Scopolin (BioDeep_00000000343)
Secondary id: BioDeep_00000228171
natural product PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C16H18O9 (354.0951)
中文名称: 大麦草碱7-O-葡萄糖苷, 东莨菪苷, 东莨菪甙
谱图信息:
最多检出来源 Viridiplantae(plant) 18.76%
分子结构信息
SMILES: c1(c(cc2c(c1)ccc(=O)o2)O[C@H]1[C@@H]([C@H]([C@@H]([C@H](O1)CO)O)O)O)OC
InChI: InChI=1S/C16H18O9/c1-22-9-4-7-2-3-12(18)23-8(7)5-10(9)24-16-15(21)14(20)13(19)11(6-17)25-16/h2-5,11,13-17,19-21H,6H2,1H3/t11-,13-,14+,15-,16-/m1/s1
描述信息
Scopolin is a member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It has a role as a plant metabolite. It is a monosaccharide derivative, a member of coumarins and a beta-D-glucoside. It is functionally related to a scopoletin.
Scopolin is a natural product found in Artemisia ordosica, Astragalus onobrychis, and other organisms with data available.
See also: Chamaemelum nobile flower (part of).
A member of the class of coumarins that is scopoletin attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage.
Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].
Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].
Scopolin is a coumarin isolated from Arabidopsis thaliana (Arabidopsis) roots[1]. Scopolin attenuated hepatic steatosis through activation of SIRT1-mediated signaling cascades[2].
同义名列表
27 个代谢物同义名
6-methoxy-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-2-one; 2H-1-Benzopyran-2-one, 7-(.beta.-D-glucopyranosyloxy)-6-methoxy-; 2H-1-Benzopyran-2-one, 7-(beta-D-glucopyranosyloxy)-6-methoxy-; 7-(beta-D-glucopyranosoyloxy)-6-methoxy-2H-1-benzopyran-2-one; 6-methoxy-2-oxo-2H-chromen-7-yl beta-D-glucopyranoside; 6-METHOXY-7-(.BETA.-D-GLUCOPYRANOSYLOXY)COUMARIN; 7-(.BETA.-D-GLUCOPYRANOSYLOXY)-6-METHOXYCOUMARIN; 7-(beta-D-GLUCOPYRANOSYLOXY)-6-METHOXYCOUMARIN; 6-METHOXY-7-(beta-D-GLUCOPYRANOSYLOXY)COUMARIN; 7beta-D-Glucopyranosyloxy-6-methoxycumarin; 6-METHOXYCOUMARIN 7-O-.BETA.-D-GLUCOSIDE; SCOPOLETIN 7-O-.BETA.-D-GLUCOPYRANOSIDE; 6-METHOXYCOUMARIN 7-O-beta-D-GLUCOSIDE; SCOPOLETIN 7-O-beta-D-GLUCOPYRANOSIDE; 7-O-.BETA.-GLUCOPYRANOSYLSCOPOLETIN; 7-O-beta-GLUCOPYRANOSYLSCOPOLETIN; Scopoletin 7-O-Glucoside; Scopoletin 7-glucoside; scopoletin glucoside; UNII-1Y49270PY8; SCOPOLIN [MI]; Scopoloside; 1Y49270PY8; Murrayin; Scopolin; SCHEMBL14296928; Scopolin
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:16065
- KEGG: C01527
- PubChem: 439514
- PubChem: 346340
- Metlin: METLIN64175
- ChEMBL: CHEMBL225024
- Wikipedia: Scopolin
- MeSH: scopolin
- ChemIDplus: 0000531442
- MetaCyc: SCOPOLIN
- KNApSAcK: C00002500
- chemspider: 388609
- CAS: 531-44-2
- MoNA: CCMSLIB00005463762
- MoNA: PM018131
- medchemexpress: HY-N0341
- PMhub: MS000011106
- MetaboLights: MTBLC16065
- PubChem: 4689
- 3DMET: B01459
- NIKKAJI: J821.135C
- RefMet: Scopolin
- KNApSAcK: 16065
- LOTUS: LTS0061811
分类词条
相关代谢途径
Reactome(0)
代谢反应
220 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(3)
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
SAM + esculetin ⟶ H+ + SAH + scopoletin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(217)
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
(Z)-6'-hydroxyferulate ⟶ scopoletin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- superpathway of scopolin and esculin biosynthesis:
H2O + esculin ⟶ D-glucopyranose + esculetin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
- scopolin biosynthesis:
UDP-α-D-glucose + scopoletin ⟶ H+ + UDP + scopolin
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
284 个相关的物种来源信息
- 4022 - Acer: LTS0061811
- 4024 - Acer saccharum: 10.1021/NP200678N
- 4024 - Acer saccharum: LTS0061811
- 13328 - Achillea: LTS0061811
- 282723 - Achillea biserrata:
- 282723 - Achillea biserrata: 10.1007/BF00577208
- 282723 - Achillea biserrata: 10.1007/BF00579679
- 282723 - Achillea biserrata: LTS0061811
- 282741 - Achillea impatiens: 10.1007/BF00579978
- 282741 - Achillea impatiens: LTS0061811
- 4206 - Adoxaceae: LTS0061811
- 43363 - Aesculus: LTS0061811
- 43364 - Aesculus hippocastanum: 10.1201/B10413-17
- 43364 - Aesculus hippocastanum: LTS0061811
- 43872 - Aesculus pavia: 10.1016/J.PHYTOCHEM.2007.05.020
- 43872 - Aesculus pavia: LTS0061811
- 155619 - Agaricomycetes: LTS0061811
