Farrerol (BioDeep_00000229908)

 

Secondary id: BioDeep_00000000322

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(2S)-2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl)-6,8-dimethyl-4H-1-benzopyran-4-one

化学式: C17H16O5 (300.0998)
中文名称: 杜鹃素
谱图信息: 最多检出来源 Homo sapiens(plant) 10.57%

分子结构信息

SMILES: C1(O)=C(C)C2O[C@H](C3C=CC(O)=CC=3)CC(=O)C=2C(O)=C1C
InChI: InChI=1S/C17H16O5/c1-8-15(20)9(2)17-14(16(8)21)12(19)7-13(22-17)10-3-5-11(18)6-4-10/h3-6,13,18,20-21H,7H2,1-2H3

描述信息

Farrerol is an organic molecular entity. It has a role as a metabolite.
(S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone is a natural product found in Rhododendron spinuliferum, Wikstroemia canescens, and other organisms with data available.
Farrerol is a natural product found in Daphne aurantiaca, Rhododendron farrerae, and Rhododendron dauricum with data available.
Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].
Farrerol is a bioactive constituent of Rhododendron, with broad activities such as anti-oxidative, anti-inflammatory, anti-tumor, neuroprotective and hepatoprotective effects[1][2][3][4][5][6].

同义名列表

25 个代谢物同义名

(2S)-2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl)-6,8-dimethyl-4H-1-benzopyran-4-one; (2~{S})-2-(4-hydroxyphenyl)-6,8-dimethyl-5,7-bis(oxidanyl)-2,3-dihydrochromen-4-one; 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-2,3-dihydro-4H-1-benzopyran-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-2,3-dihydrochromen-4-one; (S)-2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-benzopyrone; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-chroman-4-one; (S)-5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethylchroman-4-one; 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethylchroman-4-one; 6,8-DIMETHYL-4,5,7-TRIHYDROXYFLAVANONE; Farrerol, >=98\\% (HPLC); Farrerol; AC1L9CQK; JXY; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethylchroman-4-one; (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-4-chromanone; 24211-30-1; C09734; 5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-3,4-dihydro-2H-1-benzopyran-4-one; 2,3-Dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-4H-1-benzopyran-4-one; 5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-dimethyl-2,3-dihydrochromen-4-one; FMOC-1-AMINO-1-CYCLODECANECARBOXYLICACID; 6,8-dimethyl-5,7,4-trihydroxyflavanone; MEGxp0_000361; Farrerol,(S); Farrerol



