Quercetagetin (BioDeep_00000396667)

 

Secondary id: BioDeep_00000007887

PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy-

化学式: C15H10O8 (318.0376)
中文名称: 六羟基黄酮, 六羟黄酮, 栎草亭, 六羟黄酮/栎草亭
谱图信息: 最多检出来源 Viridiplantae(plant) 93.04%

分子结构信息

SMILES: C1(O)=CC2OC(C3C=C(O)C(O)=CC=3)=C(O)C(=O)C=2C(O)=C1O
InChI: InChI=1S/C15H10O8/c16-6-2-1-5(3-7(6)17)15-14(22)13(21)10-9(23-15)4-8(18)11(19)12(10)20/h1-4,16-20,22H

描述信息

Quercetagetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively. It has a role as an antioxidant, an antiviral agent and a plant metabolite. It is a member of flavonols and a hexahydroxyflavone. It is functionally related to a quercetin.
Quercetagetin is a natural product found in Calanticaria bicolor, Tagetes subulata, and other organisms with data available.
See also: Chaste tree fruit (part of).
A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 6, 7, 3 and 4 respectively.
D004791 - Enzyme Inhibitors
Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.
Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

同义名列表

29 个代谢物同义名

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy-; 3,5,6,7-Tetrahydroxy-2-(3,4-dihydroxyphenyl)-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3,5,6,7-tetrahydroxy-4H-1-benzopyran-4-one; 2-(3,4-Dihydroxyphenyl)-3,5,6,7-tetrahydroxy-4H-chromen-4-one #; 4H-1-Benzopyran-4-one,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy-; 3,5,6,7-Tetrahydroxy-2-(3,4-Dihydroxyphenyl)-4h-Chromen-4-One; 2-(3,4-Dihydroxyphenyl)-3,5,6,7-tetrahydroxy-4H-chromen-4-one; 2-(3,4-Dihydroxyphenyl)-3,5,6,7-tetrahydroxy-4-benzopyrone; 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxy-chromen-4-one; 2-(3,4-dihydroxyphenyl)-3,5,6,7-tetrahydroxychromen-4-one; Flavone, 3,3,4,5,6,7-hexahydroxy-; Flavone,3,4,5,6,7-hexahydroxy-; 3,3,4,5,6,7-Hexahydroxyflavone; 3,5,6,7,3,4-hexamethoxyflavone; 3,5,6,7,3,4-Hexahydroxyflavone; 3,4,5,6,7-Hexahydroxyflavone; ZVOLCUVKHLEPEV-UHFFFAOYSA-N; 3,34,5,6,7-hexOH-Flavone; QUERCETAGETIN [INCI]; 6-Hydroxyquercetin; QUERCETAGETIN [MI]; UNII-SV68G507VO; quercetagetin; quercetogetin; Quercetagenin; SV68G507VO; 3v3v; MYU; Quercetagetin



