi:
10.1016/j.nut.2004.08.007
. [PMID: 15561490] - Makiko Enoki, Yoichi Honda, Masaaki Kuwahara, Takashi Watanabe. Chemical synthesis, iron redox interactions and charge transfer complex formation of alkylitaconic acids from Ceriporiopsis subvermispora.
Chemistry and physics of lipids.
2002 Dec; 120(1-2):9-20. doi:
10.1016/s0009-3084(02)00072-5
. [PMID: 12426072] - José C del Río, Ana Gutiérrez, María J Martínez, Angel T Martínez AT. Identification of a novel series of alkylitaconic acids in wood cultures of Ceriporiopsis subvermispora by gas chromatography/mass spectrometry.
Rapid communications in mass spectrometry : RCM.
2002; 16(1):62-8. doi:
10.1002/rcm.547
. [PMID: 11754248] - M D Blanco, O García, R Olmo, J M Teijón, I Katime. Release of 5-fluorouracil from poly(acrylamide-co-monopropyl itaconate) hydrogels.
Journal of chromatography. B, Biomedical applications.
1996 May; 680(1-2):243-53. doi:
10.1016/0378-4347(95)00401-7
. [PMID: 8798904] - E Karadağ, D Saraydin, S Cetinkaya, O Güven. In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels.
Biomaterials.
1996 Jan; 17(1):67-70. doi:
10.1016/0142-9612(96)80757-5
. [PMID: 8962950] - N S Mason, R E Sparks, H Skoff, H Lubowitz, G B Gulmen, D C Mazumdar, M H Litt. A new ion exchanger with high in vivo sodium capacity.
Kidney international. Supplement.
1985 Dec; 17(?):S178-82. doi:
NULL
. [PMID: 3867791] - P Leskovar, M Hropot, E Wellnhofer, D Scherm, K L Schade. [Contribution to the problem of preventing recurrences of oxalate and phosphate urinary caluli: active modification of citrate excretion and Ca++-binding capacity in the urine of Wistar rats].
Zeitschrift fur Urologie und Nephrologie.
1982 Mar; 75(3):181-7. doi:
NULL
. [PMID: 7102130]