Tricetin (BioDeep_00000000704)
Main id: BioDeep_00000007863
Secondary id: BioDeep_00000400508
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C15H10O7 (302.0427)
中文名称: 三粒小麦黄酮
谱图信息:
最多检出来源 Viridiplantae(plant) 27.88%
分子结构信息
SMILES: C12C(=O)C=C(C3C=C(O)C(O)=C(O)C=3)OC=1C=C(O)C=C2O
InChI: InChI=1S/C15H10O7/c16-7-3-8(17)14-9(18)5-12(22-13(14)4-7)6-1-10(19)15(21)11(20)2-6/h1-5,16-17,19-21H
描述信息
Tricetin is flavone hydroxylated at positions 3, 4, 5, 5 and 7. It has a role as an antineoplastic agent and a metabolite. It is a conjugate acid of a tricetin(1-).
Tricetin is a natural product found in Punica granatum, Lathyrus pratensis, and other organisms with data available.
Constituent of the seed coat of lentil (Lens culinaris). Tricetin is found in many foods, some of which are ginkgo nuts, pulses, tea, and cereals and cereal products.
Tricetin is found in cereals and cereal products. Tricetin is a constituent of the seed coat of lentil (Lens culinaris)
Flavone hydroxylated at positions 3, 4, 5, 5 and 7.
同义名列表
26 个代谢物同义名
2-(3,4,5-TRIHYDROXYPHENYL)-5,7-DIHYDROXY-4H-1-BENZOPYRAN-4-ONE; PENTAHYDROXYFLAVONE; 5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one, 9CI; 4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-; 5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-1-benzopyran-4-one; 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one; 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one; 3,4,5,5,7-pentahydroxyflavone; 5,7,3,4,5-pentahydroxyflavone; 5,7,3,4,5-Pentahydroxyflavone; ARSRJFRKVXALTF-UHFFFAOYSA-N; Spectrum3_001617; Spectrum5_000615; Spectrum4_001678; Spectrum2_000741; DivK1c_006922; KBio3_002473; KBio2_007207; KBio2_002071; KBio1_001866; KBio2_004639; Hieracin; Tricetin; 2o65; MYF; Tricetin; Isoetin
数据库引用编号
29 个数据库交叉引用编号
- ChEBI: CHEBI:507499
- KEGG: C10192
- PubChem: 5281701
- HMDB: HMDB0029620
- Metlin: METLIN44037
- DrugBank: DB08230
- ChEMBL: CHEMBL247484
- Wikipedia: Tricetin
- LipidMAPS: LMPK12110847
- MeSH: tricetin
- ChemIDplus: 0000520310
- MetaCyc: CPD-12570
- KNApSAcK: C00013328
- foodb: FDB000790
- chemspider: 4445018
- CAS: 520-31-0
- CAS: 1621-84-7
- medchemexpress: HY-131592
- PMhub: MS000000707
- MetaboLights: MTBLC507499
- PubChem: 12378
- PDB-CCD: MYF
- 3DMET: B01121
- NIKKAJI: J11.687D
- KNApSAcK: 507499
- KEGG: C10079
- PubChem: 12265
- KNApSAcK: 6006
- LOTUS: LTS0163585
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
46 个相关的物种来源信息
- 4210 - Asteraceae: LTS0163585
- 74350 - Biebersteinia: LTS0163585
- 74351 - Biebersteinia orphanidis: 10.1016/S0031-9422(00)00355-1
- 74351 - Biebersteinia orphanidis: LTS0163585
- 91850 - Biebersteiniaceae: LTS0163585
- 4441 - Camellia: LTS0163585
- 4442 - Camellia sinensis:
- 4442 - Camellia sinensis: 10.1007/BF00580092
- 4442 - Camellia sinensis: 10.1038/S41467-020-19441-1
- 4442 - Camellia sinensis: LTS0163585
