Selenocystine (BioDeep_00000005927)

   

human metabolite Endogenous blood metabolite Toxin


代谢物信息卡片


2-amino-3-[(2-amino-2-carboxyethyl)diselanyl]propanoic acid

化学式: C6H12N2O4Se2 (335.9127)
中文名称: L-硒代胱胺基乙酸, 硒代-DL-胱氨酸
谱图信息: 最多检出来源 Homo sapiens(blood) 77.91%

分子结构信息

SMILES: C(C(C(=O)O)N)[Se][Se]CC(C(=O)O)N
InChI: InChI=1S/C6H12N2O4Se2/c7-3(5(9)10)1-13-14-2-4(8)6(11)12/h3-4H,1-2,7-8H2,(H,9,10)(H,11,12)

描述信息

Selenocystine, also known as 3,3-diselenodialanine, belongs to the class of organic compounds known as alpha-amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxyl group (alpha carbon). More specifically, selenocystine is a diselenide consisting of two selenoamino acids that are attached together at their selenium atoms. This particular selenoamino acid is selenocysteine, the selenium analogue to cysteine (selenium being the element directly beneath sulphur in the periodic table); likewise, selenocystine is the selenium analogue to cystine. Since each constituent amino acid has a stereocentre, there are three different stereoisomers of selenocystine: D-selenocystine, L-selenocystine, and meso-selenocystine, the first two of which are optically active. Like other amino acids, L-selenocystine is the most common form within organisms; however, the D- and meso- forms have also been found (PMID: 30920149). Selenocystine is a solid that is moderately soluble in water. Due to the reactivity of selenocysteine, it is rarely encountered; rather, cells store selenium in the less reactive oxidized form of selenocystine or in a methylated form, such as selenomethionine (DOI: 10.1007/978-3-319-92405-2_3). When cells are grown in the absence of selenium, translation of selenoproteins terminates at the UGA codon, resulting in a truncated, non-functional enzyme. Unlike other amino acids present in biological proteins, selenocysteine is not coded for directly in the genetic code. Rather, the tRNA-bound seryl residue is converted to a selenocysteine residue by the pyridoxal phosphate-containing enzyme selenocysteine synthase (PMID: 17194211). Kurt Franke et al. indicated that there was evidence that selenium was in a form similar to that of cysteine, predating Thressa Stadtman’s discovery of the 21st amino acid by four decades (PMID: 26949981; J. Biol. Chem. 111:643). Selenocysteine may be denoted by the short forms Sec, U, or SeCys (Cys is used for cysteine), whereas selenocystine may be denoted by SeCys2. However, the literature sometimes uses SeCys for selenocystine and may cause confusion. Selenocystine has been found in animals, plants, and bacteria. It is being researched as treatment for cancer and for its antioxidant properties (PMID: 24763048, 24030774). Selenium, in its various forms such as selenocystine, is essential for many species, including humans, yet it is also toxic to all organisms; hence, it has come to be referred to as the “essential poison” (PMID: 26949981; 6679541).
Selenocystine is a substrate for glutathione peroxidase 1. [HMDB]
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents
L-Selenocystine is a diselenide-bridged amino acid. L-Selenocystine is a redox-active selenium compound that has both anti- and pro-oxidant actions. L-Selenocystine induces an unfolded protein response, ER stress, and large cytoplasmic vacuolization in HeLa cells and has cytostatic effects in a range of cancer cell types[1].

同义名列表

13 个代谢物同义名

2-amino-3-[(2-amino-2-carboxyethyl)diselanyl]propanoic acid; (R,R)-3,3-diselenobis-(2-aminopropionic acid); Selenocystine, (DL)-isomer; Selenocystine, (L)-isomer; Selenocystine, (D)-isomer; 3,3-Diselenobisalanine; 3,3-Diselenodialanine; D,L-Selenocystine; seleno-DL-Cystine; DL-Selenocystine; Selenium cystine; L-Selenocystine; Selenocystine



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

6 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(6)

PharmGKB(0)

