Glutathione (BioDeep_00000002796)
Secondary id: BioDeep_00000400070
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Toxin BioNovoGene_Lab2019
代谢物信息卡片
化学式: C10H17N3O6S (307.0838)
中文名称: 谷胱甘肽(还原型), L-还原型谷胱甘肽, 谷胱甘肽, 还原型谷胱甘肽
谱图信息:
最多检出来源 Homo sapiens(blood) 12.27%
Last reviewed on 2024-07-15.
Cite this Page
Glutathione. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/glutathione (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000002796). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(CC(=O)NC(CS)C(=O)NCC(=O)O)C(C(=O)O)N
InChI: InChI=1S/C10H17N3O6S/c11-5(10(18)19)1-2-7(14)13-6(4-20)9(17)12-3-8(15)16/h5-6,20H,1-4,11H2,(H,12,17)(H,13,14)(H,15,16)(H,18,19)
描述信息
Glutathione is a compound synthesized from cysteine, perhaps the most important member of the bodys toxic waste disposal team. Like cysteine, glutathione contains the crucial thiol (-SH) group that makes it an effective antioxidant. There are virtually no living organisms on this planet-animal or plant whose cells dont contain some glutathione. Scientists have speculated that glutathione was essential to the very development of life on earth. glutathione has many roles; in none does it act alone. It is a coenzyme in various enzymatic reactions. The most important of these are redox reactions, in which the thiol grouping on the cysteine portion of cell membranes protects against peroxidation; and conjugation reactions, in which glutathione (especially in the liver) binds with toxic chemicals in order to detoxify them. glutathione is also important in red and white blood cell formation and throughout the immune system. glutathiones clinical uses include the prevention of oxygen toxicity in hyperbaric oxygen therapy, treatment of lead and other heavy metal poisoning, lowering of the toxicity of chemotherapy and radiation in cancer treatments, and reversal of cataracts. (http://www.dcnutrition.com/AminoAcids/) glutathione participates in leukotriene synthesis and is a cofactor for the enzyme glutathione peroxidase. It is also important as a hydrophilic molecule that is added to lipophilic toxins and waste in the liver during biotransformation before they can become part of the bile. glutathione is also needed for the detoxification of methylglyoxal, a toxin produced as a by-product of metabolism. This detoxification reaction is carried out by the glyoxalase system. Glyoxalase I (EC 4.4.1.5) catalyzes the conversion of methylglyoxal and reduced glutathione to S-D-Lactoyl-glutathione. Glyoxalase II (EC 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoyl-glutathione to glutathione and D-lactate. GSH is known as a substrate in both conjugation reactions and reduction reactions, catalyzed by glutathione S-transferase enzymes in cytosol, microsomes, and mitochondria. However, it is also capable of participating in non-enzymatic conjugation with some chemicals, as in the case of n-acetyl-p-benzoquinone imine (NAPQI), the reactive cytochrome P450-reactive metabolite formed by acetaminophen, that becomes toxic when GSH is depleted by an overdose (of acetaminophen). glutathione in this capacity binds to NAPQI as a suicide substrate and in the process detoxifies it, taking the place of cellular protein thiol groups which would otherwise be covalently modified; when all GSH has been spent, NAPQI begins to react with the cellular proteins, killing the cells in the process. The preferred treatment for an overdose of this painkiller is the administration (usually in atomized form) of N-acetylcysteine, which is used by cells to replace spent GSSG and renew the usable GSH pool. (http://en.wikipedia.org/wiki/glutathione).
Glutathione (GSH) - reduced glutathione - is a tripeptide with a gamma peptide linkage between the amine group of cysteine (which is attached by normal peptide linkage to a glycine) and the carboxyl group of the glutamate side-chain. It is an antioxidant, preventing damage to important cellular components caused by reactive oxygen species such as free radicals and peroxides. [Wikipedia]. Glutathione is found in many foods, some of which are cashew nut, epazote, ucuhuba, and canada blueberry.
Glutathione. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=70-18-8 (retrieved 2024-07-15) (CAS RN: 70-18-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
L-Glutathione reduced (GSH; γ-L-Glutamyl-L-cysteinyl-glycine) is an endogenous antioxidant and is capable of scavenging oxygen-derived free radicals.
同义名列表
53 个代谢物同义名
(2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl]-2-sulfanylethyl]carbamoyl}butanoic acid; N-(N-gamma-L-Glutamyl-L-cysteinyl)glycine; N-(N-Γ-L-glutamyl-L-cysteinyl)glycine; N-(N-g-L-Glutamyl-L-cysteinyl)glycine; gamma-L-Glutamyl-L-cysteinyl-glycine; L-gamma-Glutamyl-L-cysteinyl-glycine; L-gamma-Glutamyl-L-cysteinylglycine; Poly(gamma-glutamylcysteine)glycine; gamma-L-Glutamyl-L-cysteinylglycine; gamma L Glutamyl L cysteinylglycine; (gamma-Glutamylcysteine)N-glycine; Γ-L-glutamyl-L-cysteinyl-glycine; g-L-Glutamyl-L-cysteinyl-glycine; L-g-Glutamyl-L-cysteinyl-glycine; 5-L-Glutamyl-L-cysteinylglycine; Poly(γ-glutamylcysteine)glycine; Poly(g-glutamylcysteine)glycine; gamma-Glutamylcysteinylglycine; (Γ-glutamylcysteine)N-glycine; (g-Glutamylcysteine)N-glycine; L-Glutamyl-L-cysteinylglycine; L-Glutathione (reduced form); gamma L Glu L cys gly; gamma-L-Glu-L-cys-gly; Glutathione, reduced; L-Glutathione reduce; Glutathione reduced; Reduced glutathione; Red. glutathione; Glutathione red; Glutathione-SH; L-Glutathione; Deltathione; Bakezyme RX; Glutathione; Glutathion; Agifutol S; Glutatione; Glutatiol; Triptide; Tathione; Neuthion; Glutinal; Isethion; Tathion; Glutide; Copren; Ledac; GSH; Glutathione Reduced; L-Glutathione, reduced; L-Glutathione reduced; Glutathione
数据库引用编号
48 个数据库交叉引用编号
- ChEBI: CHEBI:177535
- ChEBI: CHEBI:16856
- ChEBI: CHEBI:60836
- KEGG: C00051
- KEGGdrug: D00014
- PubChem: 124886
- PubChem: 745
- HMDB: HMDB0000125
- Metlin: METLIN44
- DrugBank: DB00143
- ChEMBL: CHEMBL100476
- ChEMBL: CHEMBL1543
- Wikipedia: Glutathione
- MeSH: Glutathione
- MetaCyc: GLUTATHIONE
- KNApSAcK: C00001518
- foodb: FDB001498
- chemspider: 111188
- CAS: 70-18-8
- MoNA: KNA00521
- MoNA: KNA00123
- MoNA: PS027407
- MoNA: KO000828
- MoNA: PS027404
- MoNA: KNA00121
- MoNA: KO000825
- MoNA: KNA00124
- MoNA: KNA00122
- MoNA: PS027408
- MoNA: PS027405
- MoNA: PS027401
- MoNA: PS027403
- MoNA: KNA00519
- MoNA: KNA00522
- MoNA: KO000824
- MoNA: KO000826
- MoNA: KNA00520
- MoNA: KO000827
- PMhub: MS000005115
- PDB-CCD: GSH
- PDB-CCD: VDW
- 3DMET: B01138
- NIKKAJI: J10.686K
- RefMet: Glutathione
- medchemexpress: HY-D0187
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-285
- PubChem: 3353
- KNApSAcK: 16856
分类词条
相关代谢途径
Reactome(29)
- Metabolism
- Biological oxidations
- Disease
- Phase II - Conjugation of compounds