- 3781 - Crassulaceae: LTS0163585
- 2759 - Eukaryota: LTS0163585
- 3803 - Fabaceae: LTS0163585
- 3493 - Ficus: LTS0163585
- 66386 - Ficus pumila: 10.1016/S0305-1978(99)00064-2
- 66386 - Ficus pumila: LTS0163585
- 102745 - Hieracium: LTS0163585
- 9606 - Homo sapiens: -
- 3325 - Larix: LTS0163585
- 62751 - Larix sibirica: 10.1007/BF00564355
- 62751 - Larix sibirica: LTS0163585
- 3853 - Lathyrus: LTS0163585
- 254779 - Lathyrus pratensis: 10.1016/0305-1978(93)90077-5
- 254779 - Lathyrus pratensis: LTS0163585
- 3928 - Lythraceae: LTS0163585
- 3398 - Magnoliopsida: LTS0163585
- 3487 - Moraceae: LTS0163585
- 122543 - Pilosella: LTS0163585
- 221204 - Pilosella officinarum: 10.1007/978-3-540-71095-0_4752
- 221204 - Pilosella officinarum: LTS0163585
- 3318 - Pinaceae: LTS0163585
- 58019 - Pinopsida: LTS0163585
- 22662 - Punica: LTS0163585
- 22663 - Punica granatum:
- 22663 - Punica granatum: 10.1248/CPB.56.1628
- 22663 - Punica granatum: LTS0163585
- 202994 - Rhodiola: LTS0163585
- 487764 - Rhodiola quadrifida:
- 487764 - Rhodiola quadrifida: 10.1248/CPB.43.1245
- 487764 - Rhodiola quadrifida: 10.1248/CPB.44.2086
- 487764 - Rhodiola quadrifida: LTS0163585
- 35493 - Streptophyta: LTS0163585
- 27065 - Theaceae: LTS0163585
- 58023 - Tracheophyta: LTS0163585
- 33090 - Viridiplantae: LTS0163585
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Vladimir Chobot, Franz Hadacek, Gert Bachmann, Wolfram Weckwerth, Lenka Kubicova. In Vitro Evaluation of Pro- and Antioxidant Effects of Flavonoid Tricetin in Comparison to Myricetin.
Molecules (Basel, Switzerland).
2020 Dec; 25(24):. doi:
10.3390/molecules25245850
. [PMID: 33322312] - Niannian Wang, Feifei Zhu, Mingxiang Shen, Lipeng Qiu, Min Tang, Hengchuan Xia, Liang Chen, Yi Yuan, Shangshang Ma, Keping Chen. Network pharmacology-based analysis on bioactive anti-diabetic compounds in Potentilla discolor bunge.
Journal of ethnopharmacology.
2019 Sep; 241(?):111905. doi:
10.1016/j.jep.2019.111905
. [PMID: 31022565] - Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain.
Bioorganic & medicinal chemistry letters.
2017 02; 27(3):420-426. doi:
10.1016/j.bmcl.2016.12.051
. [PMID: 28049590] - Aymerick Eudes, Tanmoy Dutta, Kai Deng, Nicolas Jacquet, Anagh Sinha, Veronica T Benites, Edward E K Baidoo, Aurore Richel, Scott E Sattler, Trent R Northen, Seema Singh, Blake A Simmons, Dominique Loqué. SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum.
PloS one.
2017; 12(6):e0178160. doi:
10.1371/journal.pone.0178160
. [PMID: 28594846] - Atsuyoshi Nishina, Motohiko Ukiya, Makoto Fukatsu, Mamoru Koketsu, Masayuki Ninomiya, Daisuke Sato, Junpei Yamamoto, Kazuo Kobayashi-Hattori, Takeshi Okubo, Hideyo Tokuoka, Hirokazu Kimura. Effects of Various 5,7-Dihydroxyflavone Analogs on Adipogenesis in 3T3-L1 Cells.
Biological & pharmaceutical bulletin.