1 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ALB, BCL2, CASP3, CAT, CDKN1A, GPX1, MAPK14, PTGS2, SLC9A1, TXN, TXNRD1
Peripheral membrane protein 2 HSD17B6, PTGS2
Endoplasmic reticulum membrane 3 BCL2, CD4, PTGS2
Nucleus 9 ALB, BCL2, CASP3, CDKN1A, GLRX, MAPK14, PARP1, TXN, TXNRD1
cytosol 13 ALB, BCL2, CASP3, CAT, CDKN1A, GLRX, GPT, GPX1, GSR, MAPK14, PARP1, TXN, TXNRD1
nuclear body 2 CDKN1A, PARP1
centrosome 1 ALB
nucleoplasm 7 CASP3, CDKN1A, MAPK14, PARP1, SLC9A1, TXN, TXNRD1
Cell membrane 2 CD4, SLC9A1
lamellipodium 1 SLC9A1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 SLC9A1
cell surface 1 SLC9A1
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 2 ALB, SELENOM
neuronal cell body 1 CASP3
Cytoplasm, cytosol 1 PARP1
plasma membrane 2 CD4, SLC9A1
Membrane 5 BCL2, CAT, PARP1, SELENOP, SLC9A1
apical plasma membrane 1 SLC9A1
basolateral plasma membrane 1 SLC9A1
caveola 1 PTGS2
extracellular exosome 9 ALB, CAT, GLRX, GPT, GSR, SELENOP, SLC9A1, TXN, TXNRD1
Lumenal side 1 HSD17B6
endoplasmic reticulum 5 ALB, BCL2, HSD17B6, PTGS2, SELENOM
extracellular space 2 ALB, IL6
perinuclear region of cytoplasm 3 CDKN1A, SELENOM, SLC9A1
intercalated disc 1 SLC9A1
mitochondrion 8 BCL2, CAT, GPX1, GSR, MAPK14, PARP1, SLC9A1, TXNRD1
protein-containing complex 6 ALB, BCL2, CAT, CDKN1A, PARP1, PTGS2
intracellular membrane-bounded organelle 2 CAT, HSD17B6
Microsome membrane 2 HSD17B6, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 CD4
Secreted 4 ALB, IL6, SELENOP, TXN
extracellular region 6 ALB, CAT, IL6, MAPK14, SELENOP, TXN
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 3 CAT, GPX1, GSR
anchoring junction 1 ALB
transcription regulator complex 1 PARP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 CD4, GSR
T-tubule 1 SLC9A1
nucleolus 2 CDKN1A, PARP1
Early endosome 1 CD4
Cytoplasm, perinuclear region 1 SELENOM
Membrane raft 2 CD4, SLC9A1
pore complex 1 BCL2
focal adhesion 2 CAT, SLC9A1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 ALB
chromatin 1 PARP1
Chromosome 1 PARP1
centriole 1 ALB
[Isoform 5]: Cytoplasm 1 TXNRD1
Nucleus, nucleolus 1 PARP1
spindle pole 2 ALB, MAPK14
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
blood microparticle 1 ALB
Basolateral cell membrane 1 SLC9A1
site of double-strand break 1 PARP1
fibrillar center 1 TXNRD1
nuclear envelope 1 PARP1
myelin sheath 1 BCL2
[Isoform 1]: Cytoplasm 1 TXNRD1
[Isoform 4]: Cytoplasm 1 TXNRD1
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 2 CAT, MAPK14
endoplasmic reticulum lumen 5 ALB, CD4, IL6, PTGS2, SELENOM
platelet alpha granule lumen 1 ALB
clathrin-coated endocytic vesicle membrane 1 CD4
protein-DNA complex 1 PARP1
death-inducing signaling complex 1 CASP3
site of DNA damage 1 PARP1
cyclin-dependent protein kinase holoenzyme complex 1 CDKN1A
T cell receptor complex 1 CD4
platelet dense granule lumen 1 SELENOP
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
PCNA-p21 complex 1 CDKN1A
cation-transporting ATPase complex 1 SLC9A1
ciliary transition fiber 1 ALB