- 23809 - Ailanthus: LTS0061811
- 459110 - Ailanthus triphysa: 10.1002/CJOC.20030210222
- 145744 - Althaea: LTS0061811
- 446321 - Althaea armeniaca: 10.1007/BF00630189
- 446321 - Althaea armeniaca: LTS0061811
- 145745 - Althaea officinalis: 10.1007/BF00630189
- 145745 - Althaea officinalis: LTS0061811
- 3563 - Amaranthaceae: LTS0061811
- 40948 - Angelica: LTS0061811
- 48101 - Angelica dahurica: 10.1007/BF02973988
- 48101 - Angelica dahurica: LTS0061811
- 4037 - Apiaceae: LTS0061811
- 4056 - Apocynaceae: LTS0061811
- 3701 - Arabidopsis: LTS0061811
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.13797
- 3702 - Arabidopsis thaliana: 10.3390/IJMS17091565
- 3702 - Arabidopsis thaliana: LTS0061811
- 4219 - Artemisia: LTS0061811
- 1227615 - Artemisia alba: 10.1021/NP50052A045
- 1227615 - Artemisia alba: LTS0061811
- 35608 - Artemisia annua: 10.1021/NP800643N
- 259893 - Artemisia argyi: 10.1021/NP800643N
- 265783 - Artemisia capillaris: 10.1016/S0968-0896(00)00225-X
- 265783 - Artemisia capillaris: 10.1021/NP800643N
- 265783 - Artemisia capillaris: LTS0061811
- 401898 - Artemisia gmelinii:
- 401898 - Artemisia gmelinii: 10.1007/BF02974002
- 401898 - Artemisia gmelinii: 10.1021/NP800643N
- 401898 - Artemisia gmelinii: LTS0061811
- 265784 - Artemisia iwayomogi:
- 265784 - Artemisia iwayomogi: 10.1007/BF02974002
- 265784 - Artemisia iwayomogi: 10.1021/NP800643N
- 265784 - Artemisia iwayomogi: LTS0061811
- 1227633 - Artemisia minor:
- 1227633 - Artemisia minor: 10.1007/S10600-015-1519-X
- 1227633 - Artemisia minor: 10.1021/NP800643N
- 1227633 - Artemisia minor: LTS0061811
- 669134 - Artemisia montana: 10.1021/NP800643N
- 1027791 - Artemisia ordosica: 10.1007/S11418-009-0385-X
- 1027791 - Artemisia ordosica: LTS0061811
- 223870 - Artemisia princeps: 10.1021/NP800643N
- 200865 - Artemisia suksdorfii: 10.1016/J.PHYTOCHEM.2006.06.013
- 200865 - Artemisia suksdorfii: LTS0061811
- 1811969 - Artemisia vestita: 10.1055/S-1999-13965
- 1811969 - Artemisia vestita: LTS0061811
- 4210 - Asteraceae: LTS0061811
- 20400 - Astragalus: LTS0061811
- 1264805 - Astragalus brachycarpus: 10.1007/BF00564977
- 1264805 - Astragalus brachycarpus: LTS0061811
- 1091133 - Astragalus onobrychis: 10.1007/BF00630446
- 1091133 - Astragalus onobrychis: LTS0061811
- 41487 - Baccharis: LTS0061811
- 1715999 - Baccharis tricuneata:
- 1715999 - Baccharis tricuneata: 10.1016/J.FITOTE.2003.12.017
- 1715999 - Baccharis tricuneata: 10.1021/NP50108A017
- 1715999 - Baccharis tricuneata: LTS0061811
- 49796 - Baptisia: LTS0061811
- 313912 - Baptisia bracteata: 10.1016/S0031-9422(00)85740-4
- 313912 - Baptisia bracteata: LTS0061811
- 1969220 - Baptisia calycosa: 10.1016/S0031-9422(00)85740-4
- 1969220 - Baptisia calycosa: LTS0061811
- 313913 - Baptisia cinerea: 10.1016/S0031-9422(00)85740-4
- 313913 - Baptisia cinerea: LTS0061811
- 1969221 - Baptisia lanceolata: 10.1016/S0031-9422(00)85740-4
- 1969221 - Baptisia lanceolata: LTS0061811
- 1871516 - Baptisia perfoliata: 10.1016/S0031-9422(00)85740-4
- 1871516 - Baptisia perfoliata: LTS0061811
- 1969224 - Baptisia simplicifolia: 10.1016/S0031-9422(00)85740-4
- 1969224 - Baptisia simplicifolia: LTS0061811
- 49797 - Baptisia tinctoria: 10.1016/S0031-9422(00)85740-4
- 49797 - Baptisia tinctoria: LTS0061811
- 5204 - Basidiomycota: LTS0061811
- 63460 - Beaumontia: LTS0061811
- 63464 - Beaumontia grandiflora: 10.1016/J.BSE.2009.07.001
- 63464 - Beaumontia grandiflora: LTS0061811
- 21571 - Boraginaceae: LTS0061811
- 3700 - Brassicaceae: LTS0061811
- 4200 - Caprifoliaceae: LTS0061811
- 136893 - Catunaregam: LTS0061811
- 1237419 - Catunaregam obovata: 10.1016/S0031-9422(00)97791-4
- 1237419 - Catunaregam obovata: LTS0061811
- 136894 - Catunaregam spinosa: 10.1021/NP50062A026
- 136894 - Catunaregam spinosa: LTS0061811
- 43460 - Cephalanthus: LTS0061811
- 43461 - Cephalanthus occidentalis: 10.1055/S-2005-864103
- 43461 - Cephalanthus occidentalis: LTS0061811
- 1804623 - Chenopodiaceae: LTS0061811
- 4118 - Convolvulaceae: LTS0061811
- 93758 - Corchorus: LTS0061811
- 93759 - Corchorus olitorius: 10.1248/CPB.45.464
- 93759 - Corchorus olitorius: LTS0061811
- 37818 - Dendrobium: LTS0061811
- 161866 - Dendrobium densiflorum: 10.1080/10286020008041369