- Amino acid and derivative metabolism
- Metabolism of lipids
- Diseases of metabolism
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Fatty acid metabolism
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Infection with Mycobacterium tuberculosis
- Cellular response to chemical stress
- Bacterial Infection Pathways
- Arachidonic acid metabolism
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Phenylalanine and tyrosine catabolism
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Tolerance by Mtb to nitric oxide produced by macrophages
- Glutathione conjugation
- Glutathione synthesis and recycling
- Metabolic disorders of biological oxidation enzymes
BioCyc(4)
PlantCyc(0)
代谢反应
1218 个相关的代谢反应过程信息。
Reactome(233)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Leukotrienes (LT) and Eoxins (EX):
GSH + leukotriene A4 ⟶ leukotriene C4
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Synthesis of 12-eicosatetraenoic acid derivatives:
12R-HpETE + GSH ⟶ 12R-HETE + GSSG + H2O
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Glutathione conjugation:
CysGly + H2O ⟶ Gly + L-Cys
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
CysGly + H2O ⟶ Gly + L-Cys
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Gene expression (Transcription):
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- RNA Polymerase II Transcription:
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- Generic Transcription Pathway:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Transcriptional Regulation by TP53:
GSSG + H+ + TPNH ⟶ GSH + TPN
- TP53 Regulates Metabolic Genes:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stimuli:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stress:
GSH + H2O2 ⟶ GSSG + H2O
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Biosynthesis of DHA-derived sulfido conjugates:
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Biosynthesis of maresin conjugates in tissue regeneration (MCTR):
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to external stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Gene expression (Transcription):
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- RNA Polymerase II Transcription:
ATP + pol II transcription complex containing 3 Nucleotide long transcript ⟶ AMP + PPi + pol II transcription complex containing 3 Nucleotide long transcript
- Generic Transcription Pathway:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Transcriptional Regulation by TP53:
GSSG + H+ + TPNH ⟶ GSH + TPN
- TP53 Regulates Metabolic Genes:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Cellular responses to stimuli:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Cellular responses to stress:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Detoxification of Reactive Oxygen Species:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Synthesis of 15-eicosatetraenoic acid derivatives:
15S-HpETE + GSH ⟶ 15S-HETE + GSSG + H2O
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Biological oxidations:
CH3CHO + H2O + NAD ⟶ CH3COO- + H+ + NADH
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Glutathione conjugation:
GSH + H2O ⟶ CysGly + L-Glu
- Glutathione synthesis and recycling:
GSH + H2O ⟶ CysGly + L-Glu
- Cellular responses to stimuli:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Degradation of cysteine and homocysteine:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Sulfide oxidation to sulfate:
GSH + H+ + S2O3(2-) ⟶ GSSG + H2S + sulfite
- Glutathione synthesis and recycling:
CysGly + H2O ⟶ Gly + L-Cys
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Gene expression (Transcription):
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- RNA Polymerase II Transcription:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Generic Transcription Pathway:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Transcriptional Regulation by TP53:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- TP53 Regulates Metabolic Genes:
p-AMPK heterotrimer:AMP ⟶ SESN1,2,3:p-AMPK heterotrimer:AMP
- Biosynthesis of specialized proresolving mediators (SPMs):
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Biosynthesis of DHA-derived SPMs:
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Biosynthesis of DHA-derived sulfido conjugates:
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Biosynthesis of maresin conjugates in tissue regeneration (MCTR):
13(S),14(S)-epoxy-DHA + GSH ⟶ (13R)-S-glutathionyl-(14S)-hydroxy-(4Z,7Z,9E,11E,16Z,19Z)-docosahexaenoic acid
- Biosynthesis of protectin and resolvin conjugates in tissue regeneration (PCTR and RCTR):
7S(8)-epoxy-17(S)-HDHA + GSH ⟶ resolvin conjugate in tissue regeneration 1
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Interconversion of nucleotide di- and triphosphates:
AMP + ATP ⟶ ADP
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Purine catabolism:
H2O + XTP ⟶ PPi + XMP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Aflatoxin activation and detoxification:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ H2O + TPN + aflatoxin Q1
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Sulfide oxidation to sulfate:
H2O + Oxygen + sulfite ⟶ H2O2 + SO4(2-)
- Cellular responses to stimuli:
BV + TPNH ⟶ BIL + TPN
- Cellular responses to stress:
BV + TPNH ⟶ BIL + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular response to chemical stress:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BV + TPNH ⟶ BIL + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular response to chemical stress:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular response to chemical stress:
H2O2 + P4HB ⟶ H2O + Q8I2V9
BioCyc(14)
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
- γ-glutamyl cycle:
a 5-L-glutamyl-L-amino acid + cysteinylglycine ⟶ a standard α amino acid + glutathione
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + gly ⟶ ADP + H+ + glutathione + phosphate
- formaldehyde oxidation (glutathione-dependent):
formaldehyde + glutathione ⟶ S-hydroxymethylglutathione
- ascorbate biosynthesis:
L-gulonate ⟶ H2O + L-gulono-1,4-lactone
- glutathionylspermidine biosynthesis:
ATP + glutathione + spermidine ⟶ ADP + H+ + glutathionylspermidine + phosphate
- glutathione redox reactions I:
NADP+ + glutathione ⟶ H+ + NADPH + glutathione disulfide
- trypanothione biosynthesis:
ATP + glutathione + glutathionylspermidine ⟶ ADP + H+ + phosphate + trypanothione
- glutathione-mediated detoxification:
H2O + an L-cysteine-S-conjugate ⟶ a thiol + ammonia + pyruvate
- trypanothione biosynthesis:
ATP + glutathione + glutathionylspermidine ⟶ ADP + H+ + phosphate + trypanothione
- glutathione redox reactions I:
NADP+ + glutathione ⟶ H+ + NADPH + glutathione disulfide
- glutathione biosynthesis:
ATP + L-γ-glutamylcysteine + glycine ⟶ ADP + glutathione + phosphate