文献列表

  • Lin Zhang, Wen-Yao Shi, Jia-Ying Xu, Yan Liu, Shi-Jia Wang, Jia-Yang Zheng, Yun-Hong Li, Lin-Xi Yuan, Li-Qiang Qin. Protective effects and mechanism of chemical- and plant-based selenocystine against cadmium-induced liver damage. Journal of hazardous materials. 2024 Apr; 468(?):133812. doi: 10.1016/j.jhazmat.2024.133812. [PMID: 38368684]
  • Ruifang Liu, Luhua Zhao, Jiao Li, Chuangye Zhang, Lihui Lyu, Yu Bon Man, Fuyong Wu. Influence of exogenous selenomethionine and selenocystine on uptake and accumulation of Se in winter wheat (Triticum aestivum L. cv. Xinong 979). Environmental science and pollution research international. 2023 Feb; 30(9):23887-23897. doi: 10.1007/s11356-022-23916-7. [PMID: 36331735]
  • Maria Angels Subirana, Roberto Boada, Tingting Xiao, Mercè Llugany, Manuel Valiente. Direct and indirect selenium speciation in biofortified wheat: A tale of two techniques. Physiologia plantarum. 2023 Jan; 175(1):e13843. doi: 10.1111/ppl.13843. [PMID: 36538026]
  • Peng-Cheng Zhu, Yong-Xiang Chen. Facile Synthesis of Boc-Protected Selenocystine and its Compatibility with Late-Stage Farnesylation at Cysteine Site. Protein and peptide letters. 2021; 28(6):603-611. doi: 10.2174/0929866527666201223094249. [PMID: 33357178]
  • Wenyi Zheng, Rui He, Roberto Boada, Maria Angels Subirana, Tobias Ginman, Håkan Ottosson, Manuel Valiente, Ying Zhao, Moustapha Hassan. A general covalent binding model between cytotoxic selenocompounds and albumin revealed by mass spectrometry and X-ray absorption spectroscopy. Scientific reports. 2020 01; 10(1):1274. doi: 10.1038/s41598-020-57983-y. [PMID: 31988319]
  • Ting Hu, Yue Liang, Guishen Zhao, Wenliang Wu, Huafen Li, Yanbin Guo. Selenium Biofortification and Antioxidant Activity in Cordyceps militaris Supplied with Selenate, Selenite, or Selenomethionine. Biological trace element research. 2019 Feb; 187(2):553-561. doi: 10.1007/s12011-018-1386-y. [PMID: 29855849]
  • Meng-Jie He, Shuang-Qing Zhang, Liping Liu, Feng Han, Yingjuan Chai, Jie Zhang, Shijin Wang, Qin Wang, Yiqun Liu, Licui Sun, Jiaxi Lu, Qiu Yang, Linghe Huang, Zhen-Wu Huang. Breast milk selenocystine as a biomarker for selenium intake in lactating women at differential geographical deficiency risk in China. Asia Pacific journal of clinical nutrition. 2019; 28(2):341-346. doi: 10.6133/apjcn.201906_28(2).0016. [PMID: 31192563]
  • Kazuaki Takahashi, Noriyuki Suzuki, Yasumitsu Ogra. Effect of administration route and dose on metabolism of nine bioselenocompounds. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS). 2018 Sep; 49(?):113-118. doi: 10.1016/j.jtemb.2018.05.007. [PMID: 29895359]
  • Jorge Moreda-Piñeiro, Joel Sánchez-Piñero, Adriana Mañana-López, Isabel Turnes-Carou, Elia Alonso-Rodríguez, Purificación López-Mahía, Soledad Muniategui-Lorenzo. Selenium species determination in foods harvested in Seleniferous soils by HPLC-ICP-MS after enzymatic hydrolysis assisted by pressurization and microwave energy. Food research international (Ottawa, Ont.). 2018 09; 111(?):621-630. doi: 10.1016/j.foodres.2018.06.003. [PMID: 30007726]
  • Han Wang, Beibei Chen, Man He, Xiaoxiao Yu, Bin Hu. Selenocystine against methyl mercury cytotoxicity in HepG2 cells. Scientific reports. 2017 03; 7(1):147. doi: 10.1038/s41598-017-00231-7. [PMID: 28273949]
