Genkwanin (BioDeep_00000000181)

Main id: BioDeep_00000017257

 

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

化学式: C16H12O5 (284.0685)
中文名称: 芫花素
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: COC1=CC(=C2C(=C1)OC(=CC2=O)C3=CC=C(C=C3)O)O
InChI: InChI=1S/C16H12O5/c1-20-11-6-12(18)16-13(19)8-14(21-15(16)7-11)9-2-4-10(17)5-3-9/h2-8,17-18H,1H3

描述信息

Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale .
Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.
Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.

同义名列表

10 个代谢物同义名

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one; 5,4-dihydroxy-7-methoxy-flavone; 5,4-dihydroxy-7-methoxyflavone; Apigenin 7-methyl ether; 7-Methylapigenin; gengkwanin; Genkwanin; Puddumetin; Genkwanin; Genkwanin



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

82 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(80)

  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: H+ + NADPH + O2 + genkwanin ⟶ H2O + NADP+ + scutellarein 7-methyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + apigenin ⟶ SAH + genkwanin
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: H+ + NADPH + O2 + apigenin-7,4'-dimethyl ether ⟶ H2O + NADP+ + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + apigenin-7,4'-dimethyl ether ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ladanein
  • salvigenin biosynthesis: SAM + genkwanin ⟶ H+ + SAH + apigenin-7,4'-dimethyl ether
  • salvigenin biosynthesis: SAM + scutellarein 7-methyl ether ⟶ H+ + SAH + cirsimaritin

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

484 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 AKT1, BCL2, CASP3, DUSP1, GCK, KEAP1, MAPK14, PIK3CA, PTGS2, TYR
Peripheral membrane protein 4 ACHE, CYP1B1, GCK, PTGS2
Endoplasmic reticulum membrane 4 BCL2, CYP1B1, PTGS2, UGT1A1
Nucleus 10 ACHE, AKT1, BCL2, CASP3, DUSP1, FOS, GABPA, GCK, KEAP1, MAPK14
cytosol 9 AKT1, BCL2, CASP3, FOS, GCK, IL1B, KEAP1, MAPK14, PIK3CA
nucleoplasm 7 AKT1, CASP3, FOS, GABPA, GCK, KEAP1, MAPK14
RNA polymerase II transcription regulator complex 1 FOS
Cell membrane 3 ACHE, AKT1, TNF
lamellipodium 2 AKT1, PIK3CA
Golgi apparatus membrane 1 GCK
Synapse 1 ACHE
cell cortex 1 AKT1
cell surface 2 ACHE, TNF
glutamatergic synapse 3 AKT1, CASP3, MAPK14
Golgi apparatus 1 ACHE
Golgi membrane 1 GCK
lysosomal membrane 1 GAA
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 1 IL1B
Lysosome 3 GAA, IL1B, TYR
plasma membrane 6 ACHE, AKT1, GAA, PIK3CA, TNF, UGT1A1
Membrane 6 ACHE, AKT1, BCL2, CYP1B1, GAA, UGT1A1
basolateral plasma membrane 1 GCK
caveola 1 PTGS2
extracellular exosome 1 GAA
Lysosome membrane 1 GAA
endoplasmic reticulum 5 BCL2, FOS, KEAP1, PTGS2, UGT1A1
extracellular space 5 ACHE, IL10, IL1B, IL6, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 4 ACHE, PIK3CA, TYR, UGT1A1
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CYP1B1, GCK, MAPK14
protein-containing complex 3 AKT1, BCL2, PTGS2
intracellular membrane-bounded organelle 3 CYP1B1, GAA, TYR
Microsome membrane 2 CYP1B1, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 5 ACHE, GAA, IL10, IL1B, IL6
extracellular region 7 ACHE, GAA, IL10, IL1B, IL6, MAPK14, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 2 BCL2, UGT1A1
mitochondrial outer membrane 1 BCL2
Extracellular side 1 ACHE