- 161866 - Dendrobium densiflorum: LTS0061811
- 497228 - Diodella: LTS0061811
- 497229 - Diodella teres: 10.1007/BF02980043
- 60364 - Diodia: LTS0061811
- 90450 - Diplolophium: LTS0061811
- 7674 - Echinacea: LTS0061811
- 53751 - Echinacea purpurea: 10.1055/S-2005-873201
- 53751 - Echinacea purpurea: LTS0061811
- 197385 - Erycibe: LTS0061811
- 1603722 - Erycibe obtusifolia: 10.1016/J.PHYTOCHEM.2007.05.001
- 1603722 - Erycibe obtusifolia: LTS0061811
- 1603722 - Erycibe Obtusifolia Benth: -
- 1603722 - Erycibe obtusifolia Benth.: -
- 2315750 - Erycibe schmidtii: 10.1016/J.PHYTOCHEM.2007.05.001
- 2315750 - Erycibe schmidtii Craib: -
- 3932 - Eucalyptus: LTS0061811
- 155764 - Eucalyptus viminalis: 10.1007/S10600-009-9388-9
- 155764 - Eucalyptus viminalis: LTS0061811
- 2759 - Eukaryota: LTS0061811
- 3977 - Euphorbiaceae: LTS0061811
- 458530 - Eurycoma: LTS0061811
- 458531 - Eurycoma longifolia: 10.1016/J.FOODCHEM.2009.11.012
- 458531 - Eurycoma longifolia: LTS0061811
- 113200 - Evolvulus: LTS0061811
- 439689 - Evolvulus alsinoides: 10.1248/CPB.55.771
- 439689 - Evolvulus alsinoides: LTS0061811
- 3803 - Fabaceae: LTS0061811
- 38871 - Fraxinus: LTS0061811
- 56033 - Fraxinus chinensis: LTS0061811
- 126596 - Fraxinus chinensis subsp. rhynchophylla: 10.1007/S10600-014-0850-Y
- 126596 - Fraxinus chinensis subsp. rhynchophylla: LTS0061811
- 4751 - Fungi: LTS0061811
- 76967 - Glycosmis pentaphylla:
- 459124 - Hannoa: LTS0061811
- 459126 - Hannoa klaineana: 10.1016/S0031-9422(00)83047-2
- 459126 - Hannoa klaineana: 10.1021/NP50047A037
- 459126 - Hannoa klaineana: LTS0061811
- 266078 - Haplophyllum: LTS0061811
- 452768 - Haplophyllum acutifolium: 10.1007/BF00638768
- 452768 - Haplophyllum acutifolium: LTS0061811
- 59430 - Helichrysum: LTS0061811
- 261776 - Helichrysum arenarium:
- 261776 - Helichrysum arenarium: 10.1248/CPB.57.361
- 261776 - Helichrysum arenarium: 10.1248/CPB.57.853
- 261776 - Helichrysum arenarium: LTS0061811
- 2973535 - Hexasepalum: LTS0061811
- 497229 - Hexasepalum teres: LTS0061811
- 4130 - Hydrophyllaceae: LTS0061811
- 4133 - Hydrophyllum: LTS0061811
- 79362 - Hydrophyllum tenuipes: 10.1002/J.1537-2197.1979.TB06321.X
- 79362 - Hydrophyllum tenuipes: LTS0061811
- 4134 - Hydrophyllum virginianum: 10.1002/J.1537-2197.1979.TB06321.X
- 4134 - Hydrophyllum virginianum: LTS0061811
- 40424 - Hymenochaetaceae: LTS0061811
- 60055 - Hymenodictyon: LTS0061811
- 60056 - Hymenodictyon floribundum: 10.1016/S0305-1978(02)00086-8
- 60056 - Hymenodictyon floribundum: LTS0061811
- 127984 - Inulanthera: LTS0061811
- 4119 - Ipomoea: LTS0061811
- 35883 - Ipomoea nil: 10.1271/BBB.68.1837
- 35883 - Ipomoea nil: LTS0061811
- 1589817 - Kitagawia: LTS0061811
- 312531 - Kitagawia praeruptora: LTS0061811
- 3433 - Lauraceae: LTS0061811
- 4447 - Liliopsida: LTS0061811
- 37822 - Loasaceae: LTS0061811
- 109810 - Macaranga: LTS0061811
- 109849 - Macaranga tanarius: 10.1016/J.PHYTOCHEM.2009.07.020
- 109849 - Macaranga tanarius: LTS0061811
- 251260 - Machilus: LTS0061811
- 128685 - Machilus thunbergii: 10.1016/0031-9422(91)84145-I
- 128685 - Machilus thunbergii: LTS0061811
- 3398 - Magnoliopsida: LTS0061811
- 3629 - Malvaceae: LTS0061811
- 24647 - Mandragora: LTS0061811
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: LTS0061811
- 33117 - Mandragora officinarum:
- 33117 - Mandragora officinarum: 10.1016/J.FITOTE.2010.05.013
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: LTS0061811
- 3982 - Manihot: LTS0061811
- 3983 - Manihot esculenta: 10.1006/ANBO.2000.1285
- 3983 - Manihot esculenta: LTS0061811
- 37833 - Mentzelia: LTS0061811
- 228039 - Mentzelia albescens: 10.1016/0031-9422(81)85221-1
- 228039 - Mentzelia albescens: LTS0061811
- 193484 - Mentzelia arborescens: 10.1016/0031-9422(81)85221-1
- 193484 - Mentzelia arborescens: LTS0061811
- 3487 - Moraceae: LTS0061811
- 3497 - Morus: LTS0061811
- 3498 - Morus alba: 10.1248/CPB.49.151
- 3498 - Morus alba: LTS0061811
- 3498 - Morus alba L.: -
- 43710 - Murraya: LTS0061811
- 2901850 - Murraya exotica:
- 2901850 - Murraya exotica L.: -
- 43711 - Murraya paniculata:
- 43711 - Murraya paniculata: 10.1002/JCCS.199400032