数据库引用编号

18 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

102 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 CASP3, GAP43, GFAP, KEAP1, MAPK14, MAPK8, PIM1, POLB, PTGS2, SRARP, STAT3
Peripheral membrane protein 3 ACHE, GAP43, PTGS2
Endoplasmic reticulum membrane 2 HMOX1, PTGS2
Nucleus 12 ACHE, CASP3, GABPA, HMOX1, JUND, KEAP1, MAPK14, MAPK8, PIM1, POLB, SRARP, STAT3
cytosol 9 CASP3, GFAP, HMOX1, KEAP1, MAPK14, MAPK8, NCAM1, PIM1, STAT3
dendrite 1 GAP43
nucleoplasm 10 CASP3, GABPA, HMOX1, JUND, KEAP1, MAPK14, MAPK8, PIM1, POLB, STAT3
RNA polymerase II transcription regulator complex 2 JUND, STAT3
Cell membrane 3 ACHE, GAP43, NCAM1
Cytoplasmic side 2 GAP43, HMOX1
Cell projection, axon 1 GAP43
Synapse 3 ACHE, GAP43, MAPK8
cell surface 2 ACHE, NCAM1
glutamatergic synapse 2 CASP3, MAPK14
Golgi apparatus 2 ACHE, ATRN
Golgi membrane 1 NCAM1
lysosomal membrane 1 GAA
neuromuscular junction 1 ACHE
neuronal cell body 1 CASP3
Lysosome 1 GAA
Presynapse 1 GAP43
plasma membrane 7 ACHE, ATRN, GAA, GAP43, NCAM1, PIM1, STAT3
Membrane 4 ACHE, GAA, HMOX1, NCAM1
axon 1 MAPK8
caveola 1 PTGS2
extracellular exosome 2 ATRN, GAA
Lysosome membrane 1 GAA
endoplasmic reticulum 3 HMOX1, KEAP1, PTGS2
extracellular space 5 ACHE, ATRN, CCL22, HMOX1, IL10
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 2 ACHE, HMOX1
mitochondrion 1 MAPK14
protein-containing complex 2 POLB, PTGS2
intracellular membrane-bounded organelle 1 GAA
Microsome membrane 1 PTGS2
postsynaptic density 2 CASP3, GAP43
Single-pass type I membrane protein 2 ATRN, NCAM1
Secreted 3 ACHE, GAA, IL10
extracellular region 6 ACHE, CCL22, GAA, IL10, MAPK14, NCAM1
mitochondrial outer membrane 1 HMOX1
astrocyte end-foot 1 GFAP
[Isoform 2]: Secreted 1 ATRN
Extracellular side 1 ACHE
transcription regulator complex 2 JUND, STAT3
centriolar satellite 1 KEAP1
external side of plasma membrane 1 NCAM1
perikaryon 1 GAP43
nucleolus 1 PIM1
midbody 1 KEAP1
microtubule 1 POLB
GABA-ergic synapse 1 GAP43
basement membrane 1 ACHE
collagen-containing extracellular matrix 1 NCAM1
intermediate filament 1 GFAP
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
chromatin 3 GABPA, JUND, STAT3
cell projection 1 GFAP
spindle pole 1 MAPK14
actin filament 1 KEAP1
Lipid-anchor, GPI-anchor 2 ACHE, NCAM1
[Isoform 3]: Secreted 1 ATRN
Cul3-RING ubiquitin ligase complex 1 KEAP1
Cell projection, dendrite 1 GAP43
tertiary granule membrane 1 GAA
cell body 1 GFAP
side of membrane 1 ACHE
intermediate filament cytoskeleton 1 GFAP
filopodium membrane 1 GAP43
ficolin-1-rich granule lumen 1 MAPK14
secretory granule lumen 1 MAPK14
endoplasmic reticulum lumen 1 PTGS2
transcription repressor complex 1 JUND
azurophil granule membrane 1 GAA
Single-pass type IV membrane protein 1 HMOX1
synaptic cleft 1 ACHE
ficolin-1-rich granule membrane 1 GAA
spindle microtubule 1 POLB
basal dendrite 1 MAPK8
death-inducing signaling complex 1 CASP3
[Isoform 1]: Cell membrane 1 ATRN
Cell projection, filopodium membrane 1 GAP43
cytoplasmic side of lysosomal membrane 1 GFAP
transcription factor AP-1 complex 1 JUND
inclusion body 1 KEAP1
autolysosome lumen 1 GAA
[Isoform 4]: Cell membrane 1 NCAM1
[Isoform 6]: Secreted 1 NCAM1
Cell projection, growth cone membrane 1 GAP43
growth cone membrane 1 GAP43