centriolar satellite 1 KEAP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
Melanosome membrane 1 TYR
midbody 1 KEAP1
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 UGT1A1
Membrane raft 1 TNF
pore complex 1 BCL2
spindle 1 AKT1
basement membrane 1 ACHE
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 IL1B
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 FOS, GABPA
phagocytic cup 1 TNF
spindle pole 1 MAPK14
actin filament 1 KEAP1
Basolateral cell membrane 1 GCK
Lipid-anchor, GPI-anchor 1 ACHE
Cul3-RING ubiquitin ligase complex 1 KEAP1
tertiary granule membrane 1 GAA
Melanosome 1 TYR
side of membrane 1 ACHE
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 2 IL6, PTGS2
nuclear matrix 1 FOS
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
azurophil granule membrane 1 GAA
Secreted, extracellular exosome 1 IL1B
synaptic cleft 1 ACHE
protein-DNA complex 1 FOS
ficolin-1-rich granule membrane 1 GAA
death-inducing signaling complex 1 CASP3
transcription factor AP-1 complex 1 FOS
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
endoplasmic reticulum chaperone complex 1 UGT1A1
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
[Isoform H]: Cell membrane 1 ACHE
cytochrome complex 1 UGT1A1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Álvaro Pérez-Valero, Suhui Ye, Patricia Magadán-Corpas, Claudio J Villar, Felipe Lombó. Metabolic engineering in Streptomyces albidoflavus for the biosynthesis of the methylated flavonoids sakuranetin, acacetin, and genkwanin. Microbial cell factories. 2023 Nov; 22(1):234. doi: 10.1186/s12934-023-02247-3. [PMID: 37964284]
  • Naoual El Menyiy, Sara Aboulaghras, Saad Bakrim, Rania Moubachir, Doaue Taha, Asaad Khalid, Ashraf N Abdalla, Alanood S Algarni, Andi Hermansyah, Long Chiau Ming, Marius Emil Rusu, Abdelhakim Bouyahya. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023 Jul; 165(?):115159. doi: 10.1016/j.biopha.2023.115159. [PMID: 37481929]
  • Lei Xu, Gejin Lu, Baihe Zhan, Lijuan Wei, Xuming Deng, Qiaoling Zhang, Xue Shen, Jianfeng Wang, Haihua Feng. Uncovering the efficacy and mechanisms of Genkwa flos and bioactive ingredient genkwanin against L. monocytogenes infection. Journal of ethnopharmacology. 2022 Oct; 297(?):115571. doi: 10.1016/j.jep.2022.115571. [PMID: 35870686]
  • Zhengshi Chen, Yongheng He, Fan Hu, Mei Li, Yanru Yao. Genkwanin Alleviates Mitochondrial Dysfunction and Oxidative Stress in a Murine Model of Experimental Colitis: The Participation of Sirt1. Annals of clinical and laboratory science. 2022 Mar; 52(2):301-313. doi: . [PMID: 35414509]
  • Peng Zeng, Meng Fang, Han Zhao, Jing Guo. A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer's disease mechanisms. Aging. 2021 07; 13(14):18993-19012. doi: 10.18632/aging.203348. [PMID: 34315132]
  • Ankur Kumar Tanwar, Neha Dhiman, Amit Kumar, Vikas Jaitak. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. European journal of medicinal chemistry. 2021 Mar; 213(?):113037. doi: 10.1016/j.ejmech.2020.113037. [PMID: 33257172]
  • Shih-Chung Yen, Liang-Chieh Chen, Han-Li Huang, Sin-Ting Ngo, Yi-Wen Wu, Tony Eight Lin, Tzu-Ying Sung, Ssu-Ting Lien, Hui-Ju Tseng, Shiow-Lin Pan, Wei-Jan Huang, Kai-Cheng Hsu. Investigation of Selected Flavonoid Derivatives as Potent FLT3 Inhibitors for the Potential Treatment of Acute Myeloid Leukemia. Journal of natural products. 2021 01; 84(1):1-10. doi: 10.1021/acs.jnatprod.0c00589. [PMID: 33393294]