- methylglyoxal pathway:
H2O + S-lactoyl-glutathione ⟶ D-lactate + glutathione
- gamma-glutamyl cycle:
Cys-Gly + an α-(γ-L-glutamyl)-L-amino acid ⟶ an amino acid + glutathione
WikiPathways(6)
- Trans-sulfuration and one-carbon metabolism:
Methionine ⟶ Decarboxylated SAM
- Cadmium and glutathione:
MDHA ⟶ AsA
- One-carbon metabolism and related pathways:
5-oxoproline ⟶ Glutamate
- Ferroptosis:
GSH ⟶ GSSG
- Gamma-glutamyl cycle for the biosynthesis and degradation of glutathione, including diseases:
Glutathione ⟶ Cysteinylglycine
- Oxidative stress and redox pathway:
GSH ⟶ Cysteinyl-glycine
Plant Reactome(804)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Responses to stimuli: abiotic stimuli and stresses:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Response to heavy metals:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Arsenic uptake and detoxification:
GSH + arsenate ⟶ GSSG + arsenite(3-)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid metabolism:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- Cysteine degradation:
L-Cys + a protein L-cysteine ⟶ L-Ala + a protein-S-sulfanylcysteine
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cysteine degradation:
H2O + L-Cys ⟶ PYR + S(2-) + ammonia
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Gamma-glutamyl cycle:
ATP + H2O + OPRO ⟶ ADP + L-Glu + Pi
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
- Glutathione redox reactions I:
GSH + H2O2 ⟶ GSSG + H2O
- Glutathione redox reactions II:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Glutathione biosynthesis:
ATP + Gly + gGluCys ⟶ ADP + GSH + Pi
INOH(4)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- Pyruvate metabolism ( Pyruvate metabolism ):
ATP + Acetic acid + CoA ⟶ AMP + Acetyl-CoA + Pyrophosphate
- (R)-S-Lactoyl-glutathione = Glutathione + Methyl-glyoxal ( Pyruvate metabolism ):
(R)-S-Lactoyl-glutathione ⟶ Glutathione + Methyl-glyoxal
PlantCyc(23)
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
- phytochelatins biosynthesis:
a phytochelatin + glutathione ⟶ a phytochelatin + gly
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
H_sub_2_endsub_O_sub_2_endsub_ + glutathione ⟶ H_sub_2_endsub_O + glutathione disulfide
PathBank(133)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Glutathione Metabolism III:
-Glutamylcysteine + Adenosine triphosphate + Glycine ⟶ Adenosine diphosphate + Glutathione + Hydrogen Ion + Phosphate
- Glutathione Metabolism III:
Hydrogen Ion + NADPH + Oxidized glutathione ⟶ Glutathione + NADP
- Acetaminophen Metabolism Pathway:
Acetaminophen + Phosphoadenosine phosphosulfate ⟶ Adenosine 3',5'-diphosphate + Paracetamol sulfate
- Glutathione Metabolism:
-Glutamylcysteine + Adenosine triphosphate + Glycine ⟶ Adenosine diphosphate + Glutathione + Hydrogen Ion + Phosphate
- Glutathione Metabolism:
Hydrogen Ion + NADPH + Oxidized glutathione ⟶ Glutathione + NADP
- Glutathione Metabolism:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- Glutathione Synthetase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 5-Oxoprolinuria:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltransferase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- 5-Oxoprolinase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- gamma-Glutamyltranspeptidase Deficiency:
Cysteinylglycine + Water ⟶ Glycine + L-Cysteine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Metabolism:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinuria:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltransferase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Glutathione Synthetase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- 5-Oxoprolinase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- gamma-Glutamyltranspeptidase Deficiency:
Glutathione + L-amino acid ⟶ (5-L-Glutamyl)-L-amino acid + Cysteinylglycine
- Selenium Metabolism:
Adenosine triphosphate + hydrogen selenide ion ⟶ Adenosine monophosphate + Phosphate + Selenophosphate
- Selenium Metabolism:
Adenosine triphosphate + hydrogen selenide ion ⟶ Adenosine monophosphate + Phosphate + Selenophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvaldehyde Degradation:
S-Lactoylglutathione + Water ⟶ D-Lactic acid + Glutathione + Hydrogen Ion
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Leigh Syndrome:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Dehydrogenase Complex Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Cyclophosphamide Action Pathway:
Aldophosphamide + Glutathione ⟶ 4-Glutathionyl cyclophosphamide + Water
- Primary Hyperoxaluria II, PH2:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Pyruvate Kinase Deficiency:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Cyclophosphamide Metabolism Pathway:
Aldophosphamide + Glutathione ⟶ 4-Glutathionyl cyclophosphamide + Water
- Glutathione Metabolism II:
1-Nitronaphthalene-5,6-oxide + Glutathione ⟶ 1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
- Glutathione Metabolism:
Glutathione + L-Cysteine ⟶ -Glutamylcysteine + Cysteinylglycine
- Pyruvate Metabolism:
2-Isopropylmalic acid + Coenzyme A ⟶ -Ketoisovaleric acid + Acetyl-CoA + Water
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Pyruvaldehyde Degradation:
S-Lactoylglutathione ⟶ Glutathione + Pyruvaldehyde
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Pyruvate Metabolism:
Acetic acid + Coenzyme A ⟶ Acetyl-CoA + Water
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Leigh Syndrome:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Dehydrogenase Complex Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Primary Hyperoxaluria II, PH2:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Pyruvate Kinase Deficiency:
Acetaldehyde + NAD + Water ⟶ Acetic acid + Hydrogen Ion + NADH
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Drosopterin and Aurodrosopterin Biosynthesis:
Dyspropterin + Glutathione ⟶ Oxidized glutathione + Pyrimidodiazepine + Water
- Arsenate Detoxification:
Dimethylarsinate + Hydrogen Ion + reduced electron acceptor ⟶ Dimethylarsinous acid + Water + oxidized electron acceptor
- Camalexin Biosynthesis:
Dehydro(indole-3-yl)acetonitrile + Glutathione ⟶ (glutathion-S-yl)(1H-indol-3-yl)acetonitrile
- Glutathione Metabolism II:
1-Nitronaphthalene-5,6-oxide + Glutathione ⟶ 1-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene
- Methylglyoxal Degradation I:
Glutathione + Pyruvaldehyde ⟶ S-Lactoylglutathione
PharmGKB(0)
1 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Fanai Lalsangpuii, Samuel Lalthazuala Rokhum, Fanai Nghakliana, Joseph V L Ruatpuia, Lalchhandami Tochhawng, Amit Kumar Trivedi, Ralte Lalfakzuala, Zothan Siama. Mikania micrantha silver nanoparticles exhibit anticancer activities against human lung adenocarcinoma via caspase-mediated apoptotic cell death.