  • Yonghong Fan, Xiaxin Pan, Ke Wang, Sisi Wu, Honghong Han, Ping Yang, Rifang Luo, Hong Wang, Nan Huang, Wei Tan, Yajun Weng. Influence of chirality on catalytic generation of nitric oxide and platelet behavior on selenocystine immobilized TiO2 films. Colloids and surfaces. B, Biointerfaces. 2016 Sep; 145(?):122-129. doi: 10.1016/j.colsurfb.2016.04.043. [PMID: 27153116]
  • Kunlun Liu, Yan Zhao, Fusheng Chen, Yong Fang. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein. Food chemistry. 2015 Nov; 187(?):424-30. doi: 10.1016/j.foodchem.2015.04.086. [PMID: 25977046]
  • Lizhen He, Haoqiang Lai, Tianfeng Chen. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways. Biomaterials. 2015 May; 51(?):30-42. doi: 10.1016/j.biomaterials.2015.01.063. [PMID: 25770995]
  • A Terol, F Ardini, A Basso, M Grotti. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry. Journal of chromatography. A. 2015 Feb; 1380(?):112-9. doi: 10.1016/j.chroma.2014.12.071. [PMID: 25582485]
  • Kristýna Šindelářová, Jiřina Száková, Jana Tremlová, Oto Mestek, Lukáš Praus, Antonín Kaňa, Jana Najmanová, Pavel Tlustoš. The response of broccoli (Brassica oleracea convar. italica) varieties on foliar application of selenium: uptake, translocation, and speciation. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment. 2015; 32(12):2027-38. doi: 10.1080/19440049.2015.1099744. [PMID: 26414440]
  • C E Deutch, I Spahija, C E Wagner. Susceptibility of Escherichia coli to the toxic L-proline analogue L-selenaproline is dependent on two L-cystine transport systems. Journal of applied microbiology. 2014 Nov; 117(5):1487-99. doi: 10.1111/jam.12623. [PMID: 25139244]
  • Kristen R Hladun, Osman Kaftanoglu, David R Parker, Khoa D Tran, John T Trumble. Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.). Environmental toxicology and chemistry. 2013 Nov; 32(11):2584-92. doi: 10.1002/etc.2357. [PMID: 24115124]
  • Jorge Moreda-Piñeiro, Antonio Moreda-Piñeiro, Vanessa Romarís-Hortas, Raquel Domínguez-González, Elia Alonso-Rodríguez, Purificación López-Mahía, Soledad Muniategui-Lorenzo, Darío Prada-Rodríguez, Pilar Bermejo-Barrera. In vitro bioavailability of total selenium and selenium species from seafood. Food chemistry. 2013 Aug; 139(1-4):872-7. doi: 10.1016/j.foodchem.2013.01.116. [PMID: 23561184]
  • Carolin S Hoefig, Kostja Renko, Josef Köhrle, Marc Birringer, Lutz Schomburg. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. The Journal of nutritional biochemistry. 2011 Oct; 22(10):945-55. doi: 10.1016/j.jnutbio.2010.08.006. [PMID: 21190829]
  • Nazia Uzma, B Santhosh Kumar, K I Priyadarsini. Hepatoprotective, immunomodulatory, and anti-inflammatory activities of selenocystine in experimental liver injury of rats. Biological trace element research. 2011 Sep; 142(3):723-34. doi: 10.1007/s12011-010-8807-x. [PMID: 20737246]
  • B Santhosh Kumar, Amit Kunwar, Beena G Singh, Adeel Ahmad, K Indira Priyadarsini. Anti-hemolytic and peroxyl radical scavenging activity of organoselenium compounds: an in vitro study. Biological trace element research. 2011 May; 140(2):127-38. doi: 10.1007/s12011-010-8692-3. [PMID: 20424929]
  • Amit Kunwar, S Jayakumar, H N Bhilwade, P P Bag, H Bhatt, R C Chaubey, K I Priyadarsini. Protective effects of selenocystine against γ-radiation-induced genotoxicity in Swiss albino mice. Radiation and environmental biophysics. 2011 May; 50(2):271-80. doi: 10.1007/s00411-011-0352-2. [PMID: 21259021]
  • F Moreno, T García-Barrera, J L Gómez-Ariza. Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS. The Analyst. 2010 Oct; 135(10):2700-5. doi: 10.1039/c0an00090f. [PMID: 20725669]