- 43711 - Murraya paniculata: 10.1016/0031-9422(89)85066-6
- 43711 - Murraya paniculata: 10.1016/0031-9422(94)85045-3
- 43711 - Murraya paniculata: 10.1016/S0031-9422(00)80160-0
- 43711 - Murraya paniculata: LTS0061811
- 43711 - Murraya paniculata (L.)Jack: -
- 3931 - Myrtaceae: LTS0061811
- 165066 - Neonauclea: LTS0061811
- 4145 - Olea: LTS0061811
- 4146 - Olea europaea: 10.1248/CPB.33.396
- 4146 - Olea europaea: LTS0061811
- 129566 - Olea europaea subsp. cuspidata: 10.1248/CPB.33.396
- 129566 - Olea europaea subsp. cuspidata: LTS0061811
- 4144 - Oleaceae: LTS0061811
- 4747 - Orchidaceae: LTS0061811
- 49562 - Peucedanum: LTS0061811
- 312531 - Peucedanum praeruptorum: 10.1055/S-2006-961828
- 40470 - Phellinus: LTS0061811
- 40472 - Phellinus igniarius:
- 40472 - Phellinus igniarius: 10.1021/NP060476H
- 40472 - Phellinus igniarius: LTS0061811
- 337184 - Physochlaina: LTS0061811
- 337186 - Physochlaina physaloides: 10.1007/BF00597591
- 337186 - Physochlaina physaloides: LTS0061811
- 33090 - Plants: -
- 3754 - Prunus: LTS0061811
- 3760 - Prunus persica: 10.1007/BF00579835
- 3760 - Prunus persica: LTS0061811
- 323852 - Prunus persica var. persica: 10.1007/BF00579835
- 323852 - Prunus persica var. persica: LTS0061811
- 43724 - Quassia: LTS0061811
- 1899180 - Quassia undulata: 10.1016/S0031-9422(00)83047-2
- 1899180 - Quassia undulata: 10.1021/NP50047A037
- 1899180 - Quassia undulata: LTS0061811
- 2872799 - Ripariosida: LTS0061811
- 108447 - Ripariosida hermaphrodita: 10.1007/BF00607552
- 108447 - Ripariosida hermaphrodita: LTS0061811
- 3745 - Rosaceae: LTS0061811
- 24966 - Rubiaceae: LTS0061811
- 23513 - Rutaceae: LTS0061811
- 151233 - Salsola: LTS0061811
- 151252 - Salsola laricifolia: 10.1007/BF00598293
- 151252 - Salsola laricifolia: LTS0061811
- 41642 - Santolina: LTS0061811
- 634960 - Santolina oblongifolia: 10.1021/NP960422F
- 634960 - Santolina oblongifolia: LTS0061811
- 23672 - Sapindaceae: LTS0061811
- 41629 - Saussurea: LTS0061811
- 3030892 - Saussurea cordifolia: LTS0061811
- 238942 - Saussurea hieracioides: 10.1007/S10600-010-9659-5
- 238942 - Saussurea hieracioides: LTS0061811
- 238956 - Saussurea superba: 10.1007/S10600-010-9659-5
- 238956 - Saussurea superba: LTS0061811
- 133579 - Scaphopetalum: LTS0061811
- 133581 - Scaphopetalum thonneri: 10.1016/S0031-9422(02)00616-7
- 133581 - Scaphopetalum thonneri: LTS0061811
- 77655 - Sida: LTS0061811
- 108447 - Sida hermaphrodita: 10.1007/BF00607552
- 23808 - Simaroubaceae: LTS0061811
- 76975 - Skimmia: LTS0061811
- 210365 - Skimmia japonica: 10.1016/0031-9422(92)80484-V
- 210365 - Skimmia japonica: LTS0061811
- 4070 - Solanaceae: LTS0061811
- 35493 - Streptophyta: LTS0061811
- 58023 - Tracheophyta: LTS0061811
- 4204 - Viburnum: LTS0061811
- 237951 - Viburnum odoratissimum: LTS0061811
- 237958 - Viburnum suspensum: 10.1016/S0031-9422(00)97990-1
- 237958 - Viburnum suspensum: LTS0061811
- 33090 - Viridiplantae: LTS0061811
- 79609 - Weigela: LTS0061811
- 79620 - Weigela subsessilis: 10.1248/BPB.28.1095
- 79620 - Weigela subsessilis: LTS0061811
- 33090 - 东莨菪: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Kunpeng Yu, Cheng Peng, Yanling Lin, Lijun Li, Hui Ni, Qingbiao Li. [Expression of β-glucosidase An-bgl3 from Aspergillus niger for conversion of scopolin].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2023 Mar; 39(3):1232-1246. doi:
10.13345/j.cjb.220709
. [PMID: 36994584] - Chen Wang, Qin Zhou, Song-Tao Wu. Scopolin obtained from Smilax china L. against hepatocellular carcinoma by inhibiting glycolysis: A network pharmacology and experimental study.
Journal of ethnopharmacology.
2022 Oct; 296(?):115469. doi:
10.1016/j.jep.2022.115469
. [PMID: 35718053] - QianQian Zhuang, Shaopeng Chen, ZhiXin Jua, Yue Yao. Joint transcriptomic and metabolomic analysis reveals the mechanism of low-temperature tolerance in Hosta ventricosa.
PloS one.
2021; 16(11):e0259455. doi:
10.1371/journal.pone.0259455
. [PMID: 34731224] - Eunkuk Park, Chang Gun Lee, Jeonghyun Kim, Eunguk Lim, Subin Yeo, Seon-Yong Jeong. Scopolin Prevents Adipocyte Differentiation in 3T3-L1 Preadipocytes and Weight Gain in an Ovariectomy-Induced Obese Mouse Model.
International journal of molecular sciences.