Artificial cells, nanomedicine, and biotechnology.
2024 Dec; 52(1):186-200. doi:
10.1080/21691401.2024.2325942
. [PMID: 38465883] - Nesma Khaled, Nehal Ibrahim, Alaa E Ali, Fadia S Youssef, Sherweit H El-Ahmady. LC-qTOF-MS/MS phytochemical profiling of Tabebuia impetiginosa (Mart. Ex DC.) Standl. leaf and assessment of its neuroprotective potential in rats.
Journal of ethnopharmacology.
2024 Sep; 331(?):118292. doi:
10.1016/j.jep.2024.118292
. [PMID: 38705428] - Yulia N Cajas, Karina Cañón-Beltrán, Rosane Mazzarella, Carolina Nuñez-Puente, Encina M González, Heriberto Rodriguez-Martinez, Dimitrios Rizos, Cristina A Martinez-Serrano. Nobiletin as a novel agent to enhance porcine in vitro embryo development and quality.
Theriogenology.
2024 Jul; 223(?):36-46. doi:
10.1016/j.theriogenology.2024.04.011
. [PMID: 38669840] - Feiyu Tang, Bin Wang, Jinpeng Li, Jun Xu, Jinsong Zeng, Wenhua Gao, Kefu Chen. Water-soluble silver nanoclusters with multicolor fluorescence generated by dialdehyde nanofibrillated cellulose for biological imaging.
Carbohydrate polymers.
2024 Jul; 336(?):122138. doi:
10.1016/j.carbpol.2024.122138
. [PMID: 38670763] - Zemin Yang, Jialu Wang, Wenjun Wang, Haobo Zhang, Yuhan Wu, Xusheng Gao, Dan Gao, Xiwen Li. Physiological, cytological and multi-omics analysis revealed the molecular response of Fritillaria cirrhosa to Cd toxicity in Qinghai-Tibet Plateau.
Journal of hazardous materials.
2024 Jul; 472(?):134611. doi:
10.1016/j.jhazmat.2024.134611
. [PMID: 38754230] - Wang Gao, Dengyun Wu, Dan Zhang, Zixin Geng, Mengting Tong, Yusui Duan, Wansheng Xia, Jianzhou Chu, Xiaoqin Yao. Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle.
The Science of the total environment.
2024 Jul; 932(?):172555. doi:
10.1016/j.scitotenv.2024.172555
. [PMID: 38677420] - Yanxiao Li, Guishuang Zhu, Haonan Sun, Dianjun Xiang, Chunlan Zhang, Zhigang Li, Peng Liu. Genome-wide analysis of LOG family genes in castor and RcLOG5 enhances drought, salt, and cold stress tolerance in Arabidopsis thaliana.
Gene.
2024 Jun; 913(?):148398. doi:
10.1016/j.gene.2024.148398
. [PMID: 38518901] - Qi Sun, Ting Zhang, Yuchen Ren, Yuan Qiu, Xiaogang Luo, Jingfang Yang, Genyan Liu. A two-photon fluorescent probe for highly selective detection of Cys over GSH and Hcy based on the Michael addition and transcyclization mechanism and its application in bioimaging and protein straining in SDS-PAGE.
Analytica chimica acta.
2024 Jun; 1309(?):342687. doi:
10.1016/j.aca.2024.342687
. [PMID: 38772659] - Probir Kumar Mittra, Md Atikur Rahman, Swapan Kumar Roy, Soo-Jeong Kwon, Sung Ho Yun, Cho Kun, Meiliang Zhou, Tomoyuki Katsube-Tanaka, Tatsuhiko Shiraiwa, Sun-Hee Woo. Deciphering proteomic mechanisms explaining the role of glutathione as an aid in improving plant fitness and tolerance against cadmium-toxicity in Brassica napus L.
Journal of hazardous materials.
2024 Jun; 471(?):134262. doi:
10.1016/j.jhazmat.2024.134262
. [PMID: 38640678] - Zhengying Liu, Qian Bian, Dayong Wang. Exposure to 6-PPD quinone causes ferroptosis activation associated with induction of reproductive toxicity in Caenorhabditis elegans.
Journal of hazardous materials.
2024 Jun; 471(?):134356. doi:
10.1016/j.jhazmat.2024.134356
. [PMID: 38643579] - Shunsuke Miyaji, Takehiro Ito, Taisuke Kitaiwa, Kosuke Nishizono, Shin-Ichiro Agake, Hiroki Harata, Haruna Aoyama, Minori Umahashi, Muneo Sato, Jun Inaba, Shinya Fushinobu, Tadashi Yokoyama, Akiko Maruyama-Nakashita, Masami Yokota Hirai, Naoko Ohkama-Ohtsu. N2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana.
