Ailanthone (BioDeep_00000000037)

   

PANOMIX_OTCML-2023 natural product


代谢物信息卡片


(1R,2R,3aS,3a1S,6aR,7aS,11S,11aS,11bR)-1,2,11-Trihydroxy-8,11a-dimethyl-3-methylene-2,3,3a,4,7,7a,11,11a-octahydro-1H-1,3a1-(epoxymethano)dibenzo[de,g]chromene-5,10(6aH,11bH)-dione

化学式: C20H24O7 (376.1522)
中文名称: 臭椿酮
谱图信息: 最多检出来源 Viridiplantae(otcml) 69.21%

分子结构信息

SMILES: C1(=O)C=C([C@H]2[C@]([C@@H]1O)([C@@H]1[C@@]34[C@@H](C2)OC(=O)C[C@H]3C(=C)[C@H]([C@@]1(OC4)O)O)C)C
InChI: InChI=1S/C20H24O7/c1-8-4-12(21)16(24)18(3)10(8)5-13-19-7-26-20(25,17(18)19)15(23)9(2)11(19)6-14(22)27-13/h4,10-11,13,15-17,23-25H,2,5-7H2,1,3H3/t10-,11-,13+,15+,16+,17+,18+,19+,20-/m0/s1

描述信息

Ailanthone is a triterpenoid.
Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM).
Ailanthone (Δ13-Dehydrochaparrinone) is a potent inhibitor of both full-length androgen receptor (AR) (IC50=69?nM) and constitutively active truncated AR splice variants (AR1-651 IC50=309?nM).

同义名列表

14 个代谢物同义名

(1R,2R,3aS,3a1S,6aR,7aS,11S,11aS,11bR)-1,2,11-Trihydroxy-8,11a-dimethyl-3-methylene-2,3,3a,4,7,7a,11,11a-octahydro-1H-1,3a1-(epoxymethano)dibenzo[de,g]chromene-5,10(6aH,11bH)-dione; 2H-1,11c-(Epoxymethano)phenanthro(10,1-bc)pyran-5,10(3H,6ah)-dione, 1,3a,4,7,7a,11,11a,11b-octahydro-8,11a-beta-dimethyl-3-methylene-1-alpha,2-beta,11-beta-trihydroxy-; (1S,4R,5R,7S,11R,13S,17S,18S,19R)-4,5,17-trihydroxy-14,18-dimethyl-6-methylidene-3,10-dioxapentacyclo[9.8.0.01,7.04,19.013,18]nonadec-14-ene-9,16-dione; Picrasa-3,13(21)-dien-2,16-dione, 11,20-epoxy-1,11,12-trihydroxy-, (1.beta.,11.beta.,12.alpha.); Picrasa-3,13(21)-diene-2,16-dione, 11,20-epoxy-1,11,12-trihydroxy-, (1-beta,11-beta,12-alpha)-; Picrasa-3,13(21)-diene-2,16-dione, 11,20-epoxy-1,11,12-trihydroxy-, (1beta,11beta,12alpha)-; Picrasa-3,13(21)-diene-2,16-dione, 11,20-epoxy-1,11,12-trihydroxy-, (1beta,11beta,12beta)-; o13-Dehydrochaparrinoneo13-Dehydrochaparrinone; Ailanthone, >=98\\% (HPLC); 13-Dehydrochaparrinone; Ailanthone; ailantone; Δ13-Dehydrochaparrinone; Ailanthone