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Hui Zhang, Jiao Wang, Xinyu Sun, Yalan Zhang, Mengna Dong, Xin Wang, Lihua Li, Li Wang. Fabrication and Characterization of Quercetagetin-Loaded Nanoparticles Based on Shellac and Quaternized Chitosan: Improvement of Encapsulation Efficiency and Acid and Storage Stabilities. Journal of agricultural and food chemistry. 2021 Dec; 69(51):15670-15680. doi: 10.1021/acs.jafc.1c01830. [PMID: 34923817]
  • Shiv Bharadwaj, Sherif Aly El-Kafrawy, Thamir A Alandijany, Leena Hussein Bajrai, Altaf Ahmad Shah, Amit Dubey, Amaresh Kumar Sahoo, Umesh Yadava, Mohammad Amjad Kamal, Esam Ibraheem Azhar, Sang Gu Kang, Vivek Dhar Dwivedi. Structure-Based Identification of Natural Products as SARS-CoV-2 Mpro Antagonist from Echinacea angustifolia Using Computational Approaches. Viruses. 2021 02; 13(2):. doi: 10.3390/v13020305. [PMID: 33672054]
  • Eun Suk Son, Jeong-Woong Park, Se-Hee Kim, Hye Ran Park, Woorijarang Han, O Chul Kwon, Jae Young Nam, Sung Hwan Jeong, Chang Soo Lee. Anti‑inflammatory activity of 3,5,6,7,3',4'‑hexamethoxyflavone via repression of the NF‑κB and MAPK signaling pathways in LPS‑stimulated RAW264.7 cells. Molecular medicine reports. 2020 09; 22(3):1985-1993. doi: 10.3892/mmr.2020.11252. [PMID: 32705181]
  • María Eva González-Trujano, Claret Gutiérrez-Valentino, Mariana Yetlanezy Hernández-Arámburo, María Irene Díaz-Reval, Francisco Pellicer. Identification of some bioactive metabolites and inhibitory receptors in the antinociceptive activity of Tagetes lucida Cav. Life sciences. 2019 Aug; 231(?):116523. doi: 10.1016/j.lfs.2019.05.079. [PMID: 31152811]
  • Shuai Chen, Yahong Han, Jingyang Huang, Lei Dai, Juan Du, David Julian McClements, Like Mao, Jinfang Liu, Yanxiang Gao. Fabrication and Characterization of Layer-by-Layer Composite Nanoparticles Based on Zein and Hyaluronic Acid for Codelivery of Curcumin and Quercetagetin. ACS applied materials & interfaces. 2019 May; 11(18):16922-16933. doi: 10.1021/acsami.9b02529. [PMID: 30985111]
  • Shuai Chen, Yahong Han, Yingqi Wang, Xi Yang, Cuixia Sun, Like Mao, Yanxiang Gao. Zein-hyaluronic acid binary complex as a delivery vehicle of quercetagetin: Fabrication, structural characterization, physicochemical stability and in vitro release property. Food chemistry. 2019 Mar; 276(?):322-332. doi: 10.1016/j.foodchem.2018.10.034. [PMID: 30409601]
  • Shuai Chen, Cuixia Sun, Yingqi Wang, Yahong Han, Lei Dai, Arzigül Abliz, Yanxiang Gao. Quercetagetin-Loaded Composite Nanoparticles Based on Zein and Hyaluronic Acid: Formation, Characterization, and Physicochemical Stability. Journal of agricultural and food chemistry. 2018 Jul; 66(28):7441-7450. doi: 10.1021/acs.jafc.8b01046. [PMID: 29897751]
  • Like Mao, Weiyou Wang, Kedong Tai, Fang Yuan, Yanxiang Gao. Development of a soy protein isolate-carrageenan-quercetagetin non-covalent complex for the stabilization of β-carotene emulsions. Food & function. 2017 Dec; 8(12):4356-4363. doi: 10.1039/c7fo01238a. [PMID: 29067377]
  • Cuixia Sun, Yang Wei, Ruirui Li, Lei Dai, Yanxiang Gao. Quercetagetin-Loaded Zein-Propylene Glycol Alginate Ternary Composite Particles Induced by Calcium Ions: Structure Characterization and Formation Mechanism. Journal of agricultural and food chemistry. 2017 May; 65(19):3934-3945. doi: 10.1021/acs.jafc.7b00921. [PMID: 28460525]
  • Cuixia Sun, Lei Dai, Yanxiang Gao. Binary Complex Based on Zein and Propylene Glycol Alginate for Delivery of Quercetagetin. Biomacromolecules. 2016 12; 17(12):3973-3985. doi: 10.1021/acs.biomac.6b01362. [PMID: 27936716]