The Plant journal : for cell and molecular biology.
2024 Jun; 118(5):1603-1618. doi:
10.1111/tpj.16700
. [PMID: 38441834] - Shanwei Wang, Wei Xing, Wei Li, Zuoming Xie, Yuan Xiao, Wenmin Huang. Red light mitigates Cd toxicity in Egeria densa by restricting Cd accumulation and modulating antioxidant defense system.
Plant physiology and biochemistry : PPB.
2024 Jun; 211(?):108675. doi:
10.1016/j.plaphy.2024.108675
. [PMID: 38705047] - Shunshun Jin, Haoxiang Xu, Chengbo Yang, Karmin O. Regulation of oxidative stress in the intestine of piglets after enterotoxigenic Escherichia coli (ETEC) infection.
Biochimica et biophysica acta. Molecular cell research.
2024 Jun; 1871(5):119711. doi:
10.1016/j.bbamcr.2024.119711
. [PMID: 38574824] - Weijuan Zou, Feng Gao, Zheying Meng, Xiaojun Cai, Wu Chen, Yuanyi Zheng, Tao Ying, Longchen Wang, Jianrong Wu. Lactic acid responsive sequential production of hydrogen peroxide and consumption of glutathione for enhanced ferroptosis tumor therapy.
Journal of colloid and interface science.
2024 Jun; 663(?):787-800. doi:
10.1016/j.jcis.2024.03.001
. [PMID: 38442520] - Zhu Sixi, Suxia Sun, Wei Zhao, Xiuqin Yang, Huan Mao, Luying Sheng. Comprehensive physiology and proteomics analysis revealed the molecular toxicological mechanism of Se stress on indica and japonica rice.
Chemosphere.
2024 Jun; 358(?):142190. doi:
10.1016/j.chemosphere.2024.142190
. [PMID: 38685336] - Feng-Juan Li, Shouzhi Fu, Hua Ye, Yi-Han Hu, Jianxin Chen, Jamie R Privratsky, Wei Yu, Feng Dong, Russel J Reiter, Maolong Dong, Jun Guo, Jun Ren. Metallothionein Alleviates Glutathione Depletion-Induced Oxidative Cardiomyopathy through CISD1-Dependent Regulation of Ferroptosis in Murine Hearts.
The American journal of pathology.
2024 Jun; 194(6):912-926. doi:
10.1016/j.ajpath.2024.02.009
. [PMID: 38417695] - Guillermo Reséndiz-González, Agustín Olmedo-Juárez, Roberto González-Garduño, Jorge Alberto Cortes-Morales, Manasés González-Cortazar, Ana Elvia Sánchez-Mendoza, María Eugenia López-Arellano, Crisóforo Mercado-Márquez, Alejandro Lara-Bueno, Rosa Isabel Higuera-Piedrahita. Anthelmintic efficacy of an organic fraction from Guazuma ulmifolia leaves and evaluation of reactive oxidative stress on Haemonchus contortus.
Experimental parasitology.
2024 Jun; 261(?):108768. doi:
10.1016/j.exppara.2024.108768
. [PMID: 38679124] - Lara Vogelsang, Jürgen Eirich, Iris Finkemeier, Karl-Josef Dietz. Specificity and dynamics of H2O2 detoxification by the cytosolic redox regulatory network as revealed by in vitro reconstitution.
Redox biology.
2024 Jun; 72(?):103141. doi:
10.1016/j.redox.2024.103141
. [PMID: 38599017] - Jinshuai Lan, Li Liu, Wenjun Zhao, Zhe Li, Ruifeng Zeng, Shiyuan Fang, Lixia Chen, Yi Shen, Hai Wei, Tong Zhang, Yue Ding. Unlocking the anticancer activity of gambogic acid: a shift towards ferroptosis via a GSH/Trx dual antioxidant system.
Free radical biology & medicine.
2024 Jun; 218(?):26-40. doi:
10.1016/j.freeradbiomed.2024.03.023
. [PMID: 38570172] - Khamsalath Soudthedlath, Toshiki Nakamura, Tsukasa Ushiwatari, Jutarou Fukazawa, Keishi Osakabe, Yuriko Osakabe, Akiko Maruyama-Nakashita. SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem.
Plant & cell physiology.
2024 May; 65(5):770-780. doi:
10.1093/pcp/pcae020
. [PMID: 38424724] - Noppawan Phumala Morales, Witcharat Loahachanwanich, Ekkapoj Korwutthikulrangsri, Monchai Ruangchainikom, Werasak Sutipornpalangkul. Lipid Peroxidation, Reduced Glutathione, and Glutathione Peroxidase Levels in Intervertebral Discs of Patients with Lumbar Degenerative Disc Disease.
Medical science monitor : international medical journal of experimental and clinical research.
2024 May; 30(?):e944335. doi:
10.12659/msm.944335
. [PMID: 38783538] - Margarita Hernandez-Mixteco, Blandina Bernal-Morales, Olga Lidia Valenzuela, Juan Francisco Rodríguez-Landa, Jorge Francisco Cerna-Cortes, Eliud Alfredo García-Montalvo. Effect of Cucurbita ficifolia Bouché on glutathione level and glycosylated hemoglobin percentage in a Mexican rural population with type 2 diabetes.
Journal of ethnopharmacology.
2024 May; 326(?):117924. doi:
10.1016/j.jep.2024.117924
. [PMID: 38369067] - Wenwen Li, Yu Wang, Yun Zhang, Yuwen Fan, Jinsong Liu, Ke Zhu, Shu Jiang, Jinao Duan. Lizhong decoction ameliorates ulcerative colitis by inhibiting ferroptosis of enterocytes via the Nrf2/SLC7A11/GPX4 pathway.
Journal of ethnopharmacology.
2024 May; 326(?):117966. doi:
10.1016/j.jep.2024.117966
. [PMID: 38401661] - Antonius T M Van Kessel, Gonzalo Cosa. Lipid-derived electrophiles inhibit the function of membrane channels during ferroptosis.
Proceedings of the National Academy of Sciences of the United States of America.