  • Hua-Feng Yin, Chun-Ming Yin, Ting Ouyang, Shu-Ding Sun, Wei-Guo Chen, Xiao-Lin Yang, Xin He, Chun-Feng Zhang. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug design, development and therapy. 2021; 15(?):557-576. doi: 10.2147/dddt.s292417. [PMID: 33603345]
  • Hui Ao, Yijing Li, Haowen Li, Yian Wang, Meihua Han, Yifei Guo, Rongxing Shi, Feng Yue, Xiangtao Wang. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug delivery. 2020 Dec; 27(1):816-824. doi: 10.1080/10717544.2020.1770372. [PMID: 32489130]
  • Akram Taleghani, Seyed Ahmad Emami, Zahra Tayarani-Najaran. Artemisia: a promising plant for the treatment of cancer. Bioorganic & medicinal chemistry. 2020 01; 28(1):115180. doi: 10.1016/j.bmc.2019.115180. [PMID: 31784199]
  • Yarigui Bao, Yue-Wen Sun, Jun Ji, Lu Gan, Chun-Feng Zhang, Chong-Zhi Wang, Chun-Su Yuan. Genkwanin ameliorates adjuvant-induced arthritis in rats through inhibiting JAK/STAT and NF-κB signaling pathways. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2019 Oct; 63(?):153036. doi: 10.1016/j.phymed.2019.153036. [PMID: 31401534]
  • Astghik Hakobyan, Erik Arabyan, Armen Kotsinyan, Zaven Karalyan, Harutyun Sahakyan, Vahram Arakelov, Karen Nazaryan, Fernando Ferreira, Hovakim Zakaryan. Inhibition of African swine fever virus infection by genkwanin. Antiviral research. 2019 07; 167(?):78-82. doi: 10.1016/j.antiviral.2019.04.008. [PMID: 30991087]
  • Seung Cheol Baek, Mi Hyeon Park, Hyung Won Ryu, Jae Pil Lee, Myung-Gyun Kang, Daeui Park, Chul Min Park, Sei-Ryang Oh, Hoon Kim. Rhamnocitrin isolated from Prunus padus var. seoulensis: A potent and selective reversible inhibitor of human monoamine oxidase A. Bioorganic chemistry. 2019 03; 83(?):317-325. doi: 10.1016/j.bioorg.2018.10.051. [PMID: 30396116]
  • Yi Tao, Dandan Su, Weidong Li, Baochang Cai. Pharmacokinetic comparisons of six components from raw and vinegar-processed Daphne genkwa aqueous extracts following oral administration in rats by employing UHPLC-MS/MS approaches. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2018 Mar; 1079(?):34-40. doi: 10.1016/j.jchromb.2018.02.005. [PMID: 29428673]
  • Yijing Li, Jingyi Hong, Haowen Li, Xiaoyu Qi, Yifei Guo, Meihua Han, Xiangtao Wang. Genkwanin nanosuspensions: a novel and potential antitumor drug in breast carcinoma therapy. Drug delivery. 2017 Nov; 24(1):1491-1500. doi: 10.1080/10717544.2017.1384519. [PMID: 28961040]
  • Yelin Kang, Bong-Gyu Kim, Sunghoon Kim, Youngshim Lee, Youngdae Yoon. Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorganic & medicinal chemistry letters. 2017 02; 27(3):420-426. doi: 10.1016/j.bmcl.2016.12.051. [PMID: 28049590]
  • Ning Chen, Pei-Pei Miao, Chang-E Guo, Hong-Ying Chen, Peng-Kai Ma, Hong-Pin Li, Hong-Yu Zhu, Xing Gao, Yu-Jie Zhang. [In vitro effects of Genkwa Flos chloroform extract on activity of human liver microsomes UGTs and UGT1A1]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2016 Sep; 41(17):3296-3302. doi: 10.4268/cjcmm20161729. [PMID: 28920386]
  • Nouha Nasr-Bouzaiene, Aicha Sassi, Ahmed Bedoui, Mounira Krifa, Leila Chekir-Ghedira, Kamel Ghedira. Immunomodulatory and cellular antioxidant activities of pure compounds from Teucrium ramosissimum Desf. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016 Jun; 37(6):7703-12. doi: 10.1007/s13277-015-4635-0. [PMID: 26692099]