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

66 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 BCL2, CASP9, CDH1, KEAP1, MAPK14, MAPK8, NLRP3, NOX4, NQO1, PIK3CA, PTGS2, RAD51, VIM
Peripheral membrane protein 2 GORASP1, PTGS2
Endoplasmic reticulum membrane 5 BCL2, HMOX1, NOX4, PTGS2, SPP1
Nucleus 13 BCL2, CASP9, CDH1, GABPA, GPX4, HMOX1, KEAP1, MAPK14, MAPK8, NLRP3, NOX4, NQO1, RAD51
cytosol 13 BCL2, CASP9, CDH1, GPX4, HMOX1, KEAP1, MAPK14, MAPK8, NLRP3, NQO1, PIK3CA, RAD51, VIM
dendrite 1 NQO1
phagocytic vesicle 1 VIM
trans-Golgi network 1 CDH1
centrosome 1 RAD51
nucleoplasm 7 CDH1, GABPA, HMOX1, KEAP1, MAPK14, MAPK8, RAD51
Cell membrane 5 CDH1, NOX4, SPP1, TNF, VIM
Cytoplasmic side 2 GORASP1, HMOX1
lamellipodium 2 CDH1, PIK3CA
Multi-pass membrane protein 2 NOX4, SPP1
Golgi apparatus membrane 2 GORASP1, NLRP3
Synapse 2 MAPK8, NQO1
cell junction 1 CDH1
cell surface 1 TNF
glutamatergic synapse 2 CDH1, MAPK14
Golgi apparatus 3 CDH1, GORASP1, SPP1
Golgi membrane 2 GORASP1, NLRP3
neuronal cell body 2 NQO1, TNF
postsynapse 1 CDH1
Cytoplasm, cytosol 2 NLRP3, NQO1
endosome 1 CDH1
plasma membrane 6 CDH1, NOX4, PIK3CA, SPP1, TNF, VIM
Membrane 6 BCL2, CDH1, HMOX1, NLRP3, NOX4, NQO1
axon 2 MAPK8, VIM
caveola 1 PTGS2
extracellular exosome 4 CDH1, GPX4, SPP1, VIM
endoplasmic reticulum 6 BCL2, HMOX1, KEAP1, NLRP3, NOX4, PTGS2
extracellular space 4 HMOX1, IL6, SPP1, TNF
perinuclear region of cytoplasm 6 CDH1, HMOX1, NOX4, PIK3CA, RAD51, SPP1
adherens junction 1 CDH1
intercalated disc 1 PIK3CA
mitochondrion 7 BCL2, CASP9, GPX4, MAPK14, NLRP3, NOX4, RAD51
protein-containing complex 5 BCL2, CASP9, GPX4, PTGS2, RAD51
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 1 CDH1
Secreted 3 IL6, NLRP3, SPP1
extracellular region 6 CDH1, IL6, MAPK14, NLRP3, SPP1, TNF
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
Mitochondrion matrix 1 RAD51
mitochondrial matrix 1 RAD51
centriolar satellite 1 KEAP1
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 RAD51
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, CDH1
external side of plasma membrane 1 TNF
actin cytoskeleton 1 CDH1
nucleolus 2 NOX4, RAD51
midbody 1 KEAP1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 NOX4
Membrane raft 1 TNF
pore complex 1 BCL2
Cell junction, focal adhesion 1 NOX4
Cytoplasm, cytoskeleton 1 VIM
focal adhesion 2 NOX4, VIM
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
Peroxisome 1 VIM
PML body 1 RAD51
intermediate filament 1 VIM
lateral plasma membrane 1 CDH1
nuclear speck 1 MAPK14
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 2 PTGS2, VIM
chromatin 2 GABPA, RAD51
cell leading edge 1 VIM
cell projection 1 SPP1
phagocytic cup 1 TNF
Chromosome 1 RAD51
cytoskeleton 1 VIM
[Isoform 5]: Cytoplasm 1 NOX4
Golgi apparatus, trans-Golgi network 1 CDH1
Nucleus, nucleolus 1 NOX4
spindle pole 1 MAPK14
chromosome, telomeric region 1 RAD51
nuclear chromosome 1 RAD51
actin filament 1 KEAP1
site of double-strand break 1 RAD51
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 1 GPX4
Endomembrane system 1 NLRP3
microtubule organizing center 2 NLRP3, VIM
lateral element 1 RAD51
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 VIM
[Isoform 3]: Cytoplasm 1 NOX4
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 3 IL6, PTGS2, SPP1
nuclear matrix 1 VIM
male germ cell nucleus 1 RAD51
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
anaphase-promoting complex 1 CDH1
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
perinuclear endoplasmic reticulum 1 NOX4
Nucleus matrix 1 VIM
apoptosome 1 CASP9
condensed nuclear chromosome 1 RAD51
[Isoform 2]: Nucleus 1 CDH1
basal dendrite 1 MAPK8
apical junction complex 1 CDH1
condensed chromosome 1 RAD51
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
catenin complex 1 CDH1
[Isoform 4]: Nucleus 1 NOX4
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