数据库引用编号

22 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

30 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ANXA5, BCL2, BECN1, BRCA1, CASP3, CASP9, DCTN4, DTX1, PIK3CA, STAT3
Golgi apparatus, trans-Golgi network membrane 1 BECN1
Peripheral membrane protein 2 ANXA5, BECN1
Endosome membrane 1 BECN1
Endoplasmic reticulum membrane 3 BCL2, BECN1, CD4
Mitochondrion membrane 1 BECN1
Cytoplasmic vesicle, autophagosome 1 BECN1
Nucleus 10 BCL2, BECN1, BRCA1, CASP3, CASP9, DCTN4, GABPA, JUND, PARP1, STAT3
autophagosome 1 BECN1
cytosol 10 ANXA5, BCL2, BECN1, CASP3, CASP9, DCTN4, DTX1, PARP1, PIK3CA, STAT3
dendrite 1 BECN1
mitochondrial membrane 1 BECN1
nuclear body 4 BECN1, BRCA1, DTX1, PARP1
phagocytic vesicle 1 BECN1
phosphatidylinositol 3-kinase complex, class III 1 BECN1
trans-Golgi network 1 BECN1
centrosome 1 DCTN4
nucleoplasm 7 BRCA1, CASP3, DTX1, GABPA, JUND, PARP1, STAT3
RNA polymerase II transcription regulator complex 2 JUND, STAT3
Cell membrane 1 CD4
lamellipodium 1 PIK3CA
Multi-pass membrane protein 1 ABCC3
cell cortex 1 DCTN4
glutamatergic synapse 1 CASP3
neuronal cell body 1 CASP3
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 PARP1
endosome 1 BECN1
plasma membrane 5 ABCC3, BRCA1, CD4, PIK3CA, STAT3
Membrane 5 ABCC3, ANXA5, BCL2, BRCA1, PARP1
axon 1 CCK
basolateral plasma membrane 1 ABCC3
extracellular exosome 1 ANXA5
endoplasmic reticulum 2 BCL2, BECN1
extracellular space 1 CCK
perinuclear region of cytoplasm 1 PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CASP9, PARP1
protein-containing complex 4 BCL2, BRCA1, CASP9, PARP1
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 CD4
Secreted 1 CCK
extracellular region 2 ANXA5, CCK
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
transcription regulator complex 3 JUND, PARP1, STAT3
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 DCTN4
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, CD4
nucleolus 1 PARP1
Early endosome 1 CD4
Membrane raft 1 CD4
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 DCTN4
focal adhesion 2 ANXA5, DCTN4
collagen-containing extracellular matrix 1 ANXA5
Cytoplasm, myofibril, sarcomere 1 DCTN4
sarcomere 1 DCTN4
Zymogen granule membrane 1 ANXA5
chromatin 4 GABPA, JUND, PARP1, STAT3
Chromosome 2 BRCA1, PARP1
[Isoform 5]: Cytoplasm 1 BRCA1
Nucleus, nucleolus 1 PARP1
spindle pole 1 DCTN4
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
Cytoplasm, cell cortex 1 DCTN4
Basolateral cell membrane 1 ABCC3
site of double-strand break 1 PARP1
nuclear envelope 1 PARP1
phagophore assembly site 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type I 1 BECN1
phosphatidylinositol 3-kinase complex, class III, type II 1 BECN1
lateral element 1 BRCA1
myelin sheath 1 BCL2
ubiquitin ligase complex 1 BRCA1
stress fiber 1 DCTN4
basal plasma membrane 1 ABCC3
endoplasmic reticulum lumen 1 CD4
transcription repressor complex 1 JUND
male germ cell nucleus 1 BRCA1
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
dynactin complex 1 DCTN4
kinetochore 1 DCTN4
XY body 1 BRCA1
cytoplasmic dynein complex 1 DCTN4
apoptosome 1 CASP9
vesicle membrane 1 ANXA5
clathrin-coated endocytic vesicle membrane 1 CD4
Cytoplasm, cytoskeleton, stress fiber 1 DCTN4
ribonucleoprotein complex 1 BRCA1
Basal cell membrane 1 ABCC3
protein-DNA complex 1 PARP1
death-inducing signaling complex 1 CASP3
intracellular non-membrane-bounded organelle 1 BRCA1
DNA repair complex 1 BRCA1
BRCA1-C complex 1 BRCA1
site of DNA damage 1 PARP1
transcription factor AP-1 complex 1 JUND
T cell receptor complex 1 CD4
endothelial microparticle 1 ANXA5
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
cytoplasmic side of mitochondrial outer membrane 1 BECN1
BRCA1-A complex 1 BRCA1
BRCA1-B complex 1 BRCA1
BRCA1-BARD1 complex 1 BRCA1
gamma-tubulin ring complex 1 BRCA1
nuclear ubiquitin ligase complex 1 BRCA1
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
caspase complex 1 CASP9
[Beclin-1-C 35 kDa]: Mitochondrion 1 BECN1
[Beclin-1-C 37 kDa]: Mitochondrion 1 BECN1