  • Jiangbo Fan, Fen Wei, Yu Zhang, Hongli Su, Zongzheng Ji, Jianyu He, Shengli Han. Combining Sprague-Dawley rat uterus cell membrane chromatography with HPLC/MS to screen active components from Leonurus artemisia. Pharmaceutical biology. 2016; 54(2):279-84. doi: 10.3109/13880209.2015.1033562. [PMID: 25858117]
  • Xue Wang, Zi-Jing Song, Xin He, Run-Qi Zhang, Chun-Feng Zhang, Fei Li, Chong-Zhi Wang, Chun-Su Yuan. Antitumor and immunomodulatory activity of genkwanin on colorectal cancer in the APC(Min/+) mice. International immunopharmacology. 2015 Dec; 29(2):701-707. doi: 10.1016/j.intimp.2015.09.006. [PMID: 26388189]
  • Lan Wei, Xiaobo Wang, Shanxue Mu, Lixin Sun, Zhiguo Yu. Ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry coupled with hierarchical cluster analysis to evaluate Wikstroemia indica (L.) C. A. Mey. from different geographical regions. Journal of separation science. 2015 Jun; 38(12):2093-100. doi: 10.1002/jssc.201401398. [PMID: 25866087]
  • Lin Li, Fang-zhou Yin, Tu-lin Lu, Hong-yue Guan, Bao-chang Cai. [Fingerprint of Vinegar Processed Genkwa Flos Based on Improving Euclidean Distance]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Jun; 38(6):1168-71. doi: . [PMID: 26762055]
  • Tao Fujiwara, Ayumi Uehara, Junichi Kitajima, Tsukasa Iwashina, Sadamu Matsumoto, Yasuyuki Watano. Genkwanin 4'-O-glucosyl-(1 --> 2)-rhamnoside from new chemotype of Asplenium normale in Japan. Natural product communications. 2014 Sep; 9(9):1289-90. doi: . [PMID: 25918794]
  • Yuan Gao, Fen Liu, Lei Fang, Runlan Cai, Chuanjie Zong, Yun Qi. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PloS one. 2014; 9(5):e96741. doi: 10.1371/journal.pone.0096741. [PMID: 24800851]
  • Yanqing Song, Sixi Zhang, Hong Liu, Xiangqun Jin. Determination of genkwanin in rat plasma by liquid chromatography-tandem mass spectrometry: application to a bioavailability study. Journal of pharmaceutical and biomedical analysis. 2013 Oct; 84(?):129-34. doi: 10.1016/j.jpba.2013.06.006. [PMID: 23831487]
  • Catheleeya Mekjaruskul, Michael Jay, Bungorn Sripanidkulchai. Pharmacokinetics, bioavailability, tissue distribution, excretion, and metabolite identification of methoxyflavones in Kaempferia parviflora extract in rats. Drug metabolism and disposition: the biological fate of chemicals. 2012 Dec; 40(12):2342-53. doi: 10.1124/dmd.112.047142. [PMID: 22961680]
  • J M J Favela-Hernández, A García, E Garza-González, V M Rivas-Galindo, M R Camacho-Corona. Antibacterial and antimycobacterial lignans and flavonoids from Larrea tridentata. Phytotherapy research : PTR. 2012 Dec; 26(12):1957-60. doi: 10.1002/ptr.4660. [PMID: 22422605]
  • Savio S Elo Manga, Anastasie E Tih, Bintou Abderamane, Raphael T Ghogomu, Alain Blond, Bernard Bodo. Flavonoid glycosides and their p-coumaroyl esters from Campylospermum calanthum leaves. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2012 May; 67(5-6):233-43. doi: 10.1515/znc-2012-5-601. [PMID: 22888527]
  • Chia-Wen Chang, Yan-Lii Leu, Jim-Tong Horng. Daphne Genkwa sieb. Et zucc. Water-soluble extracts act on enterovirus 71 by inhibiting viral entry. Viruses. 2012 04; 4(4):539-56. doi: 10.3390/v4040539. [PMID: 22590685]
