Visnagin (BioDeep_00000017509)

human metabolite PANOMIX_OTCML-2023 blood metabolite natural product


代谢物信息卡片


InChI=1/C13H10O4/c1-7-5-9(14)12-11(17-7)6-10-8(3-4-16-10)13(12)15-2/h3-6H,1-2H3

化学式: C13H10O4 (230.0579)
中文名称: 阿密茴素, 齿阿米素, 甲氧呋豆素
谱图信息: 最多检出来源 Viridiplantae(plant) 47.16%

分子结构信息

SMILES: C12C(=O)C=C(C)OC=1C=C1OC=CC1=C2OC
InChI: InChI=1S/C13H10O4/c1-7-5-9(14)12-11(17-7)6-10-8(3-4-16-10)13(12)15-2/h3-6H,1-2H3

描述信息

Visnagin is a furanochromone that is furo[3,2-g]chromen-5-one which is substituted at positions 4 and 7 by methoxy and methyl groups, respectively. Found in the toothpick-plant, Ammi visnaga. It has a role as a phytotoxin, an EC 1.1.1.37 (malate dehydrogenase) inhibitor, a vasodilator agent, an antihypertensive agent, an anti-inflammatory agent and a plant metabolite. It is a furanochromone, an aromatic ether and a polyketide. It is functionally related to a 5H-furo[3,2-g]chromen-5-one.
Visnagin is a natural product found in Ammi visnaga, Musineon divaricatum, and Actaea dahurica with data available.
A furanochromone that is furo[3,2-g]chromen-5-one which is substituted at positions 4 and 7 by methoxy and methyl groups, respectively. Found in the toothpick-plant, Ammi visnaga.
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].
Visnagin, an antioxidant furanocoumarin derivative, possess anti-inflammatory and analgesic properties. Visnagin has substantial potential to prevent Cerulein induced acute pancreatitis (AP). Visnagin possess promising vasodilator effects in vascular smooth muscles[1][2].

同义名列表

36 个代谢物同义名

InChI=1/C13H10O4/c1-7-5-9(14)12-11(17-7)6-10-8(3-4-16-10)13(12)15-2/h3-6H,1-2H3; 5H-Furo[3,2-g][1]benzopyran-5-one, 4-methoxy-7-methyl-; 5H-FURO(3,2-g)(1)BENZOPYRAN-5-ONE, 4-METHOXY-7-METHYL-; 5H-Furo[3,2-g][1]benzopyran-5-one,4-methoxy-7-methyl-; 4-Methoxy-7-methyl-5H-furo(3,2-g)(1)-benzopyran-5-one; 4-METHOXY-7-METHYL-5H-FURO(3,2-G)(1)BENZOPYRAN-5-ONE; 4-Methoxy-7-methyl-5H-furo[3,2-g]-1-benzopyran-5-one; 4-Methoxy-7-methyl-5H-furo[3,2-g][1]benZopyran-5-one; 4-Methoxy-7-methyl-5H-furo[3,2-g]chromen-5-one #; 4-methoxy-7-methylpyrano[3,2-f][1]benzoxol-5-one; 4-Methoxy-7-methyl-5H-furo[3,2-g]chromen-5-one; 5-19-06-00030 (Beilstein Handbook Reference); 4-Methoxy-7-methyl-furo[3,2-g]chromen-5-one; 4-Methoxy-7-methylfuro(3,2-g)chromen-5-one; 4-methoxy-7-methylfuro[3,2-g]chromen-5-one; 5-Methoxy-2-methylfuranochromone; 5H-Furo[3, 4-methoxy-7-methyl-; NZVQLVGOZRELTG-UHFFFAOYSA-; Desmethoxykhellin; Spectrum5_000351; Spectrum4_001766; Spectrum3_001340; Spectrum2_001796; MEGxp0_000332; Oprea1_854963; DivK1c_006549; VISNAGIN [MI]; KBio2_004275; KBio2_006843; KBio1_001493; KBio2_001707; KBio3_002319; Visnagidin; Visnagine; Visnagin; Visnagin