2020 Nov; 21(22):. doi:
10.3390/ijms21228699
. [PMID: 33218042] - Zhiyong Chen, Mengmeng Wang, Yuanyuan Yang, Xiaomin Cui, Jing Hu, Ye Li, Feng Zhao. Promotion of a quality standard for Porana sinensis Hemsl. based on the efficacy-oriented Effect-Constituent Index.
Biomedical chromatography : BMC.
2020 Feb; 34(2):e4726. doi:
10.1002/bmc.4726
. [PMID: 31654585] - Bo Li, Min Lu, Zixuan Chu, Shanshan Lei, Peilu Sun, Shan Xiong, Suhong Chen. Evaluation of pharmacokinetics, bioavailability and urinary excretion of scopolin and its metabolite scopoletin in Sprague Dawley rats by liquid chromatography-tandem mass spectrometry.
Biomedical chromatography : BMC.
2019 Dec; 33(12):e4678. doi:
10.1002/bmc.4678
. [PMID: 31412148] - Tie Liu, Xin-Ge Li, Ji-Ye Wang, De-Long Liu, Yong-Ju Wei. Time-resolved fluorescence and chemometrics-assisted excitation-emission fluorescence for qualitative and quantitative analysis of scopoletin and scopolin in Erycibe obtusifolia Benth.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2019 Aug; 219(?):96-103. doi:
10.1016/j.saa.2019.04.019
. [PMID: 31030053] - Stefanie Döll, Markus Kuhlmann, Twan Rutten, Michael F Mette, Sarah Scharfenberg, Antonios Petridis, Dorothee-Carina Berreth, Hans-Peter Mock. Accumulation of the coumarin scopolin under abiotic stress conditions is mediated by the Arabidopsis thaliana THO/TREX complex.
The Plant journal : for cell and molecular biology.
2018 02; 93(3):431-444. doi:
10.1111/tpj.13797
. [PMID: 29222952] - Ahyoung Yoo, Vikram P Narayan, Eun Young Hong, Wan Kyunn Whang, Taesun Park. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: potential involvement of SIRT1-mediated signaling cascades in the liver.
Scientific reports.
2017 05; 7(1):2251. doi:
10.1038/s41598-017-02416-6
. [PMID: 28533555] - Peng Du, Mingdao Lei, Yu Liu, Shilin Yang. Simultaneous Determination and Pharmacokinetic Study of Six Components in Rat Plasma by HPLC-MS/MS after Oral Administration of Acanthopanax sessiliflorus Fruit Extract.
International journal of molecular sciences.
2016 Dec; 18(1):. doi:
10.3390/ijms18010045
. [PMID: 28036026] - Jai Malik, Maninder Karan, Karan Vasisht. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice.
Natural product research.
2016; 30(5):578-82. doi:
10.1080/14786419.2015.1025398
. [PMID: 25828605] - Yu-jie Wang, Rong Tan, Li-shi Zhou, Rui Gu, Yi Zhang. [Phenylpropanoids from Saussureae hieracioides].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Jan; 38(1):101-3. doi:
. [PMID: 26214878]
- Joanna Siwinska, Leszek Kadzinski, Rafal Banasiuk, Anna Gwizdek-Wisniewska, Alexandre Olry, Bogdan Banecki, Ewa Lojkowska, Anna Ihnatowicz. Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana.
BMC plant biology.
2014 Oct; 14(?):280. doi:
10.1186/s12870-014-0280-9
. [PMID: 25326030] - Zhi-Yao Wang, Wen-Jun He, Wen-Bing Zhou, Guang-Zhi Zeng, Zhi-Qi Yin, Shou-Xun Zhao, Ning-Hua Tan. Two new phenylpropanoids from Micromelum integerrimum.
Chinese journal of natural medicines.
2014 Aug; 12(8):619-22. doi:
10.1016/s1875-5364(14)60094-7
. [PMID: 25156288] - M B Sichinava, K Z Mchelidze, M V Churadze, M D Alaniia, Dzh N Aneli. [Chemical composition and microstructural peculiarities of overground and underground vegetative organs of field restharrow (Ononis arvensis L.)].
Georgian medical news.
2014 Jun; ?(231):88-94. doi:
"
. [PMID: 25020180] - Rong Tan, Yu-Jie Wang, Yu-Xin Zhang, Li-Shi Zhou, Er Tan, A Ping, Yi Zhang. [Determination of skimmin, scopolin and umbelliferone in Tibetan medicine Saussurea hieracioides by HPLC].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2014 Mar; 39(6):1054-7. doi:
. [PMID: 24956850]
- Longshan Zhao, Qi An, Feng Qin, ZhiLi Xiong. Simultaneous determination of six constituents in the fruit of Acanthopanax sessiliflorus (Rupr. et Maxim.) Seem. by HPLC-UV.
Natural product research.
2014; 28(7):500-2. doi:
10.1080/14786419.2013.877904
. [PMID: 24438013] - Rohan A Davis, Daniela Vullo, Alfonso Maresca, Claudiu T Supuran, Sally-Ann Poulsen. Natural product coumarins that inhibit human carbonic anhydrases.
Bioorganic & medicinal chemistry.
2013 Mar; 21(6):1539-43. doi:
10.1016/j.bmc.2012.07.021
. [PMID: 22892213] - Qing-Qing Wang, Ying Zhang, Wen-Cai Ye, Guang-Xiong Zhou. [Chemical constituents of Rhododendron seniavinii].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2013 Feb; 38(3):366-70. doi:
. [PMID: 23668011]
- Kuan-Chung Chen, Su-Sen Chang, Fuu-Jen Tsai, Calvin Yu-Chian Chen. Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine?.
Journal of biomolecular structure & dynamics.
2013; 31(11):1219-35. doi:
10.1080/07391102.2012.732340
. [PMID: 23146021] - Hyun Ah Jung, Jin Ju Park, Md Nurul Islam, Seung Eun Jin, Byung-Sun Min, Je-Hyun Lee, Hee Sook Sohn, Jae Sue Choi. Inhibitory activity of coumarins from Artemisia capillaris against advanced glycation endproduct formation.