2015; 38(11):1794-800. doi:
10.1248/bpb.b15-00489
. [PMID: 26521830] - Jian-Chun Qin, Ya-Mei Zhang, Chen-Yong Lang, Yan-Hua Yao, Hong-Yu Pan, Xiang Li. Cloning and functional characterization of a caffeic acid O-methyltransferase from Trigonella foenum-graecum L.
Molecular biology reports.
2012 Feb; 39(2):1601-8. doi:
10.1007/s11033-011-0899-7
. [PMID: 21604170] - Thomas Widiez, Thomas G Hartman, Nativ Dudai, Qing Yan, Michael Lawton, Daphna Havkin-Frenkel, Faith C Belanger. Functional characterization of two new members of the caffeoyl CoA O-methyltransferase-like gene family from Vanilla planifolia reveals a new class of plastid-localized O-methyltransferases.
Plant molecular biology.
2011 Aug; 76(6):475-88. doi:
10.1007/s11103-011-9772-2
. [PMID: 21629984] - Margarita D Marinova, Bozhidar P Tchorbanov. Preparation of antioxidant enzymatic hydrolysates from honeybee-collected pollen using plant enzymes.
Enzyme research.
2011 Jan; 2010(?):415949. doi:
10.4061/2010/415949
. [PMID: 21318132] - Jian-Min Zhou, Eunjung Lee, Francesca Kanapathy-Sinnaiaha, Younghee Park, Jack A Kornblatt, Yoongho Lim, Ragai K Ibrahim. Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis.
BMC plant biology.
2010 Jul; 10(?):156. doi:
10.1186/1471-2229-10-156
. [PMID: 20670441] - Li-Wen Tian, Ying-Jun Zhang, Chang Qu, Yi-Fei Wang, Chong-Ren Yang. Phloroglucinol glycosides from the fresh fruits of Eucalyptus maideni.
Journal of natural products.
2010 Feb; 73(2):160-3. doi:
10.1021/np900530n
. [PMID: 20092288] - Xiaoyun Meng, Larissa A Munishkina, Anthony L Fink, Vladimir N Uversky. Effects of Various Flavonoids on the α-Synuclein Fibrillation Process.
Parkinson's disease.
2010 Jan; 2010(?):650794. doi:
10.4061/2010/650794
. [PMID: 20976092] - Luisa Pistelli, Alessandra Bertoli, Cecilia Noccioli, Jeanette Mendez, Rosa Anna Musmanno, Tiziana Di Maggio, Grazietta Coratza. Antimicrobial activity of Inga fendleriana extracts and isolated flavonoids.
Natural product communications.
2009 Dec; 4(12):1679-83. doi:
"
. [PMID: 20120106] - Qi Wu, Xiuwei Yang, Lei Zou, Dexian Fu. [Bioactivity guided isolation of alpha-glucosidase inhibitor from whole herbs of Crossostephium chinense].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Sep; 34(17):2206-11. doi:
. [PMID: 19943487]
- Jian-Min Zhou, Nicholas D Gold, Vincent J J Martin, Eckhard Wollenweber, Ragai K Ibrahim. Sequential O-methylation of tricetin by a single gene product in wheat.
Biochimica et biophysica acta.
2006 Jul; 1760(7):1115-24. doi:
10.1016/j.bbagen.2006.02.008
. [PMID: 16730127] - Hong-Bing Wang, Hui Yao, Guan-Hu Bao, Hua-Ping Zhang, Guo-Wei Qin. Flavone glucosides with immunomodulatory activity from the leaves of Pleioblastus amarus.
Phytochemistry.
2004 Apr; 65(7):969-74. doi:
10.1016/j.phytochem.2003.11.013
. [PMID: 15081303] - Jenny Greenham, Jeffrey B Harborne, Christine A Williams. Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis.
Phytochemical analysis : PCA.
2003 Mar; 14(2):100-18. doi:
10.1002/pca.693
. [PMID: 12693635] - . .
.
. doi:
. [PMID: 21343428]