inclusion body 1 KEAP1
NADPH oxidase complex 1 NOX4
interleukin-6 receptor complex 1 IL6
presynaptic intermediate filament cytoskeleton 1 RAD51
[Isoform Mitochondrial]: Mitochondrion 1 GPX4
BAD-BCL-2 complex 1 BCL2
[Isoform 6]: Cytoplasm 1 NOX4
[Isoform Cytoplasmic]: Cytoplasm 1 GPX4
nuclear ubiquitin ligase complex 1 RAD51
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Y Li, T Wang, P Sun, W Zhu, Y Chen, M Chen, X Yang, X Du, Y Zhao. Farrerol Alleviates Hypoxic-Ischemic Encephalopathy by Inhibiting Ferroptosis in Neonatal Rats via the Nrf2 Pathway. Physiological research. 2023 Aug; 72(4):511-520. doi: . [PMID: 37795893]
  • Xiaojiang Qin, Xinrong Xu, Xiaomin Hou, Ruifeng Liang, Liangjing Chen, Yuxuan Hao, Anqi Gao, Xufeng Du, Liangyuan Zhao, Yiwei Shi, Qingshan Li. The pharmacological properties and corresponding mechanisms of farrerol: a comprehensive review. Pharmaceutical biology. 2022 Dec; 60(1):9-16. doi: 10.1080/13880209.2021.2006723. [PMID: 34846222]
  • Yongfu Wu, Jun Qian, Kang Li, Wenjun Li, Wenhua Yin, Huaji Jiang. Farrerol alleviates collagenase-induced tendinopathy by inhibiting ferroptosis in rats. Journal of cellular and molecular medicine. 2022 06; 26(12):3483-3494. doi: 10.1111/jcmm.17388. [PMID: 35582962]
  • Tingting Zhang, Hui Liu, Min Liu, Chunhong Wang. Farrerol suppresses the progression of laryngeal squamous cell carcinoma via the mitochondria-mediated pathway. European journal of pharmacology. 2021 Dec; 913(?):174636. doi: 10.1016/j.ejphar.2021.174636. [PMID: 34801529]
  • Chao Liang, Louise Kjaerulff, Paul Robert Hansen, Kenneth T Kongstad, Dan Staerk. Dual High-Resolution α-Glucosidase and PTP1B Inhibition Profiling Combined with HPLC-PDA-HRMS-SPE-NMR Analysis for the Identification of Potentially Antidiabetic Chromene Meroterpenoids from Rhododendron capitatum. Journal of natural products. 2021 09; 84(9):2454-2467. doi: 10.1021/acs.jnatprod.1c00454. [PMID: 34460246]
  • Enli Liu, Shasha Shi, Jie Li, Rui Ge, Taigang Liang, Qingshan Li. Farrerol maintains the contractile phenotype of VSMCs via inactivating the extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase signaling. Molecular and cellular biochemistry. 2020 Dec; 475(1-2):249-260. doi: 10.1007/s11010-020-03878-5. [PMID: 32840737]
  • Annie Laure Ngankeu Pagning, Jean-de-Dieu Tamokou, Bushra Taj Muhammad, David Ngnokam, Leon AzefackTapondjou, Mohammad Shaiq Ali, Muhammad Waqar Hameed. Potential anti-proliferative effects of chemical constituents and hemisynthetic derivatives from Scadoxus pseudocaulus (Amarillydaceae). African health sciences. 2020 Mar; 20(1):469-475. doi: 10.4314/ahs.v20i1.53. [PMID: 33402935]
  • Chaoqun Yan, Xiaoyan Zhang, Junqiu Miao, Hongxia Yuan, Enli Liu, Taigang Liang, Qingshan Li. Farrerol Directly Targets GSK-3β to Activate Nrf2-ARE Pathway and Protect EA.hy926 Cells against Oxidative Stress-Induced Injuries. Oxidative medicine and cellular longevity. 2020; 2020(?):5967434. doi: 10.1155/2020/5967434. [PMID: 32082480]
  • Jintuo Yin, Yinling Ma, Caijuan Liang, Hairong Wang, Yupeng Sun, Lantong Zhang, Qingzhong Jia. A Complete Study of Farrerol Metabolites Produced in Vivo and in Vitro. Molecules (Basel, Switzerland). 2019 Sep; 24(19):. doi: 10.3390/molecules24193470. [PMID: 31554336]
  • Yannan Li, Jing Ning, Yan Wang, Chao Wang, Chengpeng Sun, Xiaokui Huo, Zhenlong Yu, Lei Feng, Baojing Zhang, Xiangge Tian, Xiaochi Ma. Drug interaction study of flavonoids toward CYP3A4 and their quantitative structure activity relationship (QSAR) analysis for predicting potential effects. Toxicology letters. 2018 Sep; 294(?):27-36. doi: 10.1016/j.toxlet.2018.05.008. [PMID: 29753067]
  • Jerald J Nair, Anke Wilhelm, Susanna L Bonnet, Johannes van Staden. Antibacterial constituents of the plant family Amaryllidaceae. Bioorganic & medicinal chemistry letters. 2017 11; 27(22):4943-4951. doi: 10.1016/j.bmcl.2017.09.052. [PMID: 29033234]