  • Yearam Jung, Soon Young Shin, Yeonjoong Yong, Hyeryoung Jung, Seunghyun Ahn, Young Han Lee, Yoongho Lim. Plant-derived flavones as inhibitors of aurora B kinase and their quantitative structure-activity relationships. Chemical biology & drug design. 2015 May; 85(5):574-85. doi: 10.1111/cbdd.12445. [PMID: 25298094]
  • Run-Tian Ma, Yan-Ping Shi. Magnetic molecularly imprinted polymer for the selective extraction of quercetagetin from Calendula officinalis extract. Talanta. 2015 Mar; 134(?):650-656. doi: 10.1016/j.talanta.2014.12.003. [PMID: 25618718]
  • Honggao Xu, Xuan Liu, Qiuli Yan, Fang Yuan, Yanxiang Gao. A novel copigment of quercetagetin for stabilization of grape skin anthocyanins. Food chemistry. 2015 Jan; 166(?):50-55. doi: 10.1016/j.foodchem.2014.05.125. [PMID: 25053027]
  • Abdelhakim Ahmed-Belkacem, Jean-François Guichou, Rozenn Brillet, Nazim Ahnou, Eva Hernandez, Coralie Pallier, Jean-Michel Pawlotsky. Inhibition of RNA binding to hepatitis C virus RNA-dependent RNA polymerase: a new mechanism for antiviral intervention. Nucleic acids research. 2014 Aug; 42(14):9399-409. doi: 10.1093/nar/gku632. [PMID: 25053847]
  • Nawal M Al-Musayeib, Gamal A Mohamed, Sabrin R M Ibrahim, Samir A Ross. New thiophene and flavonoid from Tagetes minuta leaves growing in Saudi Arabia. Molecules (Basel, Switzerland). 2014 Mar; 19(3):2819-28. doi: 10.3390/molecules19032819. [PMID: 24599122]
  • Ampai Phrutivorapongkul, Kanokwan Kiattisin, Pensak Jantrawut, Sunee Chansakaow, Suwanna Vejabhikul, Pimporn Leelapornpisid. Appraisal of biological activities and identification of phenolic compound of African marigold (Tagetes erecta) flower extract. Pakistan journal of pharmaceutical sciences. 2013 Nov; 26(6):1071-6. doi: . [PMID: 24191339]
  • Ying Gong, Xuan Liu, Wen-Hao He, Hong-Gao Xu, Fang Yuan, Yan-Xiang Gao. Investigation into the antioxidant activity and chemical composition of alcoholic extracts from defatted marigold (Tagetes erecta L.) residue. Fitoterapia. 2012 Apr; 83(3):481-9. doi: 10.1016/j.fitote.2011.12.013. [PMID: 22223143]
  • Nan Qin, Chun-Bao Li, Mei-Na Jin, Li-Huan Shi, Hong-Quan Duan, Wen-Yan Niu. Synthesis and biological activity of novel tiliroside derivants. European journal of medicinal chemistry. 2011 Oct; 46(10):5189-95. doi: 10.1016/j.ejmech.2011.07.059. [PMID: 21856048]
  • Xiudong Yang, Sung-Myung Kang, Byong-Tae Jeon, Yong-Deog Kim, Jin-Hwan Ha, Yong-Tae Kim, You-Jin Jeon. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. Journal of the science of food and agriculture. 2011 Aug; 91(10):1925-7. doi: 10.1002/jsfa.4402. [PMID: 21480273]
  • Jaspal Kaur Kumar, Ryan Yueh Shyang Ping, Huey Fern Teong, Shijie Goh, Marie-Véronique Clément. Activation of a non-genomic Pim-1/Bad-Pser75 module is required for an efficient pro-survival effect of Bcl-xL induced by androgen in LNCaP cells. The international journal of biochemistry & cell biology. 2011 Apr; 43(4):594-603. doi: 10.1016/j.biocel.2010.12.017. [PMID: 21187157]
  • Anil Pareek, Manish Suthar, Garvendra S Rathore, Vijay Bansal. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacognosy reviews. 2011 Jan; 5(9):103-10. doi: 10.4103/0973-7847.79105. [PMID: 22096324]