文献列表

  • Cheng Fang, Wenbin Wu, Zhongya Ni, Yangli Liu, Jiaojiao Luo, Yufu Zhou, Chenyuan Gong, Dan Hu, Chao Yao, Xiao Chen, Lixin Wang, Shiguo Zhu. Ailanthone inhibits non-small cell lung cancer growth and metastasis through targeting UPF1/GAS5/ULK1 signaling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155333. doi: 10.1016/j.phymed.2023.155333. [PMID: 38518633]
  • Qingwei Tan, Jianxuan Zhu, Yuanyuan Ju, Xinlin Chi, Tangdan Cao, Luping Zheng, Qijian Chen. Antiviral Activity of Ailanthone from Ailanthus altissima on the Rice Stripe Virus. Viruses. 2023 Dec; 16(1):. doi: 10.3390/v16010073. [PMID: 38257773]
  • Shan-Bo Ma, Lun Liu, Xiang Li, Yan-Hua Xie, Xiao-Peng Shi, Si-Wang Wang. Virtual screening-molecular docking-activity evaluation of Ailanthus altissima (Mill.) swingle bark in the treatment of ulcerative colitis. BMC complementary medicine and therapies. 2023 Jun; 23(1):197. doi: 10.1186/s12906-023-03991-0. [PMID: 37322476]
  • Pian Yu, Hui Wei, Kaixuan Li, Shiguo Zhu, Jie Li, Chao Chen, Detian Zhang, Yayun Li, Lei Zhu, Xiaoqing Yi, Nian Liu, Panpan Liu, Shuang Zhao, Xiang Chen, Cong Peng. The traditional chinese medicine monomer Ailanthone improves the therapeutic efficacy of anti-PD-L1 in melanoma cells by targeting c-Jun. Journal of experimental & clinical cancer research : CR. 2022 Dec; 41(1):346. doi: 10.1186/s13046-022-02559-z. [PMID: 36522774]
  • Chantz Allen Hopson, Purushothaman Natarajan, Suhas Shinde, Arjun Ojha Kshetry, Krishna Reddy Challa, Armando Pacheco Valenciana, Padma Nimmakayala, Umesh K Reddy. Physiological and Transcriptomic Analysis of Arabidopsis thaliana Responses to Ailanthone, a Potential Bio-Herbicide. International journal of molecular sciences. 2022 Oct; 23(19):. doi: 10.3390/ijms231911854. [PMID: 36233154]
  • S Lehmann, F Herrmann, K Kleemann, V Spiegler, E Liebau, A Hensel. Extract and the quassinoid ailanthone from Ailanthus altissima inhibit nematode reproduction by damaging germ cells and rachis in the model organism Caenorhabditis elegans. Fitoterapia. 2020 Oct; 146(?):104651. doi: 10.1016/j.fitote.2020.104651. [PMID: 32504655]
  • Christian Bailly. Anticancer properties and mechanism of action of the quassinoid ailanthone. Phytotherapy research : PTR. 2020 Sep; 34(9):2203-2213. doi: 10.1002/ptr.6681. [PMID: 32239572]
  • Pan Hu, Dandan Guo, Jiayi Xie, Huang Chen, Shixiu Hu, Aiwu Bian, Shifen Xu, Zhengfang Yi, Shihong Peng, Mingyao Liu. Determining the Drug-Like Properties of Ailanthone, a Novel Chinese Medicine Monomer with Anti-CRPC Activity. Planta medica. 2020 May; 86(7):482-488. doi: 10.1055/a-1125-0385. [PMID: 32168548]