数据库引用编号

19 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

33 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 10 ALB, ANXA5, BCL2, CASP3, CAT, CYP1A1, KEAP1, MTOR, PIK3CA, PTGS2
Peripheral membrane protein 6 ANXA5, CYP1A1, CYP1B1, GORASP1, MTOR, PTGS2
Endoplasmic reticulum membrane 6 BCL2, CYP1A1, CYP1B1, HMOX1, MTOR, PTGS2
Nucleus 8 ALB, BCL2, CASP3, GABPA, HMOX1, KEAP1, MTOR, PCNA
cytosol 10 ALB, ANXA5, BCL2, CASP3, CAT, HMOX1, KEAP1, LIPE, MTOR, PIK3CA
dendrite 1 MTOR
nuclear body 1 PCNA
phagocytic vesicle 1 MTOR
centrosome 2 ALB, PCNA
nucleoplasm 6 CASP3, GABPA, HMOX1, KEAP1, MTOR, PCNA
Cell membrane 2 LIPE, TNF
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
lamellipodium 1 PIK3CA
Golgi apparatus membrane 2 GORASP1, MTOR
cell surface 1 TNF
glutamatergic synapse 1 CASP3
Golgi apparatus 2 ALB, GORASP1
Golgi membrane 2 GORASP1, MTOR
lysosomal membrane 1 MTOR
mitochondrial inner membrane 1 CYP1A1
neuronal cell body 2 CASP3, TNF
sarcolemma 1 ANXA5
Cytoplasm, cytosol 1 LIPE
Lysosome 1 MTOR
plasma membrane 3 IFNLR1, PIK3CA, TNF
Membrane 8 ANXA5, BCL2, CAT, CYP1B1, HMOX1, IFNLR1, LIPE, MTOR
caveola 2 LIPE, PTGS2
extracellular exosome 4 ALB, ANXA5, CAT, PCNA
Lysosome membrane 1 MTOR
endoplasmic reticulum 5 ALB, BCL2, HMOX1, KEAP1, PTGS2
extracellular space 5 ALB, HMOX1, IL10, IL4, TNF
perinuclear region of cytoplasm 2 HMOX1, PIK3CA
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, CAT, CYP1A1, CYP1B1
protein-containing complex 4 ALB, BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 3 CAT, CYP1A1, CYP1B1
Microsome membrane 4 CYP1A1, CYP1B1, MTOR, PTGS2
postsynaptic density 1 CASP3
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 IFNLR1
Secreted 3 ALB, IL10, IL4
extracellular region 6 ALB, ANXA5, CAT, IL10, IL4, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
centriolar satellite 1 KEAP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 2 ANXA5, TNF
midbody 1 KEAP1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 2 ANXA5, CAT
cis-Golgi network 1 GORASP1
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
collagen-containing extracellular matrix 1 ANXA5
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Zymogen granule membrane 1 ANXA5
neuron projection 1 PTGS2
ciliary basal body 1 ALB
chromatin 2 GABPA, PCNA
phagocytic cup 1 TNF
centriole 1 ALB
spindle pole 1 ALB
nuclear replication fork 1 PCNA
chromosome, telomeric region 1 PCNA
actin filament 1 KEAP1
blood microparticle 1 ALB
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 1 MTOR
Endomembrane system 1 MTOR
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
replication fork 1 PCNA
myelin sheath 1 BCL2
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 1 CAT
endoplasmic reticulum lumen 2 ALB, PTGS2
male germ cell nucleus 1 PCNA
platelet alpha granule lumen 1 ALB
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 GORASP1
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
vesicle membrane 1 ANXA5
nuclear lamina 1 PCNA
death-inducing signaling complex 1 CASP3
Cytoplasmic vesicle, phagosome 1 MTOR
cyclin-dependent protein kinase holoenzyme complex 1 PCNA
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
inclusion body 1 KEAP1
endothelial microparticle 1 ANXA5
BAD-BCL-2 complex 1 BCL2
PCNA complex 1 PCNA
PCNA-p21 complex 1 PCNA
replisome 1 PCNA
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
ciliary transition fiber 1 ALB
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • S Sagir, U Seker, M Pekince Ozoner, M Yuksel, M Demir. Oxidative stress, apoptosis, inflammation, and proliferation modulator function of visnagin provide gonadoprotective activity in testicular ischemia-reperfusion injury. European review for medical and pharmacological sciences. 2023 Oct; 27(20):9968-9977. doi: 10.26355/eurrev_202310_34176. [PMID: 37916367]
  • Veselina Adımcılar, Neslihan Beyazit, F Bedia Erim. Khellin and visnagin in different organs of Ammi visnaga and Ammi majus. Natural product research. 2023 Jan; 37(1):164-166. doi: 10.1080/14786419.2021.1956924. [PMID: 34569361]