Archives of pharmacal research.
2012 Jun; 35(6):1021-35. doi:
10.1007/s12272-012-0610-0
. [PMID: 22870812] - Jean Charles Isner, Thomas Nühse, Frans J M Maathuis. The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins.
Journal of experimental botany.
2012 May; 63(8):3199-205. doi:
10.1093/jxb/ers045
. [PMID: 22345640] - Yeong-Gon Choi, Sujung Yeo, Sung-Hoon Kim, Sabina Lim. Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: microarray analysis.
Archives of pharmacal research.
2012 Mar; 35(3):549-63. doi:
10.1007/s12272-012-0319-0
. [PMID: 22477203] - Lei He, Shunli Yang, Desong Wu, Tao Cui, Di Wei, Zhongtao Ding. [Coumarins from Skimmia arborescens and its anti-inflammatory effect].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2012 Mar; 37(6):811-3. doi:
. [PMID: 22715728]
- F Khater, D Fournand, S Vialet, E Meudec, V Cheynier, N Terrier. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis.
Journal of experimental botany.
2012 Feb; 63(3):1201-14. doi:
10.1093/jxb/err340
. [PMID: 22090445] - Yung-An Tsou, Kuan-Chung Chen, Hung-Che Lin, Su-Sen Chang, Calvin Yu-Chian Chen. Uroporphyrinogen decarboxylase as a potential target for specific components of traditional Chinese medicine: a virtual screening and molecular dynamics study.
PloS one.
2012; 7(11):e50087. doi:
10.1371/journal.pone.0050087
. [PMID: 23209648] - Kenji Yamada, Ikuko Hara-Nishimura, Mikio Nishimura. Unique defense strategy by the endoplasmic reticulum body in plants.
Plant & cell physiology.
2011 Dec; 52(12):2039-49. doi:
10.1093/pcp/pcr156
. [PMID: 22102697] - Tao Yuan, Chunpeng Wan, Antonio González-Sarrías, Vamsikrishna Kandhi, Nadja B Cech, Navindra P Seeram. Phenolic glycosides from sugar maple (Acer saccharum) bark.
Journal of natural products.
2011 Nov; 74(11):2472-6. doi:
10.1021/np200678n
. [PMID: 22032697] - Benoit G J Gnonlonfin, Fernand Gbaguidi, Joachim D Gbenou, Ambaliou Sanni, Leon Brimer. Changes in scopoletin concentration in cassava chips from four varieties during storage.
Journal of the science of food and agriculture.
2011 Oct; 91(13):2344-7. doi:
10.1002/jsfa.4465
. [PMID: 21604276] - Oh Song Kwon, Jae Sue Choi, Md Nurul Islam, Yeong Shik Kim, Hyun Pyo Kim. Inhibition of 5-lipoxygenase and skin inflammation by the aerial parts of Artemisia capillaris and its constituents.
Archives of pharmacal research.
2011 Sep; 34(9):1561-9. doi:
10.1007/s12272-011-0919-0
. [PMID: 21975819] - Hyun Ah Jung, M D Nurul Islam, Yong Soo Kwon, Seong Eun Jin, You Kyung Son, Jin Ju Park, Hee Sook Sohn, Jae Sue Choi. Extraction and identification of three major aldose reductase inhibitors from Artemisia montana.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2011 Feb; 49(2):376-84. doi:
10.1016/j.fct.2010.11.012
. [PMID: 21092751] - Birgit Waltenberger, Daniela Schuster, Sompol Paramapojn, Wandee Gritsanapan, Gerhard Wolber, Judith M Rollinger, Hermann Stuppner. Predicting cyclooxygenase inhibition by three-dimensional pharmacophoric profiling. Part II: Identification of enzyme inhibitors from Prasaplai, a Thai traditional medicine.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2011 Jan; 18(2-3):119-33. doi:
10.1016/j.phymed.2010.08.002
. [PMID: 20851587] - Wafaa A Tawfik, Mona M Abdel-Mohsen, Hany M Radwan, Amira A Habib, M A Yeramian. Phytochemical and biological investigations of Atriplex semibacata R .BR. growing in Egypt.
African journal of traditional, complementary, and alternative medicines : AJTCAM.
2011; 8(4):435-43. doi:
10.4314/ajtcam.v8i4.15
. [PMID: 22654223] - Ripu M Kunwar, Keshab P Shrestha, Rainer W Bussmann. Traditional herbal medicine in far-west Nepal: a pharmacological appraisal.
Journal of ethnobiology and ethnomedicine.
2010 Dec; 6(?):35. doi:
10.1186/1746-4269-6-35
. [PMID: 21144003] - Jing Shi, Jingzhi Yang, Chuangjun Li, Dongming Zhang. [Chemical constituents from Hydrangea paniculata].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2010 Nov; 35(22):3007-9. doi:
. [PMID: 21355271]
- Clara Simon, Mathilde Langlois-Meurinne, Floriant Bellvert, Marie Garmier, Laure Didierlaurent, Kamal Massoud, Sejir Chaouch, Arul Marie, Bernard Bodo, Serge Kauffmann, Graham Noctor, Patrick Saindrenan. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst.
Journal of experimental botany.
2010 Jul; 61(12):3355-70. doi:
10.1093/jxb/erq157
. [PMID: 20530195] - Soad A L Bayoumi, Michael G Rowan, John R Beeching, Ian S Blagbrough. Constituents and secondary metabolite natural products in fresh and deteriorated cassava roots.
Phytochemistry.
2010 Apr; 71(5-6):598-604. doi:
10.1016/j.phytochem.2009.10.012
. [PMID: 20137795] - Dieter Treutter. Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints.
International journal of molecular sciences.