  • Ahmad Reza Gohari, Seyed Nasser Ostad, Fahimeh Moradi-Afrapoli, Maryam Malmir, Shohreh Tavajohi, Hassan Akbari, Soodabeh Saeidnia. Evaluation of the cytotoxicity of Satureja spicigera and its main compounds. TheScientificWorldJournal. 2012; 2012(?):203861. doi: 10.1100/2012/203861. [PMID: 22623883]
  • Tetsuro Ito, Mamoru Kakino, Shigemi Tazawa, Tatsuya Watarai, Masayoshi Oyama, Hiroe Maruyama, Yoko Araki, Hideaki Hara, Munekazu Iinuma. Quantification of polyphenols and pharmacological analysis of water and ethanol-based extracts of cultivated agarwood leaves. Journal of nutritional science and vitaminology. 2012; 58(2):136-42. doi: 10.3177/jnsv.58.136. [PMID: 22790572]
  • Morten Hyldgaard, Tina Mygind, Rikke Louise Meyer. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in microbiology. 2012; 3(?):12. doi: 10.3389/fmicb.2012.00012. [PMID: 22291693]
  • Jie Feng, Xiuwei Yang. [Constituents from the leaves of Aquilaria sinensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2012 Jan; 37(2):230-4. doi: . [PMID: 22737857]
  • Mohamed Ben Sghaier, Ines Skandrani, Nouha Nasr, Marie-Genviève Dijoux Franca, Leila Chekir-Ghedira, Kamel Ghedira. Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: a structure-activity relationship study. Environmental toxicology and pharmacology. 2011 Nov; 32(3):336-48. doi: 10.1016/j.etap.2011.07.003. [PMID: 22004952]
  • I Borrás Linares, D Arráez-Román, M Herrero, E Ibáñez, A Segura-Carretero, A Fernández-Gutiérrez. Comparison of different extraction procedures for the comprehensive characterization of bioactive phenolic compounds in Rosmarinus officinalis by reversed-phase high-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight mass spectrometry. Journal of chromatography. A. 2011 Oct; 1218(42):7682-90. doi: 10.1016/j.chroma.2011.07.021. [PMID: 21835416]
  • Ripu M Kunwar, Keshab P Shrestha, Rainer W Bussmann. Traditional herbal medicine in far-west Nepal: a pharmacological appraisal. Journal of ethnobiology and ethnomedicine. 2010 Dec; 6(?):35. doi: 10.1186/1746-4269-6-35. [PMID: 21144003]
  • Maria José Jordán, María Inmaculada Moñino, Cristina Martínez, Arturo Lafuente, José Antonio Sotomayor. Introduction of distillate rosemary leaves into the diet of the Murciano-Granadina goat: transfer of polyphenolic compounds to goats' milk and the plasma of suckling goat kids. Journal of agricultural and food chemistry. 2010 Jul; 58(14):8265-70. doi: 10.1021/jf100921z. [PMID: 20608728]
  • Ying-Nan Li, Lian-Hong Yin, Li-Na Xu, Jin-Yong Peng. A simple and efficient protocol for large-scale preparation of three flavonoids from the flower of Daphne genkwa by combination of macroporous resin and counter-current chromatography. Journal of separation science. 2010 Jul; 33(14):2168-75. doi: 10.1002/jssc.201000054. [PMID: 20535750]
  • Hiromi Tohno, Chikafumi Horii, Takafumi Fuse, Akira Okonogi, Satoshi Yomoda. Evaluation of estrogen receptor Beta binding of pruni cortex and its constituents. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2010 07; 130(7):989-97. doi: 10.1248/yakushi.130.989. [PMID: 20606380]
  • Hari Prasad Devkota, Masato Watanabe, Takashi Watanabe, Shoji Yahara. Flavonoids from the aerial parts of Diplomorpha canescens. Chemical & pharmaceutical bulletin. 2010 Jun; 58(6):859-61. doi: 10.1248/cpb.58.859. [PMID: 20523001]