  • Li Piao, Mingcui Zang, Yue Gu, Baohua Liu. Development and validation of a sensitive UHPLC-MS/MS method for quantitative analysis of farrerol in rat plasma: Application to pharmacokinetic and bioavailability studies. Biomedical chromatography : BMC. 2017 Nov; 31(11):. doi: 10.1002/bmc.4005. [PMID: 28493423]
  • Fujun Dai, Lei Gao, Yuan Zhao, Chaojie Wang, Songqiang Xie. Farrerol inhibited angiogenesis through Akt/mTOR, Erk and Jak2/Stat3 signal pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2016 Jun; 23(7):686-93. doi: 10.1016/j.phymed.2016.03.008. [PMID: 27235707]
  • Ya Li, Jie Zhao, Kun Gao. Activity of Flavanones Isolated from Rhododendron hainanense against Plant Pathogenic Fungi. Natural product communications. 2016 May; 11(5):611-2. doi: ". [PMID: 27319130]
  • Enli Liu, Taigang Liang, Xiaojian Wang, Shurong Ban, Lingge Han, Qingshan Li. Apoptosis induced by farrerol in human gastric cancer SGC-7901 cells through the mitochondrial-mediated pathway. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP). 2015 Sep; 24(5):365-72. doi: 10.1097/cej.0000000000000104. [PMID: 26061993]
  • Yingzhan Tang, Junhong Ling, Peng Zhang, Xiangrong Zhang, Na Zhang, Wenli Wang, Jiayuan Li, Ning Li. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men). Bioorganic & medicinal chemistry letters. 2015 Aug; 25(16):3217-20. doi: 10.1016/j.bmcl.2015.05.089. [PMID: 26096681]
  • Zhengtao Yang, Yunhe Fu, Bo Liu, Ershun Zhou, Zhicheng Liu, Xiaojing Song, Depeng Li, Naisheng Zhang. Farrerol regulates antimicrobial peptide expression and reduces Staphylococcus aureus internalization into bovine mammary epithelial cells. Microbial pathogenesis. 2013 Dec; 65(?):1-6. doi: 10.1016/j.micpath.2013.08.002. [PMID: 24036182]
  • Yuejiao Fu, Luyan Zhang, Gang Chen. Far infrared-assisted extraction followed by MEKC for the simultaneous determination of flavones and phenolic acids in the leaves of Rhododendron mucronulatum Turcz. Journal of separation science. 2012 Feb; 35(3):468-75. doi: 10.1002/jssc.201100816. [PMID: 22213715]
  • Hari Prasad Devkota, Masato Watanabe, Takashi Watanabe, Shoji Yahara. Phenolic compounds from the aerial parts of Diplomorpha canescens. Chemical & pharmaceutical bulletin. 2012; 60(4):554-6. doi: 10.1248/cpb.60.554. [PMID: 22466741]
  • Guowen Zhang, Lin Wang, Peng Fu, Mingming Hu. Mechanism and conformational studies of farrerol binding to bovine serum albumin by spectroscopic methods. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2011 Nov; 82(1):424-31. doi: 10.1016/j.saa.2011.07.073. [PMID: 21831703]
  • Daojin Li, Ye Wang, Jianjun Chen, Baoming Ji. Characterization of the interaction between farrerol and bovine serum albumin by fluorescence and circular dichroism. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2011 Aug; 79(3):680-6. doi: 10.1016/j.saa.2011.04.005. [PMID: 21531170]
  • Qun-yi Li, Li Chen, Yan-hui Zhu, Meng Zhang, Yi-ping Wang, Ming-wei Wang. Involvement of estrogen receptor-β in farrerol inhibition of rat thoracic aorta vascular smooth muscle cell proliferation. Acta pharmacologica Sinica. 2011 Apr; 32(4):433-40. doi: 10.1038/aps.2011.1. [PMID: 21399653]
  • Lei Zhao, Dinghui Wu, Xiaohui Yu, Yan Zhang. [Dihydroflavones in Rhododendron concinnum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Mar; 35(6):722-4. doi: 10.4268/cjcmm20100614. [PMID: 20545196]
  • Zeng-Bao Wu, Yu-Ying Zhao, Xiu-Wei Yang, Hong Liang. Flavonoids from Bauhinia glauca subsp. pernervosa. Chemical & pharmaceutical bulletin. 2009 Jun; 57(6):628-31. doi: 10.1248/cpb.57.628. [PMID: 19483349]
  • Cheng Tan, Wenyuan Zhu, Yan Lu. Aloin, cinnamic acid and sophorcarpidine are potent inhibitors of tyrosinase. Chinese medical journal. 2002 Dec; 115(12):1859-62. doi: . [PMID: 12622939]