Monotropein (BioDeep_00000000524)
Secondary id: BioDeep_00000867660, BioDeep_00001867519
human metabolite PANOMIX_OTCML-2023 Endogenous Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C16H22O11 (390.11620619999997)
中文名称: 水晶兰甙, 单糖原, 水晶兰苷
谱图信息:
最多检出来源 Chinese Herbal Medicine(otcml) 1.2%
分子结构信息
SMILES: C1=CC(C2C1C(=COC2OC3C(C(C(C(O3)CO)O)O)O)C(=O)O)(CO)O
InChI: InChI=1S/C16H22O11/c17-3-8-10(19)11(20)12(21)15(26-8)27-14-9-6(1-2-16(9,24)5-18)7(4-25-14)13(22)23/h1-2,4,6,8-12,14-15,17-21,24H,3,5H2,(H,22,23)
描述信息
Monotropein is an iridoid monoterpenoid that is 1,4a,7,7a-tetrahydrocyclopenta[c]pyran substituted by a beta-D-glucopyranosyloxy group at position 1, a carboxylic acid group at position 4, and at position 7 by a hydroxy and hydroxymethyl groups respectively (the 1S,4aS,7R,7aS diastereomer). It has a role as a metabolite and an anti-inflammatory agent. It is a cyclopentapyran, a monocarboxylic acid, an iridoid monoterpenoid, a beta-D-glucoside and a monosaccharide derivative.
Monotropein is a natural product found in Vaccinium, Vaccinium macrocarpon, and other organisms with data available.
See also: Galium aparine whole (part of).
Monotropein is found in bilberry. Monotropein is a constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Monotropein is a food flavouring agent. Monotropein is a stabiliser
Constituent of Liquidambar styraciflua (sweet gum) and Liquidambar orientalis (oriental sweet gum). Food flavouring agent. Stabiliser. Monotropein is found in bilberry.
Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
Monotropein is an iridoid glycoside isolated Morinda officinalis. Monotropein inhibits the expression of inflammatory mediators in dextran sulfate sodium (DSS)-induced colitis mouse model[1].
同义名列表
19 个代谢物同义名
(1S,4aS,7R,7aS)-7-Hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid; CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1,4A,7,7A-TETRAHYDRO-7-HYDROXY-7-(HYDROXYMETHYL)-, (1S-(1.ALPHA.,4A.ALPHA.,7.BETA.,7A.ALPHA.))-; (1S,2S,6S,9R)-9-hydroxy-9-(hydroxymethyl)-2-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-oxabicyclo[4.3.0]nona-4,7-diene-5-carboxylic acid; Cyclopenta(c)pyran-4-carboxylic acid, 1-(beta-D-glucopyranosyloxy)-1,4a,7,7a-tetrahydro-7-hydroxy-7-(hydroxymethyl)-, (1S-(1alpha,4aalpha,7beta,7aalpha))-; CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 1-(.BETA.-D-GLUCOPYRANOSYLOXY)-1,4A,7,7A-TETRAHYDRO-7-HYDROXY-7-(HYDROXYMETHYL)-, (1S,4AS,7R,7AS)-; CYCLOPENTA(C)PYRAN-4-CARBOXYLIC ACID, 1-(beta-D-GLUCOPYRANOSYLOXY)-1,4A,7,7A-TETRAHYDRO-7-HYDROXY-7-(HYDROXYMETHYL)-, (1S,4AS,7R,7AS)-; 7-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,7H,7aH-cyclopenta[c]pyran-4-carboxylic acid; (1S,4aS,7R,7aS)-1-(beta-D-glucopyranosyloxy)-7-hydroxy-7-(hydroxymethyl)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylic acid; (1S,4aS,7R,7aS)-1-(beta-D-glucopyranosyloxy)-7-hydroxy-7-(hydroxymethyl)-1,4a,7,7a-tetrahydrocyclopenta(c)pyran-4-carboxylic acid; 7-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4aH,7aH-cyclopenta[c]pyran-4-carboxylic acid; 7-Hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,7H,7ah-cyclopenta[c]pyran-4-carboxylate; Monotropein, >=98\\% (HPLC); Monotropein (8ci); MONOTROPEIN [MI]; UNII-0Y61M84O2T; Monotropeine; Monotropein; 0Y61M84O2T; Monotropein
数据库引用编号
24 个数据库交叉引用编号
- ChEBI: CHEBI:6988
- KEGG: C09788
- PubChem: 3488508
- PubChem: 73466
- HMDB: HMDB0035608
- Metlin: METLIN41157
- LipidMAPS: LMPR0102070012
- MeSH: monotropein
- ChemIDplus: 0005945506
- KNApSAcK: C00003089
- foodb: FDB014309
- chemspider: 2729121
- CAS: 5945-50-6
- medchemexpress: HY-N0648
- PMhub: MS000021025
- PubChem: 11976
- 3DMET: B03285
- NIKKAJI: J8.311I
- KNApSAcK: 6988
- LOTUS: LTS0012270
- wikidata: Q105031934
- LOTUS: LTS0240619
- wikidata: Q105031956
- LOTUS: LTS0064429
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
90 个相关的物种来源信息
- 13342 - Arbutus: LTS0064429
- 84000 - Arbutus andrachne: 10.1017/CBO9781107252806.053
- 84000 - Arbutus andrachne: LTS0064429
- 84005 - Arbutus unedo: 10.1055/S-2006-962681
- 84005 - Arbutus unedo: LTS0064429
- 6656 - Arthropoda: LTS0064429
- 30102 - Cicadellidae: LTS0064429
- 164435 - Cornus suecica: -
- 25104 - Cruciata: LTS0064429
- 715653 - Cruciata taurica: 10.1080/01483918408074076
- 715653 - Cruciata taurica: LTS0064429
- 13505 - Elliottia: LTS0064429
- 75585 - Elliottia paniculata: 10.1248/YAKUSHI1947.94.12_1634
- 75585 - Elliottia paniculata: LTS0064429
- 4345 - Ericaceae: LTS0064429
- 2759 - Eukaryota: LTS0064429
- 25168 - Galium: LTS0064429
- 29787 - Galium album:
- 29787 - Galium album: 10.1016/0031-9422(96)00328-7
- 29787 - Galium album: 10.1081/JLC-100101486
- 29787 - Galium album: LTS0064429
- 1533066 - Galium glaucum: 10.1016/S0031-9422(00)85612-5
- 2163385 - Galium humifusum: 10.1515/ZNC-1999-7-805
- 2163385 - Galium humifusum: LTS0064429
- 2495812 - Galium lovcense: 10.1016/0031-9422(96)00328-7
- 2495812 - Galium lovcense: LTS0064429
- 2495819 - Galium mirum: 10.1515/ZNC-1996-5-604
- 2495819 - Galium mirum: LTS0064429
- 254777 - Galium mollugo:
- 254777 - Galium mollugo: 10.1016/0031-9422(96)00328-7
- 254777 - Galium mollugo: 10.1016/S0031-9422(00)80082-5
- 254777 - Galium mollugo: 10.1016/S0031-9422(00)84093-5
- 254777 - Galium mollugo: 10.1081/JLC-100101486
- 254777 - Galium mollugo: LTS0064429
- 2495825 - Galium rhodopeum:
- 2495825 - Galium rhodopeum: 10.1515/ZNC-1996-5-604
- 2495825 - Galium rhodopeum: LTS0064429
- 715712 - Galium rivale: 10.1016/S0031-9422(00)00149-7
- 715712 - Galium rivale: 10.1016/S0031-9422(00)85612-5
- 715712 - Galium rivale: LTS0064429
- 59634 - Gynochthodes: LTS0064429