  • Yosei Tamaki, Takahito Tabuchi, Toshiyuki Takahashi, Kunio Kosaka, Takumi Satoh. Activated glutathione metabolism participates in protective effects of carnosic acid against oxidative stress in neuronal HT22 cells. Planta medica. 2010 May; 76(7):683-8. doi: 10.1055/s-0029-1240622. [PMID: 19941258]
  • How Y Lai, Yau Y Lim, Kah H Kim. Blechnum orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent. BMC complementary and alternative medicine. 2010 Apr; 10(?):15. doi: 10.1186/1472-6882-10-15. [PMID: 20429956]
  • Mehdi Mohammadi, Maryam Yousefi, Zohreh Habibi, Abbas Shafiee. Two new coumarins from the chloroform extract of Angelica urumiensis from Iran. Chemical & pharmaceutical bulletin. 2010 Apr; 58(4):546-8. doi: 10.1248/cpb.58.546. [PMID: 20410639]
  • Laura Pérez-Fons, María T Garzón, Vicente Micol. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. Journal of agricultural and food chemistry. 2010 Jan; 58(1):161-71. doi: 10.1021/jf9026487. [PMID: 19924866]
  • Rong-hua Liu, Chong-ye Mei, Feng Shao, Gang Ren, Hui-lian Huang, Shi-sheng Chen, Wu-liang Yang. [Studies on the chemical constituents from Daphne tangutica]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2009 Dec; 32(12):1846-7. doi: . [PMID: 20432900]
  • Hichem Henchiri, Bernard Bodo, Alexandre Deville, Lionel Dubost, Lazhar Zourgui, Aly Raies, Philippe Grellier, Lengo Mambu. Sesquiterpenoids from Teucrium ramosissimum. Phytochemistry. 2009 Jul; 70(11-12):1435-41. doi: 10.1016/j.phytochem.2009.08.012. [PMID: 19766274]
  • Cai-Fang Wang, Rao-Rao Li, Lan-Lan Huang, Li-Qun Zhong, Si-Tong Yuan. [Studies on chemical constituents of Daphne genkwa]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2009 Apr; 32(4):508-11. doi: . [PMID: 19645232]
  • Chunxiao Nie, Yuelin Song, Dong Chen, Peifeng Xue, Pengfei Tu, Keyuan Wang, Jinming Chen. [Studies on chemical constituents of leaves of Aquilaria sinensis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Apr; 34(7):858-60. doi: . [PMID: 19623981]
  • Bharathi Avula, Yan-Hong Wang, Troy J Smillie, Wilfred Mabusela, Leszek Vincent, Frans Weitz, Ikhlas A Khan. Quantitative determination of flavonoids by column high-performance liquid chromatography with mass spectrometry and ultraviolet absorption detection in Artemisia afra and comparative studies with various species of Artemisia plants. Journal of AOAC International. 2009 Mar; 92(2):633-44. doi: ". [PMID: 19485225]
  • Takeshi Saito, Daigo Abe, Keizo Sekiya. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARgamma2. Biochemical and biophysical research communications. 2008 Aug; 372(4):835-9. doi: 10.1016/j.bbrc.2008.05.146. [PMID: 18522800]
  • Hideaki Hara, Yasuaki Ise, Nobutaka Morimoto, Masamitsu Shimazawa, Koji Ichihashi, Masayoshi Ohyama, Munekazu Iinuma. Laxative effect of agarwood leaves and its mechanism. Bioscience, biotechnology, and biochemistry. 2008 Feb; 72(2):335-45. doi: 10.1271/bbb.70361. [PMID: 18256503]
  • Juan Su, Zhijun Wu, Yunheng Shen, Runhui Liu, Chuan Zhang, Huiliang Li, Weidong Zhang. Flavonoids from Daphne giraldii Nitsche. Natural product research. 2008; 22(15):1355-8. doi: 10.1080/14786410701768196. [PMID: 19023794]
  • William P Jones, Tatiana Lobo-Echeverri, Qiuwen Mi, Hee-Byung Chai, Djaja D Soejarto, Geoffrey A Cordell, Steven M Swanson, A Douglas Kinghorn. Cytotoxic constituents from the fruiting branches of Callicarpa americana collected in southern Florida. Journal of natural products. 2007 Mar; 70(3):372-7. doi: 10.1021/np060534z. [PMID: 17279798]