  • X-L Rao, L-L Liu, J Huang, J Chen. Neuroprotective effects of visnagin on cerebral ischemia-reperfusion injury rats and the underlying mechanisms. European review for medical and pharmacological sciences. 2022 06; 26(12):4371-4379. doi: 10.26355/eurrev_202206_29076. [PMID: 35776038]
  • Mohammad H Abukhalil, Omnia E Hussein, Saleem H Aladaileh, Osama Y Althunibat, Wesam Al-Amarat, Sultan A Saghir, Manal A Alfwuaires, Abdulmohsen I Algefare, Khalid M Alanazi, Farhan K Al-Swailmi, Emadeldin M Kamel, Ayman M Mahmoud. Visnagin prevents isoproterenol-induced myocardial injury by attenuating oxidative stress and inflammation and upregulating Nrf2 signaling in rats. Journal of biochemical and molecular toxicology. 2021 Nov; 35(11):e22906. doi: 10.1002/jbt.22906. [PMID: 34486204]
  • Noha Khalil, Mokhtar Bishr, Mohamed El-Degwy, Mohamed Abdelhady, Mohamed Amin, Osama Salama. Assessment of Conventional Solvent Extraction vs. Supercritical Fluid Extraction of Khella (Ammi visnaga L.) Furanochromones and Their Cytotoxicity. Molecules (Basel, Switzerland). 2021 Feb; 26(5):. doi: 10.3390/molecules26051290. [PMID: 33673560]
  • Jamaan S Ajarem, Ahmad K Hegazy, Gamal A Allam, Ahmed A Allam, Saleh N Maodaa, Ayman M Mahmoud. Effect of Visnagin on Altered Steroidogenesis and Spermatogenesis, and Testicular Injury Induced by the Heavy Metal Lead. Combinatorial chemistry & high throughput screening. 2021; 24(6):758-766. doi: 10.2174/1386207323999200918124639. [PMID: 32957877]
  • Lakshmi Priya Pasari, Amit Khurana, Pratibha Anchi, Mohd Aslam Saifi, Shivaraju Annaldas, Chandraiah Godugu. Visnagin attenuates acute pancreatitis via Nrf2/NFκB pathway and abrogates associated multiple organ dysfunction. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2019 Apr; 112(?):108629. doi: 10.1016/j.biopha.2019.108629. [PMID: 30798137]
  • Fatma Aydoğmuş-Öztürk, Humera Jahan, Neslihan Beyazit, Keriman Günaydın, Muhammad Iqbal Choudhary. The anticancer activity of visnagin, isolated from Ammi visnaga L., against the human malignant melanoma cell lines, HT 144. Molecular biology reports. 2019 Apr; 46(2):1709-1714. doi: 10.1007/s11033-019-04620-1. [PMID: 30694454]
  • Shi Chen, Mohammed Esmail Abdalla Elzaki, Chaohui Ding, Zheng-Fang Li, Jie Wang, Ren-Sen Zeng, Yuan-Yuan Song. Plant allelochemicals affect tolerance of polyphagous lepidopteran pest Helicoverpa armigera (Hübner) against insecticides. Pesticide biochemistry and physiology. 2019 Feb; 154(?):32-38. doi: 10.1016/j.pestbp.2018.12.009. [PMID: 30765054]
  • Maria L Travaini, Gustavo M Sosa, Eduardo A Ceccarelli, Helmut Walter, Charles L Cantrell, Nestor J Carrillo, Franck E Dayan, Kumudini M Meepagala, Stephen O Duke. Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) Lam., as Potential Bioherbicides. Journal of agricultural and food chemistry. 2016 Dec; 64(50):9475-9487. doi: 10.1021/acs.jafc.6b02462. [PMID: 27936681]
  • Roman Pavela, Naděžda Vrchotová, Jan Tříska. Larvicidal activity of extracts from Ammi visnaga Linn. (Apiaceae) seeds against Culex quinquefasciatus Say. (Diptera: Culicidae). Experimental parasitology. 2016 Jun; 165(?):51-7. doi: 10.1016/j.exppara.2016.03.016. [PMID: 26995534]
  • Jihan M Badr, Ghada M Hadad, Khaled Nahriry, Hashem A Hassanean. Validated HPLC method for simultaneous estimation of khellol glucoside, khellin and visnagin in Ammi visnaga L. fruits and pharmaceutical preparations. Natural product research. 2015; 29(7):593-601. doi: 10.1080/14786419.2014.945170. [PMID: 25111086]
  • Karin G Haug, Benjamin Weber, Guenther Hochhaus, Veronika Butterweck. Pharmacokinetic evaluation of visnagin and Ammi visnaga aqueous extract after oral administration in rats. Planta medica. 2012 Nov; 78(17):1831-6. doi: 10.1055/s-0032-1315393. [PMID: 23096256]
  • Karin G Haug, Benjamin Weber, Guenther Hochhaus, Veronika Butterweck. Nonlinear pharmacokinetics of visnagin in rats after intravenous bolus administration. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2012 Jan; 45(1-2):79-89. doi: 10.1016/j.ejps.2011.10.023. [PMID: 22085634]