  • Mirjana Milovanovic, Dusan Zivkovic, Biljana Vucelic-Radovic. Antioxidant effects of Glechoma hederacea as a food additive. Natural product communications. 2010 Jan; 5(1):61-3. doi: ". [PMID: 20184023]
  • Supriya Baikar, Nutan Malpathak. Secondary metabolites as DNA topoisomerase inhibitors: A new era towards designing of anticancer drugs. Pharmacognosy reviews. 2010 Jan; 4(7):12-26. doi: 10.4103/0973-7847.65320. [PMID: 22228937]
  • Qi Wu, Xiuwei Yang, Lei Zou, Dexian Fu. [Bioactivity guided isolation of alpha-glucosidase inhibitor from whole herbs of Crossostephium chinense]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2009 Sep; 34(17):2206-11. doi: . [PMID: 19943487]
  • Jakub G Kopycki, Daniel Rauh, Alexander A Chumanevich, Piotr Neumann, Thomas Vogt, Milton T Stubbs. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. Journal of molecular biology. 2008 Apr; 378(1):154-64. doi: 10.1016/j.jmb.2008.02.019. [PMID: 18342334]
  • Carlos L Céspedes, J Guillermo Avila, Andrés Martínez, Blanca Serrato, José C Calderón-Mugica, Rafael Salgado-Garciglia. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of agricultural and food chemistry. 2006 May; 54(10):3521-7. doi: 10.1021/jf053071w. [PMID: 19127719]
  • Joo-Heon Yoon, Seung Joon Baek. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei medical journal. 2005 Oct; 46(5):585-96. doi: 10.3349/ymj.2005.46.5.585. [PMID: 16259055]
  • Irene Parejo, Jaume Bastida, Francesc Viladomat, Carles Codina. Acylated quercetagetin glycosides with antioxidant activity from Tagetes maxima. Phytochemistry. 2005 Oct; 66(19):2356-62. doi: 10.1016/j.phytochem.2005.07.004. [PMID: 16168446]
  • Guillermo Schmeda-Hirschmann, Alejandro Tapia, Cristina Theoduloz, Jaime Rodríguez, Susana López, Gabriela Egly Feresin. Free radical scavengers and antioxidants from Tagetes mendocina. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2004 May; 59(5-6):345-53. doi: 10.1515/znc-2004-5-610. [PMID: 18998399]
  • Christine A Williams, Jeffrey B Harborne, Jenny R Greenham, Renée J Grayer, Geoffrey C Kite, John Eagles. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochemistry. 2003 Sep; 64(1):275-83. doi: 10.1016/s0031-9422(03)00207-3. [PMID: 12946426]
  • Jenny Greenham, Jeffrey B Harborne, Christine A Williams. Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis. Phytochemical analysis : PCA. 2003 Mar; 14(2):100-18. doi: 10.1002/pca.693. [PMID: 12693635]
  • T Kaneko, N Baba. Protective effect of flavonoids on endothelial cells against linoleic acid hydroperoxide-induced toxicity. Bioscience, biotechnology, and biochemistry. 1999 Feb; 63(2):323-8. doi: 10.1271/bbb.63.323. [PMID: 10192914]
  • G Rusak, M Krajacić, N Plese. Inhibition of tomato bushy stunt virus infection using a quercetagetin flavonoid isolated from Centaurea rupestris L. Antiviral research. 1997 Nov; 36(2):125-9. doi: 10.1016/s0166-3542(97)00045-4. [PMID: 9443669]
  • M L Tereschuk, M V Riera, G R Castro, L R Abdala. Antimicrobial activity of flavonoids from leaves of Tagetes minuta. Journal of ethnopharmacology. 1997 May; 56(3):227-32. doi: 10.1016/s0378-8741(97)00038-x. [PMID: 9201613]
  • M A Horisberger, R Schrenk, S Staiger, A R Leyvraz, S Martinod. Induction of Mx-related protein in cat peripheral blood mononuclear cells after administration of recombinant human interferon hybrid. Antiviral research. 1990 Feb; 13(2):53-9. doi: 10.1016/0166-3542(90)90021-x. [PMID: 2160795]