  • Samir Kumar Sadhu, Emi Okuyama, Haruhiro Fujimoto, Masami Ishibashi, Erdem Yesilada. Prostaglandin inhibitory and antioxidant components of Cistus laurifolius, a Turkish medicinal plant. Journal of ethnopharmacology. 2006 Dec; 108(3):371-8. doi: 10.1016/j.jep.2006.05.024. [PMID: 16814498]
  • Laura Pérez-Fons, Francisco J Aranda, Jaime Guillén, José Villalaín, Vicente Micol. Rosemary (Rosmarinus officinalis) diterpenes affect lipid polymorphism and fluidity in phospholipid membranes. Archives of biochemistry and biophysics. 2006 Sep; 453(2):224-36. doi: 10.1016/j.abb.2006.07.004. [PMID: 16949545]
  • Bo-Young Park, Byung-Sun Min, Sei-Ryang Oh, Jung-Hee Kim, Ki-Hwan Bae, Hyeong-Kyu Lee. Isolation of flavonoids, a biscoumarin and an amide from the flower buds of Daphne genkwa and the evaluation of their anti-complement activity. Phytotherapy research : PTR. 2006 Jul; 20(7):610-3. doi: 10.1002/ptr.1915. [PMID: 16685682]
  • Effendi Leonard, Joseph Chemler, Kok Hong Lim, Mattheos A G Koffas. Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli. Applied microbiology and biotechnology. 2006 Mar; 70(1):85-91. doi: 10.1007/s00253-005-0059-x. [PMID: 16025328]
  • Li-dong Geng, Cun Zhang, Yong-qing Xiao. [A new dicoumarin from stem bark of Wikstroemia indica]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Jan; 31(1):43-5. doi: . [PMID: 16548167]
  • Lijuan Yang, Xiaodong Yang, Liang Li. [Study on chemical constituents of Lagotis yunnanensis]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2005 Sep; 28(9):767-9. doi: ". [PMID: 16447867]
  • Zheng-wen Yu, Hai-yan Zhu, Xiao-sheng Yang, Qian-yun Sun, Xiao-jiang Hao. [Study on chemical constituents from Incarvillea arguta and their accelerating PC-12 cell differentiation]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Sep; 30(17):1335-8. doi: . [PMID: 16323541]
  • Wei Zhang, Wei-dong Zhang, Ting-zhao Li, Chuan Zhang, Run-hui Liu, Yun Zhou, Juan Su. [Studies on the chemical constituents in roots of Daphne odora var. atrocaulis]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Apr; 30(7):513-5. doi: . [PMID: 16011095]
  • María José del Baño, Juan Lorente, Julián Castillo, Obdulio Benavente-García, María Piedad Marín, José Antonio Del Río, Ana Ortuño, Isidro Ibarra. Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. postulation of a biosynthetic pathway. Journal of agricultural and food chemistry. 2004 Aug; 52(16):4987-92. doi: 10.1021/jf040078p. [PMID: 15291464]
  • N D Martini, D R P Katerere, J N Eloff. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). Journal of ethnopharmacology. 2004 Aug; 93(2-3):207-12. doi: 10.1016/j.jep.2004.02.030. [PMID: 15234754]
  • Shugeng Cao, Rebecca Clare Guza, James S Miller, Rabodo Andriantsiferana, Vincent E Rasamison, David G I Kingston. Cytotoxic triterpenoids from Acridocarpus vivy from the Madagascar rain forest. Journal of natural products. 2004 Jun; 67(6):986-9. doi: 10.1021/np040058h. [PMID: 15217279]
  • Ae Ra Kim, Ya Ni Zou, Tae Hyun Park, Kyung Hee Shim, Min Sun Kim, Nam Deuk Kim, Jong Deog Kim, Song Ja Bae, Jae Sue Choi, Hae Young Chung. Active components from Artemisia iwayomogi displaying ONOO(-) scavenging activity. Phytotherapy research : PTR. 2004 Jan; 18(1):1-7. doi: 10.1002/ptr.1358. [PMID: 14750192]