2010 Mar; 11(3):807-57. doi:
10.3390/ijms11030807
. [PMID: 20479987] - Jia Sun, Yong-De Yue, Feng Tang, Xue-Feng Guo. Coumarins from the leaves of Bambusa pervariabilis McClure.
Journal of Asian natural products research.
2010 Mar; 12(3):248-51. doi:
10.1080/10286020903578658
. [PMID: 20390773] - Young Ock Ahn, Bun-ichi Shimizu, Kanzo Sakata, Dashzeveg Gantulga, Changhe Zhou, Zhanghe Zhou, David R Bevan, Asim Esen. Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis.
Plant & cell physiology.
2010 Jan; 51(1):132-43. doi:
10.1093/pcp/pcp174
. [PMID: 19965874] - Hari Prasad Devkota, Purusotam Basnet, Shoji Yahara. Diterpene esters and phenolic compounds from Sapium insigne (ROYLE) BENTH. ex HOOK. fil.
Chemical & pharmaceutical bulletin.
2009 Nov; 57(11):1289-91. doi:
10.1248/cpb.57.1289
. [PMID: 19881284] - Binfeng Zhang, Guixin Chou, Zhengtao Wang. [Non-alkaloid constituents of Gelsemium elegans].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Sep; 34(18):2334-7. doi:
"
. [PMID: 20030082] - Qi Wu, Xiuwei Yang, Lei Zou, Dexian Fu. [Bioactivity guided isolation of alpha-glucosidase inhibitor from whole herbs of Crossostephium chinense].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Sep; 34(17):2206-11. doi:
. [PMID: 19943487]
- Rico Lippmann, Stephanie Kaspar, Twan Rutten, Michael Melzer, Jochen Kumlehn, Andrea Matros, Hans-Peter Mock. Protein and metabolite analysis reveals permanent induction of stress defense and cell regeneration processes in a tobacco cell suspension culture.
International journal of molecular sciences.
2009 Jul; 10(7):3012-3032. doi:
10.3390/ijms10073012
. [PMID: 19742122] - Rong Pan, Yue Dai, Xinghua Gao, Yufeng Xia. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis.
International immunopharmacology.
2009 Jul; 9(7-8):859-69. doi:
10.1016/j.intimp.2009.02.019
. [PMID: 19327410] - Lei Zou, Qi Wu, Xiuwei Yang, Dexian Fu. [Effects of chemical constituents of Crossostephium chinense on insulin secretion in rat islets in vitro].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2009 Jun; 34(11):1401-5. doi:
. [PMID: 19771872]
- Qi Wu, Lei Zou, Xiu-Wei Yang, De-Xian Fu. Novel sesquiterpene and coumarin constituents from the whole herbs of Crossostephium chinense.
Journal of Asian natural products research.
2009; 11(1):85-90. doi:
10.1080/10286020802435703
. [PMID: 19177244] - Yu-Feng Xia, Yue Dai, Qiang Wang, Fei Cai. A high-performance liquid chromatographic method for determination of scopolin in rat plasma: application to pharmacokinetic studies.
Biomedical chromatography : BMC.
2008 Oct; 22(10):1137-42. doi:
10.1002/bmc.1036
. [PMID: 18506740] - Frantisek Cervenka, Vit Koleckar, Zuzana Rehakova, Ludek Jahodar, Jiri Kunes, Lubomir Opletal, Radomir Hyspler, Daniel Jun, Kamil Kuca. Evaluation of natural substances from Evolvulus alsinoides L. with the purpose of determining their antioxidant potency.
Journal of enzyme inhibition and medicinal chemistry.
2008 Aug; 23(4):574-8. doi:
10.1080/14756360701674421
. [PMID: 18666003] - Zhuo-Ma Dawa, Yan Zhou, Yang Bai, Suo-Lang Gesang, Ping Xie, Li-Sheng Ding. [Studies on chemical constituents of Saussurea laniceps].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2008 May; 33(9):1032-5. doi:
. [PMID: 18652351]
- Sara Schaarschmidt, Joachim Kopka, Jutta Ludwig-Müller, Bettina Hause. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction.
The Plant journal : for cell and molecular biology.
2007 Aug; 51(3):390-405. doi:
10.1111/j.1365-313x.2007.03150.x
. [PMID: 17521407] - M Habib Oueslati, H Ben Jannet, Zine Mighri, Susan Matthew, Pedro M Abreu. A new C9 nor-isoprenoid glucoside from Rantherium suaveolens.
Natural product research.
2007 Aug; 21(10):884-8. doi:
10.1080/14786410500201977
. [PMID: 17680498] - Tao Pang, Zhongyi Yuan, Yongsheng Dai, Chang Wang, Jun Yang, Liming Peng, Guowang Xu. Identification and determination of glycosides in tobacco leaves by liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry.
Journal of separation science.
2007 Feb; 30(3):289-96. doi:
10.1002/jssc.200600236
. [PMID: 17396585] - Ying Wang, Xiao-Ya Shang, Su-Juan Wang, Shun-Yan Mo, Shuai Li, Yong-Chun Yang, Fei Ye, Jian-Gong Shi, Lan He. Structures, biogenesis, and biological activities of pyrano[4,3-c]isochromen-4-one derivatives from the Fungus Phellinus igniarius.
Journal of natural products.
2007 Feb; 70(2):296-9. doi:
10.1021/np060476h
. [PMID: 17279797] - Qi-lei Guo, Jun-shan Yang, Jian-xun Liu. [Studies on the chemical constituents from Inula cappa (II)].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2007 Jan; 30(1):35-7. doi:
. [PMID: 17539299]
- Kosuke Kai, Bun-ichi Shimizu, Masaharu Mizutani, Ken Watanabe, Kanzo Sakata. Accumulation of coumarins in Arabidopsis thaliana.
Phytochemistry.
2006 Feb; 67(4):379-86. doi:
10.1016/j.phytochem.2005.11.006
. [PMID: 16405932] - Andrea Matros, Steffen Amme, Barbara Kettig, Gerhard H Buck-Sorlin, Uwe Sonnewald, Hans-Peter Mock. Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y.