2024 May; 121(21):e2317616121. doi:
10.1073/pnas.2317616121
. [PMID: 38743627] - Ya-Xuan Liang, Xue-Yi Sun, De-Zhong Xu, Yi-Nan Gao, Quan Tang, Zhong-Lin Lu, Yang Liu. Codelivery of CPT and siPHB1 with GSH/ROS Dual-Responsive Hybrid Nanoparticles Based on a [12]aneN3-Derived Lipid for Synergistic Lung Cancer Therapy.
ACS applied bio materials.
2024 May; 7(5):3202-3214. doi:
10.1021/acsabm.4c00206
. [PMID: 38651918] - Gang Tan, Guanghui Hou, Junmin Qian, Yaping Wang, Weijun Xu, Wenjuan Luo, Xiaobing Chen, Aili Suo. Hyaluronan-decorated copper-doxorubicin-anlotinib nanoconjugate for targeted synergistic chemo/chemodynamic/antiangiogenic tritherapy against hepatocellular carcinoma.
Journal of colloid and interface science.
2024 May; 662(?):857-869. doi:
10.1016/j.jcis.2024.02.085
. [PMID: 38382370] - Dan Zhang, Lulu Zhang, Chengwei Yuan, Kuizhi Zhai, Wansheng Xia, Yusui Duan, Bingnan Zhao, Jianzhou Chu, Xiaoqin Yao. Brassinolide as potential rescue agent for Pinellia ternata grown under microplastic condition: Insights into their modulatory role on photosynthesis, redox homeostasis, and AsA-GSH cycling.
Journal of hazardous materials.
2024 May; 470(?):134116. doi:
10.1016/j.jhazmat.2024.134116
. [PMID: 38547753] - Dadi Jiang, Youming Guo, Tianyu Wang, Liang Wang, Yuelong Yan, Ling Xia, Rakesh Bam, Zhifen Yang, Hyemin Lee, Takao Iwawaki, Boyi Gan, Albert C Koong. IRE1α determines ferroptosis sensitivity through regulation of glutathione synthesis.
Nature communications.
2024 May; 15(1):4114. doi:
10.1038/s41467-024-48330-0
. [PMID: 38750057] - Jacques Dupuy, Edwin Fouché, Céline Noirot, Pierre Martin, Charline Buisson, Françoise Guéraud, Fabrice Pierre, Cécile Héliès-Toussaint. A dual model of normal vs isogenic Nrf2-depleted murine epithelial cells to explore oxidative stress involvement.
Scientific reports.
2024 05; 14(1):10905. doi:
10.1038/s41598-024-60938-2
. [PMID: 38740939] - David Calderón Guzmán, Norma Osnaya Brizuela, Maribel Ortíz Herrera, Hugo Juárez Olguín, Armando Valenzuela Peraza, Norma Labra Ruíz, Gerardo Barragán Mejía. Intake of oligoelements with cytarabine or etoposide alters dopamine levels and oxidative damage in rat brain.
Scientific reports.
2024 05; 14(1):10835. doi:
10.1038/s41598-024-61766-0
. [PMID: 38736022] - Tianyu Lou, Hao Wu, Menghan Feng, Lirong Liu, Xiaoqin Yang, Mingxia Pan, Zuying Wei, Yinhuan Zhang, Lixia Shi, Biqiong Qu, Haolan Yang, Shiyu Cong, Kui Chen, Jie Liu, Yueting Li, Zhixin Jia, Hongbin Xiao. Integration of metabolomics and transcriptomics reveals that Da Chuanxiong Formula improves vascular cognitive impairment via ACSL4/GPX4 mediated ferroptosis.
Journal of ethnopharmacology.
2024 May; 325(?):117868. doi:
10.1016/j.jep.2024.117868
. [PMID: 38325668] - Minling Gao, Hongchang Peng, Xuesong Zhao, Zhengzhen Xiao, Weiwen Qiu, Zhengguo Song. Effect of cadmium on polystyrene transport in parsley roots planted in a split-root system and assessment of the combined toxic effects.
The Science of the total environment.
2024 May; 924(?):171633. doi:
10.1016/j.scitotenv.2024.171633
. [PMID: 38471591] - Hailian Bi, Shibin Guo, Yan Wang, Zhijie Liu, Guokai Wu, Xiaokui Huo, Li Guo, Huishu Guo, Yongjian Xiong. Pinobanksin ameliorated DSS-induced acute colitis mainly through modulation of SLC7A11/glutathione-mediated intestinal epithelial ferroptosis.
Food & function.
2024 May; 15(9):4970-4982. doi:
10.1039/d3fo04500e
. [PMID: 38606509] - Zhao Qian, Liu Lu, Wei Zihan, Bai Qianyue, Zhao Chungang, Zhang Shuheng, Pan Jiali, Yu Jiaxin, Zhang Shuang, Wei Jian. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle.
BMC plant biology.
2024 May; 24(1):365. doi:
10.1186/s12870-024-05023-6
. [PMID: 38706002] - Yi Jiang, Xiaofei Chen, Xuesong Cao, Chuanxi Wang, Le Yue, Xiaona Li, Zhenyu Wang. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation.
Journal of hazardous materials.
2024 May; 469(?):134086. doi:
10.1016/j.jhazmat.2024.134086
. [PMID: 38521034] - Jasvinder Kaur, Nikita Tiwari, Mehar Hasan Asif, Varsha Dharmesh, Mariya Naseem, Pankaj Kumar Srivastava, Suchi Srivastava. Integrated genome-transcriptome analysis unveiled the mechanism of Debaryomyces hansenii-mediated arsenic stress amelioration in rice.
Journal of hazardous materials.
2024 May; 469(?):133954. doi:
10.1016/j.jhazmat.2024.133954
. [PMID: 38484657] - Christine H Foyer, Karl Kunert. The ascorbate-glutathione cycle coming of age.
Journal of experimental botany.
2024 May; 75(9):2682-2699. doi:
10.1093/jxb/erae023
. [PMID: 38243395] - Man Yuan, Feng Wang, Tieqiang Sun, Xiangyu Bian, Yuxian Zhang, Changjiang Guo, Lixia Yu, Zhanxin Yao. Vitamin B6 alleviates chronic sleep deprivation-induced hippocampal ferroptosis through CBS/GSH/GPX4 pathway.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 May; 174(?):116547. doi:
10.1016/j.biopha.2024.116547
. [PMID: 38599059] - Laila Mowafy, Manal Abdul-Hamid, Nadia Moustafa, Saleh Al-Quraishy, Abdel-Azeem S Abdel-Baki, Mohamed Y Zaky, Abdul-Mawgoud A Asran, Heba Abdel-Tawab. Repurposing the drug, amprolium as a novel molluscicide against the land snail (Eobania vermiculata).