  • Wenjing Liu, Xiaona Liu, Zhaohai Pan, Dan Wang, Minjing Li, Xiaoyu Chen, Ling Zhou, Maolei Xu, Defang Li, Qiusheng Zheng. Ailanthone Induces Cell Cycle Arrest and Apoptosis in Melanoma B16 and A375 Cells. Biomolecules. 2019 07; 9(7):. doi: 10.3390/biom9070275. [PMID: 31336757]
  • Shuowen Tang, Xinrun Ma, Jian Lu, Yuanjin Zhang, Mingyao Liu, Xin Wang. Preclinical toxicology and toxicokinetic evaluation of ailanthone, a natural product against castration-resistant prostate cancer, in mice. Fitoterapia. 2019 Jul; 136(?):104161. doi: 10.1016/j.fitote.2019.04.016. [PMID: 31048010]
  • Shizhen Hou, Ziming Cheng, Wenling Wang, Xiangdong Wang, Yubing Wu. Ailanthone exerts an antitumor function on the development of human lung cancer by upregulating microRNA-195. Journal of cellular biochemistry. 2019 06; 120(6):10444-10451. doi: 10.1002/jcb.28329. [PMID: 30565729]
  • Zhongya Ni, Chao Yao, Xiaowen Zhu, Chenyuan Gong, Zihang Xu, Lixin Wang, Suyun Li, Chunpu Zou, Shiguo Zhu. Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1. British journal of cancer. 2017 Nov; 117(11):1621-1630. doi: 10.1038/bjc.2017.319. [PMID: 29024939]
  • Hye Mi Kim, Su Jung Kim, Ha-Yeong Kim, Byeol Ryu, Hokwang Kwak, Jonghyun Hur, Jung-Hye Choi, Dae Sik Jang. Constituents of the stem barks of Ailanthus altissima and their potential to inhibit LPS-induced nitric oxide production. Bioorganic & medicinal chemistry letters. 2015 Mar; 25(5):1017-20. doi: 10.1016/j.bmcl.2015.01.034. [PMID: 25666824]
  • Ang Chen, Xuan Qin, Jian Lu, Zhengfang Yi, Mingyao Liu, Xin Wang. Development of a validated LC-MS/MS method for the determination of ailanthone in rat plasma with application to pharmacokinetic study. Journal of pharmaceutical and biomedical analysis. 2015 Jan; 102(?):514-8. doi: 10.1016/j.jpba.2014.10.022. [PMID: 25433911]
  • Yan Wang, Wen-Jing Wang, Chang Su, Dong-Mei Zhang, Li-Peng Xu, Rong-Rong He, Lei Wang, Jian Zhang, Xiao-Qi Zhang, Wen-Cai Ye. Cytotoxic quassinoids from Ailanthus altissima. Bioorganic & medicinal chemistry letters. 2013 Feb; 23(3):654-7. doi: 10.1016/j.bmcl.2012.11.116. [PMID: 23290052]
  • Cristiano Pedersini, Massimo Bergamin, Vincent Aroulmoji, Sanzio Baldini, Rodolfo Picchio, Patricia Gutierrez Pesce, Luca Ballarin, Erminio Murano. Herbicide activity of extracts from Ailanthus altissima (Simaroubaceae). Natural product communications. 2011 May; 6(5):593-6. doi: ". [PMID: 21615014]
  • Kirandeep Kaur, Meenakshi Jain, Tarandeep Kaur, Rahul Jain. Antimalarials from nature. Bioorganic & medicinal chemistry. 2009 May; 17(9):3229-56. doi: 10.1016/j.bmc.2009.02.050. [PMID: 19299148]
  • Vincenzo De Feo, Laura De Martino, Emilia Quaranta, Cosimo Pizza. Isolation of phytotoxic compounds from tree-of-heaven (Ailanthus altissima swingle). Journal of agricultural and food chemistry. 2003 Feb; 51(5):1177-80. doi: 10.1021/jf020686+. [PMID: 12590453]