- 266091 - Gynochthodes officinalis:
- 266091 - Gynochthodes officinalis: 10.1248/BPB.28.1915
- 266091 - Gynochthodes officinalis: 10.1248/CPB.43.1462
- 266091 - Gynochthodes officinalis: LTS0064429
- 268745 - Gynochthodes umbellata: 10.1016/0031-9422(88)87030-4
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-021-01798-Z
- 50557 - Insecta: LTS0064429
- 3398 - Magnoliopsida: LTS0064429
- 4268 - Malpighiaceae: LTS0064429
- 33208 - Metazoa: LTS0064429
- 50147 - Monotropa: LTS0064429
- 50148 - Monotropa uniflora: 10.1093/OXFORDJOURNALS.JHERED.A109563
- 50148 - Monotropa uniflora: LTS0064429
- 43521 - Morinda: LTS0064429
- 43522 - Morinda citrifolia: 10.1016/0031-9422(88)87030-4
- 43522 - Morinda citrifolia: LTS0064429
- 33090 - Plants: -
- 13650 - Pyrola: LTS0064429
- 93825 - Pyrola elliptica:
- 93825 - Pyrola elliptica: 10.1016/S0031-9422(97)00878-9
- 93825 - Pyrola elliptica: LTS0064429
- 642532 - Pyrola japonica:
- 642532 - Pyrola japonica: 10.1248/CPB.52.714
- 642532 - Pyrola japonica: LTS0064429
- 642537 - Pyrola renifolia: 10.1248/CPB.12.533
- 642537 - Pyrola renifolia: LTS0064429
- 4346 - Rhododendron: LTS0064429
- 49467 - Rhododendron luteum: 10.1021/NP50050A045
- 49467 - Rhododendron luteum: LTS0064429
- 24966 - Rubiaceae: LTS0064429
- 358842 - Saprosma: LTS0064429
- 151876 - Stigmaphyllon: LTS0064429
- 1804194 - Stigmaphyllon convolvulifolium: 10.1055/S-2007-969406
- 1804194 - Stigmaphyllon convolvulifolium: LTS0064429
- 2662167 - Stigmaphyllon palmatum: 10.1055/S-2007-969406
- 2662167 - Stigmaphyllon palmatum: LTS0064429
- 35493 - Streptophyta: LTS0064429
- 58023 - Tracheophyta: LTS0064429
- 13749 - Vaccinium: LTS0064429
- 174251 - Vaccinium dunalianum: 10.1016/J.PHYTOCHEM.2008.06.001
- 174251 - Vaccinium dunalianum: LTS0064429
- 13750 - Vaccinium macrocarpon: 10.1021/JF0205110
- 13750 - Vaccinium macrocarpon: LTS0064429
- 180763 - Vaccinium myrtillus:
- 180763 - Vaccinium myrtillus: 10.1002/HLCA.200900220
- 180763 - Vaccinium myrtillus: 10.1021/JF0205110
- 180763 - Vaccinium myrtillus: LTS0064429
- 33090 - Viridiplantae: LTS0064429
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Quan Gao, Lin Li, Qi-Man Zhang, Qin-Song Sheng, Ji-Liang Zhang, Li-Jun Jin, Rui-Yan Shang. Monotropein Induced Apoptosis and Suppressed Cell Cycle Progression in Colorectal Cancer Cells.
Chinese journal of integrative medicine.
2023 Sep; ?(?):. doi:
10.1007/s11655-023-3710-4
. [PMID: 37750986] - Shitian Zhao, Liqiang Guo, Wei Cui, Yongjian Zhao, Jing Wang, Kanghui Sun, Hong Zhang, Yueli Sun, Dongfeng Zhao, Xiaohui Hu, Ziyu Huang, Sheng Lu, Yongjun Wang, Xinhua Liu, Weian Zhang, Bing Shu. Monotropein Protects Mesenchymal Stem Cells from Lipopolysaccharide-Induced Impairments and Promotes Fracture Healing in an Ovariectomized Mouse Model.
Calcified tissue international.