Pesticide biochemistry and physiology.
2024 May; 201(?):105889. doi:
10.1016/j.pestbp.2024.105889
. [PMID: 38685220] - Tatiana Recabarren-Villalón, Ana C Ronda, Lautaro Girones, Jorge Marcovecchio, Martín Amodeo, Andrés H Arias. Can environmental factors increase oxidative responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs)?.
Chemosphere.
2024 May; 355(?):141793. doi:
10.1016/j.chemosphere.2024.141793
. [PMID: 38548075] - Yu-Hsin Chen, I-Ju Liu, Tzu-Chen Lin, Min-Chen Tsai, Shang-Hsiu Hu, Tsai-Ching Hsu, Yi-Ting Wu, Bor-Show Tzang, Wen-Hsuan Chiang. PEGylated chitosan-coated nanophotosensitizers for effective cancer treatment by photothermal-photodynamic therapy combined with glutathione depletion.
International journal of biological macromolecules.
2024 May; 266(Pt 2):131359. doi:
10.1016/j.ijbiomac.2024.131359
. [PMID: 38580018] - Hossam El Din H Abdelhafez, Amr A Abdallah, Reda K Abdel-Razik, Nadia A Hamed, Ahmed Elshatory, Walaa Awad, Abdel Azeim A Khalaf, Aya M Mekkawy. Sex comparison of oxidative stress, mitochondrial dysfunction, and apoptosis triggers induced by single-dose Abamectin in albino rats.
Pesticide biochemistry and physiology.
2024 May; 201(?):105903. doi:
10.1016/j.pestbp.2024.105903
. [PMID: 38685225] - Rongliang Tong, Xiaode Feng, Jingqi Sun, Zhenan Ling, Jun Wang, Shun Li, Beng Yang, Junfang Deng, Guijin He, Jian Wu. Co-Delivery of siNRF2 and Sorafenib by a 'Click' Dual Functioned Hyperbranched Nanocarrier for Synergistically Inducing Ferroptosis in Hepatocellular Carcinoma.
Small (Weinheim an der Bergstrasse, Germany).
2024 May; 20(21):e2307273. doi:
10.1002/smll.202307273
. [PMID: 38102096] - Mohamed A Radwan, Amira F Gad, Amira M Abd El-Aziz, Kawther S El-Gendy. Does commercial indoxacarb pose ecotoxicological consequences? Employing a multi-marker approach in the model species Theba pisana.
Environmental science and pollution research international.
2024 May; 31(22):31911-31924. doi:
10.1007/s11356-024-33214-z
. [PMID: 38641691] - Evgenia S Seryogina, Anna V Kamynina, Dmitry O Koroev, Olga M Volpina, Andrey Y Vinokurov, Andrey Y Abramov. RAGE induces physiological activation of NADPH oxidase in neurons and astrocytes and neuroprotection.
The FEBS journal.
2024 May; 291(9):1944-1957. doi:
10.1111/febs.17086
. [PMID: 38335056] - Chongmei Tian, Yu Qiu, Yaping Zhao, Liping Fu, Daozong Xia, Junjie Ying. Selenium protects against Pb-induced renal oxidative injury in weaning rats and human renal tubular epithelial cells through activating NRF2.
Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS).
2024 May; 83(?):127420. doi:
10.1016/j.jtemb.2024.127420
. [PMID: 38432121] - Roghayeh Rashidi, Ali Roohbakhsh, Leila Mohtashami, Leila Mobasheri, Hamidreza Kheradmand, Mohammad Sadegh Amiri, Ahmad Ghorbani, Seyed Hadi Mousavi. Cytotoxic and apoptotic effects of Ferula gummosa Boiss: extract on human breast adenocarcinoma cell line.
Molecular biology reports.
2024 Apr; 51(1):592. doi:
10.1007/s11033-024-09364-1
. [PMID: 38683376] - Minghua Zhang, Xianxian Yao, Jian Xu, Jiaying Song, Shuting Mai, Weichu Zhu, Yichen Zhang, Liangliang Zhu, Wuli Yang. Biodegradable zwitterionic polymer-cloaked defective metal-organic frameworks for ferroptosis-inducing cancer therapy.
International journal of pharmaceutics.
2024 Apr; 655(?):124032. doi:
10.1016/j.ijpharm.2024.124032
. [PMID: 38521374] - Yuanding Zeng, Wangjie Cao, Yong Huang, Han Zhang, Congyi Li, Jianzheng He, Yongqi Liu, Hongxia Gong, Yun Su. Huangqi Baihe Granules alleviate hypobaric hypoxia-induced acute lung injury in rats by suppressing oxidative stress and the TLR4/NF-κB/NLRP3 inflammatory pathway.
Journal of ethnopharmacology.
2024 Apr; 324(?):117765. doi:
10.1016/j.jep.2024.117765
. [PMID: 38228230] - Meitong Guo, Xingchen Du, Xiaoyan Wang. Inhibition of ferroptosis: A new direction in the treatment of ulcerative colitis by traditional Chinese medicine.
Journal of ethnopharmacology.
2024 Apr; 324(?):117787. doi:
10.1016/j.jep.2024.117787
. [PMID: 38253272] - María Elena Soto, Israel Pérez-Torres, Linaloe Manzano-Pech, Adrían Palacios-Chavarría, Rafael Ricardo Valdez-Vázquez, Verónica Guarner-Lans, Elizabeth Soria-Castro, Eulises Díaz-Díaz, Vicente Castrejón-Tellez. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study.
International journal of molecular sciences.
2024 Apr; 25(8):. doi:
10.3390/ijms25084543
. [PMID: 38674128] - Mengyuan Zhou, Yu Cao, Shaocheng Xie, Yannan Xiang, Mengxin Li, Haitao Yang, Zibo Dong. Gypenoside XLIX alleviates acute liver injury: Emphasis on NF-κB/PPAR-α/NLRP3 pathways.
International immunopharmacology.