  • B Santhosh Kumar, Amit Kunwar, A Ahmad, L B Kumbhare, V K Jain, K I Priyadarsini. In vitro radioprotection studies of organoselenium compounds: differences between mono- and diselenides. Radiation and environmental biophysics. 2009 Nov; 48(4):379-84. doi: 10.1007/s00411-009-0240-1. [PMID: 19756688]
  • Adam P Lothrop, Erik L Ruggles, Robert J Hondal. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue. Biochemistry. 2009 Jul; 48(26):6213-23. doi: 10.1021/bi802146w. [PMID: 19366212]
  • A Nickel, G Kottra, G Schmidt, J Danier, T Hofmann, H Daniel. Characteristics of transport of selenoamino acids by epithelial amino acid transporters. Chemico-biological interactions. 2009 Feb; 177(3):234-41. doi: 10.1016/j.cbi.2008.09.008. [PMID: 18845132]
  • Yingying Su, He Chen, Ying Gao, Xiaohong Li, Xiandeng Hou, Yi Lv. A novel HPLC-UV/nano-TiO2-chemiluminescence system for the determination of selenocystine and selenomethionine. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2008 Jul; 870(2):216-21. doi: 10.1016/j.jchromb.2008.06.012. [PMID: 18585988]
  • L Ayouni, F Barbier, J L Imbert, J Y Gauvrit, P Lantéri, M F Grenier-Loustalot. New separation method for organic and inorganic selenium compounds based on anion exchange chromatography followed by inductively coupled plasma mass spectrometry. Analytical and bioanalytical chemistry. 2006 Aug; 385(8):1504-12. doi: 10.1007/s00216-006-0550-y. [PMID: 16858565]
  • Lina Liang, Shumin Mo, Ping Zhang, Yaqi Cai, Shifen Mou, Guibin Jiang, Meijuan Wen. Selenium speciation by high-performance anion-exchange chromatography-post-column UV irradiation coupled with atomic fluorescence spectrometry. Journal of chromatography. A. 2006 Jun; 1118(1):139-43. doi: 10.1016/j.chroma.2006.03.113. [PMID: 16635492]
  • J B Taylor, J W Finley, J S Caton. Effect of the chemical form of supranutritional selenium on selenium load and selenoprotein activities in virgin, pregnant, and lactating rats. Journal of animal science. 2005 Feb; 83(2):422-9. doi: 10.2527/2005.832422x. [PMID: 15644515]
  • Thavarith Chunhieng, Konstantinos Pétritis, Claire Elfakir, José Brochier, Thierry Goli, Didier Montet. Study of selenium distribution in the protein fractions of the Brazil nut, Bertholletia excelsa. Journal of agricultural and food chemistry. 2004 Jun; 52(13):4318-22. doi: 10.1021/jf049643e. [PMID: 15212486]
  • Anne P Vonderheide, Kazimierz Wrobel, Sasi S Kannamkumarath, Clayton B'Hymer, Maria Montes-Bayón, Claudia Ponce De León, Joseph A Caruso. Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. Journal of agricultural and food chemistry. 2002 Sep; 50(20):5722-8. doi: 10.1021/jf0256541. [PMID: 12236705]
  • Maïté Bueno, Martine Potin-Gautier. Solid-phase extraction for the simultaneous preconcentration of organic (selenocystine) and inorganic [Se(IV), Se(VI)] selenium in natural waters. Journal of chromatography. A. 2002 Jul; 963(1-2):185-93. doi: 10.1016/s0021-9673(02)00125-5. [PMID: 12187969]
  • N Gupta, T D Porter. Garlic and garlic-derived compounds inhibit human squalene monooxygenase. The Journal of nutrition. 2001 Jun; 131(6):1662-7. doi: 10.1093/jn/131.6.1662. [PMID: 11385050]
  • X Guo, L Wu. Distribution of free seleno-amino acids in plant tissue of Melilotus indica L. grown in selenium-laden soils. Ecotoxicology and environmental safety. 1998 Mar; 39(3):207-14. doi: 10.1006/eesa.1997.1628. [PMID: 9570912]