2023 Sep; ?(?):. doi:
10.1007/s00223-023-01130-y
. [PMID: 37747519] - Qi Zhang, Sijing Hu, Yuqiong He, Zile Song, Yi Shen, Zihui Zhao, Quanlong Zhang, Luping Qin, Qiaoyan Zhang. Monotropein Protects against Inflammatory Bone Loss and Suppresses Osteoclast Formation and Bone Resorption by Inhibiting NFATc1 via NF-κB and Akt/GSK-3β Pathway.
Nutrients.
2022 Sep; 14(19):. doi:
10.3390/nu14193978
. [PMID: 36235631] - Yuping Zhang, Yonger Chen, Baixue Li, Ping Ding, Daxiang Jin, Shaozhen Hou, Xiaochun Cai, Xiujie Sheng. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Sep; 129(?):110408. doi:
10.1016/j.biopha.2020.110408
. [PMID: 32574971] - Yao Shi, Xiao-Yan Liu, Yi-Ping Jiang, Jia-Bao Zhang, Qiao-Yan Zhang, Na-Ni Wang, Hai-Liang Xin. Monotropein attenuates oxidative stress via Akt/mTOR-mediated autophagy in osteoblast cells.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2020 Jan; 121(?):109566. doi:
10.1016/j.biopha.2019.109566
. [PMID: 31698268] - Keshab Kumar Karna, Bo Ram Choi, Jae Hyung You, Yu Seob Shin, Wan Shou Cui, Sung Won Lee, Ji Hoon Kim, Chul Young Kim, Hye Kyung Kim, Jong Kwan Park. The ameliorative effect of monotropein, astragalin, and spiraeoside on oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in varicocelized rats.
BMC complementary and alternative medicine.
2019 Nov; 19(1):333. doi:
10.1186/s12906-019-2736-9
. [PMID: 31771569] - Yi Shen, Qi Zhang, Yan-Bin Wu, Yu-Qiong He, Ting Han, Jian-Hua Zhang, Liang Zhao, Hsien-Yeh Hsu, Hong-Tao Song, Bing Lin, Hai-Liang Xin, Yun-Peng Qi, Qiao-Yan Zhang. Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats.
BMC complementary and alternative medicine.
2018 Oct; 18(1):288. doi:
10.1186/s12906-018-2351-1
. [PMID: 30355303] - Yu-Qiong He, Hua Yang, Yi Shen, Jian-Hua Zhang, Zhi-Guo Zhang, Lin-Lin Liu, Hong-Tao Song, Bin Lin, Hsien-Yeh Hsu, Lu-Ping Qin, Ting Han, Hai-Liang Xin, Qiao-Yan Zhang. Monotropein attenuates ovariectomy and LPS-induced bone loss in mice and decreases inflammatory impairment on osteoblast through blocking activation of NF-κB pathway.
Chemico-biological interactions.
2018 Aug; 291(?):128-136. doi:
10.1016/j.cbi.2018.06.015
. [PMID: 29908987] - Chenggui Wang, Cong Mao, Yiting Lou, Jianxiang Xu, Qingqing Wang, Zengjie Zhang, Qian Tang, Xiaolei Zhang, Huazi Xu, Yongzeng Feng. Monotropein promotes angiogenesis and inhibits oxidative stress-induced autophagy in endothelial progenitor cells to accelerate wound healing.
Journal of cellular and molecular medicine.
2018 03; 22(3):1583-1600. doi:
10.1111/jcmm.13434
. [PMID: 29278309] - Xiliang Yang, Qingyun Peng, Qian Liu, Jie Hu, Zhipeng Tang, Lianjie Cui, Zonghao Lin, Bing Xu, Kuojian Lu, Fang Yang, Zhizheng Sheng, Qiong Yuan, Song Liu, Jiuliang Zhang, Xuefeng Zhou. Antioxidant activity against H2O2-induced cytotoxicity of the ethanol extract and compounds from Pyrola decorate leaves.
Pharmaceutical biology.