  • Paula C Santos-Gomes, Rosa M Seabra, Paula B Andrade, Manuel Fernandes-Ferreira. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). Journal of plant physiology. 2003 Sep; 160(9):1025-32. doi: 10.1078/0176-1617-00831. [PMID: 14593803]
  • María José del Baño, Juan Lorente, Julián Castillo, Obdulio Benavente-García, José Antonio del Río, Ana Ortuño, Karl-Werner Quirin, Dieter Gerard. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. Journal of agricultural and food chemistry. 2003 Jul; 51(15):4247-53. doi: 10.1021/jf0300745. [PMID: 12848492]
  • Carola Kraft, Kristina Jenett-Siems, Karsten Siems, Jasmin Jakupovic, Steven Mavi, Ulrich Bienzle, Eckart Eich. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytotherapy research : PTR. 2003 Feb; 17(2):123-8. doi: 10.1002/ptr.1066. [PMID: 12601673]
  • Elena Ibañez, Alena Kubátová, F Javier Señoráns, Sofia Cavero, Guillermo Reglero, Steven B Hawthorne. Subcritical water extraction of antioxidant compounds from rosemary plants. Journal of agricultural and food chemistry. 2003 Jan; 51(2):375-82. doi: 10.1021/jf025878j. [PMID: 12517098]
  • Muhammad Zahid, Omar Ishrud, Yuanjiang Pan, Muhammad Asim, Muhammad Riaz, Viqar Uddin Ahmad. Flavonoid glycosides from Salvia moorcroftiana wall. Carbohydrate research. 2002 Mar; 337(5):403-7. doi: 10.1016/s0008-6215(02)00008-3. [PMID: 11861014]
  • F Cottiglia, G Loy, D Garau, C Floris, M Casu, R Pompei, L Bonsignore. Antimicrobial evaluation of coumarins and flavonoids from the stems of Daphne gnidium L. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2001 Jul; 8(4):302-5. doi: 10.1078/0944-7113-00036. [PMID: 11515721]
  • S Yuan, Z Wang, K Xia. [Comprehensive evaluation and practical confirmation on processing technology of Daphne genkwa Sieb. et Zucc]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1999 Aug; 24(8):464-5, 510. doi: ". [PMID: 12205864]
  • S Chen, L Wang, G Gao, M Liao, P Xiao. [Studies on flavonoids from Aquilegia oxysepala Trautv. et Mey]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1999 Mar; 24(3):158-60, 191. doi: . [PMID: 12242797]
  • J Zhang, Y Wang, C Sun. [Quality of processed samples of Daphne genkwa Sieb. et Zucc]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1997 Feb; 22(2):85-7, 127. doi: ". [PMID: 10743197]
  • B Zhang, S Yuan, K Xia. [Determination of genkwanin in flos Genkwa by HPLC]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1996 Apr; 21(4):237, 253, 256. doi: ". [PMID: 9208558]
  • N Suh, L Luyengi, H H Fong, A D Kinghorn, J M Pezzuto. Discovery of natural product chemopreventive agents utilizing HL-60 cell differentiation as a model. Anticancer research. 1995 Mar; 15(2):233-9. doi: . [PMID: 7762989]
  • X Q Jin, M M Yan, E X Huang, Y J Xu, Y J Gu, D B Cui, S Y Lin, D M Xu. [Chemical constituents of Eupolyphaga sinensis Walkre]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 1993 Jun; 18(6):355-6, 382. doi: ". [PMID: 8274215]
  • G T Tan, J M Pezzuto, A D Kinghorn, S H Hughes. Evaluation of natural products as inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. Journal of natural products. 1991 Jan; 54(1):143-54. doi: 10.1021/np50073a012. [PMID: 1710653]
  • . . . . doi: . [PMID: 23184958]
  • . . . . doi: . [PMID: 20534735]