Plant, cell & environment.
2006 Jan; 29(1):126-37. doi:
10.1111/j.1365-3040.2005.01406.x
. [PMID: 17086759] - H-M Shi, B-S Long, X-M Cui, Z-D Min. A new bisabolane sesquiterpenoid from Euphorbia chrysocoma.
Journal of Asian natural products research.
2005 Dec; 7(6):857-60. doi:
10.1080/1028602042000204090
. [PMID: 16308205] - Bun-ichi Shimizu, Hisashi Miyagawa, Tamio Ueno, Kanzo Sakata, Ken Watanabe, Kei Ogawa. Morning glory systemically accumulates scopoletin and scopolin after interaction with Fusarium oxysporum.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2005 Jan; 60(1-2):83-90. doi:
10.1515/znc-2005-1-216
. [PMID: 15787250] - Judith M Rollinger, Ariane Hornick, Thierry Langer, Hermann Stuppner, Helmut Prast. Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products.
Journal of medicinal chemistry.
2004 Dec; 47(25):6248-54. doi:
10.1021/jm049655r
. [PMID: 15566295] - Antje Rohde, Kris Morreel, John Ralph, Geert Goeminne, Vanessa Hostyn, Riet De Rycke, Sergej Kushnir, Jan Van Doorsselaere, Jean-Paul Joseleau, Marnik Vuylsteke, Gonzalez Van Driessche, Jozef Van Beeumen, Eric Messens, Wout Boerjan. Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism.
The Plant cell.
2004 Oct; 16(10):2749-71. doi:
10.1105/tpc.104.023705
. [PMID: 15377757] - Andrea Matros, Hans-Peter Mock. Ectopic expression of a UDP-glucose:phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with Potato Virus Y.
Plant & cell physiology.
2004 Sep; 45(9):1185-93. doi:
10.1093/pcp/pch140
. [PMID: 15509841] - C P Cordero, S Gómez-González, C J León-Acosta, S J Morantes-Medina, F A Aristizabal. Cytotoxic activity of five compounds isolated from Colombian plants.
Fitoterapia.
2004 Mar; 75(2):225-7. doi:
10.1016/j.fitote.2003.12.017
. [PMID: 15030931] - Jae Hyeok Lee, Chung Hwan Ku, Nam-In Baek, Sung-Hoon Kim, Hee Wook Park, Dae Keun Kim. Phytochemical constituents from Diodia teres.
Archives of pharmacal research.
2004 Jan; 27(1):40-3. doi:
10.1007/bf02980043
. [PMID: 14969336] - Ae Ra Kim, Ya Ni Zou, Tae Hyun Park, Kyung Hee Shim, Min Sun Kim, Nam Deuk Kim, Jong Deog Kim, Song Ja Bae, Jae Sue Choi, Hae Young Chung. Active components from Artemisia iwayomogi displaying ONOO(-) scavenging activity.
Phytotherapy research : PTR.
2004 Jan; 18(1):1-7. doi:
10.1002/ptr.1358
. [PMID: 14750192] - J C Vardamides, A G B Azebaze, A E Nkengfack, F R Van Heerden, Z T Fomum, T M Ngando, J Conrad, B Vogler, W Kraus. Scaphopetalone and scaphopetalumate, a lignan and a triterpene ester from Scaphopetalum thonneri.
Phytochemistry.
2003 Feb; 62(4):647-50. doi:
10.1016/s0031-9422(02)00616-7
. [PMID: 12560041] - Ivan Gális, Petr Simek, Henri A Van Onckelen, Yasutaka Kakiuchi, Hiroetsu Wabiko. Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism.
Plant & cell physiology.
2002 Aug; 43(8):939-50. doi:
10.1093/pcp/pcf112
. [PMID: 12198197] - Julie Chong, Rachel Baltz, Corinne Schmitt, Roland Beffa, Bernard Fritig, Patrick Saindrenan. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance.
The Plant cell.
2002 May; 14(5):1093-107. doi:
10.1105/tpc.010436
. [PMID: 12034899] - P Mucaji, D Grancai, M Nagy, S Czigleová, M Budĕsínský, K Ubik, S Cziglerová. [Nonpolar components of the leaves of Philadelphus coronarius L].
Ceska a Slovenska farmacie : casopis Ceske farmaceuticke spolecnosti a Slovenske farmaceuticke spolecnosti.
2001 Nov; 50(6):274-6. doi:
"
. [PMID: 11797195] - G Taguchi, T Yazawa, N Hayashida, M Okazaki. Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin.
European journal of biochemistry.
2001 Jul; 268(14):4086-94. doi:
10.1046/j.1432-1327.2001.02325.x
. [PMID: 11454003] - K Doi, T Kojima, M Makino, Y Kimura, Y Fujimoto. Studies on the constituents of the leaves of Morus alba L.
Chemical & pharmaceutical bulletin.
2001 Feb; 49(2):151-3. doi:
10.1248/cpb.49.151
. [PMID: 11217100] - W Song, J Liu, R Jin. [Chemical constituents of the stems of Erycibe schmidtii Craib].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
1997 Jun; 22(6):359-60, 384. doi:
"
. [PMID: 11038888] - A M Silván, M J Abad, P Bermejo, M Sollhuber, A Villar. Antiinflammatory activity of coumarins from Santolina oblongifolia.
Journal of natural products.
1996 Dec; 59(12):1183-5. doi:
10.1021/np960422f
. [PMID: 8988605] - . .
.
. doi:
. [PMID: 15145789]
- . .
.
. doi:
. [PMID: 18547395]
- . .
.
. doi:
. [PMID: 15159640]
- . .
.
. doi:
. [PMID: 19035613]
- . .
.
. doi:
. [PMID: 19004461]
- . .
.
. doi:
. [PMID: 20943239]