2017 Dec; 55(1):1843-1848. doi:
10.1080/13880209.2017.1333126
. [PMID: 28571528] - Courtney P Leisner, Mohamed O Kamileen, Megan E Conway, Sarah E O'Connor, C Robin Buell. Differential iridoid production as revealed by a diversity panel of 84 cultivated and wild blueberry species.
PloS one.
2017; 12(6):e0179417. doi:
10.1371/journal.pone.0179417
. [PMID: 28609455] - Fang-Bing Zhu, Jian-Yue Wang, Ying-Liang Zhang, Yun-Gen Hu, Zhen-Shuang Yue, Lin-Ru Zeng, Wen-Jie Zheng, Qiao Hou, Shi-Gui Yan, Ren-Fu Quan. Mechanisms underlying the antiapoptotic and anti-inflammatory effects of monotropein in hydrogen peroxide-treated osteoblasts.
Molecular medicine reports.
2016 Dec; 14(6):5377-5384. doi:
10.3892/mmr.2016.5908
. [PMID: 27840925] - Zhiguo Zhang, Qiaoyan Zhang, Hua Yang, Wei Liu, Naidan Zhang, Luping Qin, Hailiang Xin. Monotropein isolated from the roots of Morinda officinalis increases osteoblastic bone formation and prevents bone loss in ovariectomized mice.
Fitoterapia.
2016 Apr; 110(?):166-72. doi:
10.1016/j.fitote.2016.03.013
. [PMID: 26996879] - Feng Wang, Longhuo Wu, Linfu Li, Siyi Chen. Monotropein exerts protective effects against IL-1β-induced apoptosis and catabolic responses on osteoarthritis chondrocytes.
International immunopharmacology.
2014 Dec; 23(2):575-80. doi:
10.1016/j.intimp.2014.10.007
. [PMID: 25466264] - Ji-Sun Shin, Kyung-Jin Yun, Kyung-Sook Chung, Kyeong-Hwa Seo, Hee-Juhn Park, Young-Wuk Cho, Nam-In Baek, Daesik Jang, Kyung-Tae Lee. Monotropein isolated from the roots of Morinda officinalis ameliorates proinflammatory mediators in RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced colitis via NF-κB inactivation.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2013 Mar; 53(?):263-71. doi:
10.1016/j.fct.2012.12.013
. [PMID: 23261679] - Olga Tzakou, Philippos Mylonas, Constantinos Vagias, Panos V Petrakis. Iridoid glucosides with insecticidal activity from Galium melanantherum.
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2007 Jul; 62(7-8):597-602. doi:
10.1515/znc-2007-7-823
. [PMID: 17913079] - Ji-yin Xu, Ying-jiao Liang, Ping Ding. [Determination of monotropein in Radix Morindae from different processed products by HPLC].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2007 Jan; 30(1):20-2. doi:
. [PMID: 17539297]
- Jongwon Choi, Kyung-Tae Lee, Moo-Young Choi, Jung-Hwan Nam, Hyun-Ju Jung, Sun-Kyu Park, Hee-Juhn Park. Antinociceptive anti-inflammatory effect of Monotropein isolated from the root of Morinda officinalis.
Biological & pharmaceutical bulletin.
2005 Oct; 28(10):1915-8. doi:
10.1248/bpb.28.1915
. [PMID: 16204945] - Ju Sun Kim, Sang Hee Shim, Yong Nan Xu, Sam Sik Kang, Kun Ho Son, Hyeun Wook Chang, Hyun Pyo Kim, KiHwan Bae. Phenolic glycosides from Pyrola japonica.
Chemical & pharmaceutical bulletin.
2004 Jun; 52(6):714-7. doi:
10.1248/cpb.52.714
. [PMID: 15187393] - Sui-Kiong Ling, Akiko Komorita, Takashi Tanaka, Toshihiro Fujioka, Kunihide Mihashi, Isao Kouno. Sulfur-containing bis-iridoid glucosides and iridoid glucosides from Saprosmas cortechinii.
Journal of natural products.
2002 May; 65(5):656-60. doi:
10.1021/np010479o
. [PMID: 12027736]