  • R Gopalakrishna, Z H Chen, U Gundimeda. Selenocompounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Archives of biochemistry and biophysics. 1997 Dec; 348(1):37-48. doi: 10.1006/abbi.1997.0335. [PMID: 9390172]
  • M Björnstedt, M Hamberg, S Kumar, J Xue, A Holmgren. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. The Journal of biological chemistry. 1995 May; 270(20):11761-4. doi: 10.1074/jbc.270.20.11761. [PMID: 7744824]
  • T Hasegawa, M Mihara, T Okuno, K Nakamuro, Y Sayato. Chemical form of selenium-containing metabolite in small intestine and liver of mice following orally administered selenocystine. Archives of toxicology. 1995; 69(5):312-7. doi: 10.1007/s002040050176. [PMID: 7654135]
  • T Hasegawa, M Mihara, K Nakamuro, Y Sayato. Distribution and chemical form of selenium in mice after administration of selenocystine. Biological & pharmaceutical bulletin. 1994 Sep; 17(9):1215-9. doi: 10.1248/bpb.17.1215. [PMID: 7841942]
  • T Hasegawa, S Taniguchi, M Mihara, K Nakamuro, Y Sayato. Toxicity and chemical form of selenium in the liver of mice orally administered selenocystine for 90 days. Archives of toxicology. 1994; 68(2):91-5. doi: 10.1007/s002040050040. [PMID: 8179487]
  • H W Lane, R Strength, J Johnson, M White. Effect of chemical form of selenium on tissue glutathione peroxidase activity in developing rats. The Journal of nutrition. 1991 Jan; 121(1):80-6. doi: 10.1093/jn/121.1.80. [PMID: 1992061]
  • W B Davidson, C H McMurray. 75Selenium-labeled sheep plasma: the time course of changes in 75selenium distribution. Journal of inorganic biochemistry. 1988 Sep; 34(1):1-9. doi: 10.1016/0162-0134(88)85012-8. [PMID: 3216198]
  • M L Hu, A L Tappel. Selenium as a sulfhydryl redox catalyst and survey of potential selenium-dependent enzymes. Journal of inorganic biochemistry. 1987 Jul; 30(3):239-48. doi: 10.1016/0162-0134(87)80067-3. [PMID: 2821193]
  • N S Alabi, P D Whanger, A S Wu. Interactive effects of organic and inorganic selenium with cadmium and mercury on spermatozoal oxygen consumption and motility in vitro. Biology of reproduction. 1985 Nov; 33(4):911-9. doi: 10.1095/biolreprod33.4.911. [PMID: 4084636]
  • M Czauderna, J Konecki, M Wolna. Variation of Se, Zn, Co, Fe and Rb distribution in rats after injection with selenium or sulfur compounds. The International journal of applied radiation and isotopes. 1984 Dec; 35(12):1121-4. doi: 10.1016/0020-708x(84)90145-5. [PMID: 6530302]
  • K A Poirier, J A Milner. Factors influencing the antitumorigenic properties of selenium in mice. The Journal of nutrition. 1983 Nov; 113(11):2147-54. doi: 10.1093/jn/113.11.2147. [PMID: 6631533]
  • O Leiva, F Lozano, C Ramos, P Paniagua, V Borobia. [Diagnosis of renal angiomyolipoma by means of computerized axial tomography]. Actas urologicas espanolas. 1979 Jan; 3(1):43-6. doi: NULL. [PMID: 452977]
  • M O James, J R Fouts, J R Bend. Hepatic and extrahepatic metabolism, in vitro, of an epoxide (8-(14) C-styrene oxide) in the rabbit. Biochemical pharmacology. 1976 Jan; 25(2):187-93. doi: 10.1016/0006-2952(76)90289-6. [PMID: 4076]
  • C D Thomson, B A Robinson, R D Stewart, M F Robinson. Metabolic studies of [75Se]selenocystine and [75Se]selenomethionine in the rat. The British journal of nutrition. 1975 Nov; 34(3):501-9. doi: 10.1017/s0007114575000542. [PMID: 1201271]
  • S Fiocca, A Basilico, G Vago. [Automatic method for determination of serum antistreptolysin]. Quaderni Sclavo di diagnostica clinica e di laboratorio. 1975 Sep; 11(3):696-702. doi: NULL. [PMID: 3821]