  • Aslam Khan, Samra Bashir, Saeed R Khan, Anwar H Gilani. Antiurolithic activity of Origanum vulgare is mediated through multiple pathways. BMC complementary and alternative medicine. 2011 Oct; 11(?):96. doi: 10.1186/1472-6882-11-96. [PMID: 22004514]
  • P Vanachayangkul, N Chow, S R Khan, Veronika Butterweck. Prevention of renal crystal deposition by an extract of Ammi visnaga L. and its constituents khellin and visnagin in hyperoxaluric rats. Urological research. 2011 Jun; 39(3):189-95. doi: 10.1007/s00240-010-0333-y. [PMID: 21069311]
  • P Vanachayangkul, K Byer, S Khan, V Butterweck. An aqueous extract of Ammi visnaga fruits and its constituents khellin and visnagin prevent cell damage caused by oxalate in renal epithelial cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2010 Jul; 17(8-9):653-8. doi: 10.1016/j.phymed.2009.10.011. [PMID: 20036111]
  • Pattaraporn Vanachayangkul, Veronika Butterweck, Reginald F Frye. Determination of visnagin in rat plasma by liquid chromatography with tandem mass spectrometry and its application to in vivo pharmacokinetic studies. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2009 Mar; 877(7):653-6. doi: 10.1016/j.jchromb.2009.01.014. [PMID: 19188097]
  • Hanaa M Sayed, Mahmoud H Mohamed, Salwa F Farag, Gamal A Mohamed, Peter Proksch. A new steroid glycoside and furochromones from Cyperus rotundus L. Natural product research. 2007 Apr; 21(4):343-50. doi: 10.1080/14786410701193056. [PMID: 17479423]
  • Ken-ichi Mawatari, Satoshi Mashiko, Mitsuo Watanabe, Kazuya Nakagomi. Fluorometric determination of khellin in human urine and serum by high-performance liquid chromatography using postcolumn photoirradiation. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry. 2003 Jul; 19(7):1071-3. doi: 10.2116/analsci.19.1071. [PMID: 12880095]
  • O Schimmer, P Rauch. Inhibition of metabolic activation of the promutagens, benzo[a]pyrene, 2-aminofluorene and 2-aminoanthracene by furanochromones in Salmonella typhimurium. Mutagenesis. 1998 Jul; 13(4):385-9. doi: 10.1093/mutage/13.4.385. [PMID: 9717176]
  • S Moro, A M van Rhee, L H Sanders, K A Jacobson. Flavonoid derivatives as adenosine receptor antagonists: a comparison of the hypothetical receptor binding site based on a comparative molecular field analysis model. Journal of medicinal chemistry. 1998 Jan; 41(1):46-52. doi: 10.1021/jm970446z. [PMID: 9438021]
  • Y Karton, J L Jiang, X D Ji, N Melman, M E Olah, G L Stiles, K A Jacobson. Synthesis and biological activities of flavonoid derivatives as A3 adenosine receptor antagonists. Journal of medicinal chemistry. 1996 Jun; 39(12):2293-301. doi: 10.1021/jm950923i. [PMID: 8691424]
  • J Duarte, F Pérez-Vizcaíno, A I Torres, A Zarzuelo, J Jiménez, J Tamargo. Vasodilator effects of visnagin in isolated rat vascular smooth muscle. European journal of pharmacology. 1995 Nov; 286(2):115-22. doi: 10.1016/0014-2999(95)00418-k. [PMID: 8605947]
  • J B Hudson. Plant photosensitizers with antiviral properties. Antiviral research. 1989 Sep; 12(2):55-74. doi: 10.1016/0166-3542(89)90070-3. [PMID: 2688551]
  • G G Franchi, L Bovalini, P Martelli, S Ferri, E Sbardellati. High performance liquid chromatography analysis of the furanochromones khellin and visnagin in various organs of Ammi visnaga (L.) Lam. at different developmental stages. Journal of ethnopharmacology. 1985 Nov; 14(2-3):203-12. doi: 10.1016/0378-8741(85)90088-1. [PMID: 4094467]
  • J H Cardellina, T M Swager. Native American food and medicinal plants, 5. Isolation of the lipid altering visnagin from Musineon divaricatum. Journal of natural products. 1984 Nov; 47(6):1060. doi: 10.1021/np50036a040. [PMID: 6533266]
  • R B Gammill, C E Day, P E Schurr. Khellin analogues. 1. General topological requirements for lipid-altering activity in furochromones. Journal of medicinal chemistry. 1983 Dec; 26(12):1672-4. doi: 10.1021/jm00366a002. [PMID: 6644736]