2024 Apr; 131(?):111872. doi:
10.1016/j.intimp.2024.111872
. [PMID: 38503011] - Sitong Lai, Bing Wang, Kunhui Sun, Fan Li, Qian Liu, Xie-An Yu, Lihe Jiang, Lisheng Wang. Self-Assembled Matrine-PROTAC Encapsulating Zinc(II) Phthalocyanine with GSH-Depletion-Enhanced ROS Generation for Cancer Therapy.
Molecules (Basel, Switzerland).
2024 Apr; 29(8):. doi:
10.3390/molecules29081845
. [PMID: 38675664] - Finja Bohle, Alina Klaus, Julian Ingelfinger, Hendrik Tegethof, Nassim Safari, Markus Schwarzländer, Frank Hochholdinger, Matthias Hahn, Andreas J Meyer, Ivan F Acosta, Stefanie J Müller-Schüssele. Contrasting cytosolic glutathione redox dynamics under abiotic and biotic stress in barley as revealed by the biosensor Grx1-roGFP2.
Journal of experimental botany.
2024 Apr; 75(8):2299-2312. doi:
10.1093/jxb/erae035
. [PMID: 38301663] - Hend A Essa, Alaa M Ali, Mona A Saied. Cymbopogon proximus and Petroselinum crispum seed ethanolic extract/Gum Arabic nanogel emulsion: Preventing ethylene glycol and ammonium chloride-induced urolithiasis in rats.
Urolithiasis.
2024 Apr; 52(1):52. doi:
10.1007/s00240-024-01559-2
. [PMID: 38564033] - Zengyao Tang, Xin Huang, Hanying Mei, Zeqi Zheng. Silencing of METTL3 suppressed ferroptosis of myocardial cells by m6A modification of SLC7A11 in a YTHDF2 manner.
Journal of bioenergetics and biomembranes.
2024 Apr; 56(2):149-157. doi:
10.1007/s10863-024-10006-1
. [PMID: 38319402] - Mohamed H Elashal, Aida A Abd El-Wahed, Mostafa Abdelgaber Mohamed, Rania Hamad, Mabrouk Attia Abd Eldaim, Shaden A M Khalifa, Badr Aldahmash, Hesham R El-Seedi, Bishoy El-Aarag. Apilarnil ameliorates Bisphenol A-induced testicular toxicity in adult male rats via improving antioxidant potency and PCNA expression.
Reproductive toxicology (Elmsford, N.Y.).
2024 Apr; 125(?):108570. doi:
10.1016/j.reprotox.2024.108570
. [PMID: 38484946] - Yu Sun, Qingfang Deng, Qiurong Zhang, Xin Zhou, Ruhai Chen, Siyu Li, Qing Wu, Huaguo Chen. Hazards of microplastics exposure to liver function in fishes: A systematic review and meta-analysis.
Marine environmental research.
2024 Apr; 196(?):106423. doi:
10.1016/j.marenvres.2024.106423
. [PMID: 38442589] - Ryan D Day, Katherine B Baker, Patricia Peinado, Jayson M Semmens. Understanding baseline levels of physiological stress tolerance from excessive exercise in a holobenthic octopus species, Octopus pallidus.
Marine environmental research.
2024 Apr; 196(?):106402. doi:
10.1016/j.marenvres.2024.106402
. [PMID: 38402778] - Gang He, Yiyuan Zhang, Yanjiao Feng, Tangcong Chen, Mei Liu, Yue Zeng, Xiaojing Yin, Shaokui Qu, Lifen Huang, Youqiang Ke, Li Liang, Jun Yan, Wei Liu. SBFI26 induces triple-negative breast cancer cells ferroptosis via lipid peroxidation.
Journal of cellular and molecular medicine.
2024 Apr; 28(7):e18212. doi:
10.1111/jcmm.18212
. [PMID: 38516826] - Zhilin Ni, Jinhu Liu, Wenting Cui, Liang Cao, Shuozeng Dou. Interactive impacts of CO2-induced seawater acidification and cadmium exposure on antioxidant defenses of juvenile tongue sole Cynoglossus semilaevis.
Marine pollution bulletin.
2024 Apr; 201(?):116284. doi:
10.1016/j.marpolbul.2024.116284
. [PMID: 38522335] - Ágnes Jakab, Kinga Csillag, Károly Antal, Imre Boczonádi, Renátó Kovács, István Pócsi, Tamás Emri. Total transcriptome response for tyrosol exposure in Aspergillus nidulans.
Fungal biology.
2024 04; 128(2):1664-1674. doi:
10.1016/j.funbio.2024.01.003
. [PMID: 38575239] - Samet Tekin, Emin Sengul, Serkan Yildirim, Emrah Hicazi Aksu, İsmail Bolat, Burak Çınar, Azizeh Shadidizaji, Fikret Çelebi, Mohamad Warda. Molecular insights into the antioxidative and anti-inflammatory effects of P-coumaric acid against bisphenol A-induced testicular injury: In vivo and in silico studies.
Reproductive toxicology (Elmsford, N.Y.).
2024 Apr; 125(?):108579. doi:
10.1016/j.reprotox.2024.108579
. [PMID: 38513920] - Junli Shao, Chengze Lai, Qiuyi Zheng, Yu Luo, Chengji Li, Bin Zhang, Yanqin Sun, Shizhen Liu, Yingying Shi, Jinglin Li, Zuguo Zhao, Lianxian Guo. Effects of dietary arsenic exposure on liver metabolism in mice.
Ecotoxicology and environmental safety.
2024 Apr; 274(?):116147. doi:
10.1016/j.ecoenv.2024.116147
. [PMID: 38460405] - Nan Geng, Siyuan Dong, Pengpeng Xie, Yi Zhang, Rong Shi, Chen Chen, Zhao Xu, Qun Chen. Excessive fluoride induces ovarian function impairment by regulating levels of ferroptosis in fluorosis women and ovarian granulosa cells.
Reproductive toxicology (Elmsford, N.Y.).
2024 Apr; 125(?):108556. doi:
10.1016/j.reprotox.2024.108556
. [PMID: 38342390] - Muhammed Mehdi Üremiş, Yusuf Türköz, Nuray Üremiş. Investigation of apoptotic effects of Cucurbitacin D, I, and E mediated by Bax/Bcl-xL, caspase-3/9, and oxidative stress modulators in HepG2 cell line.
Drug development research.
2024 Apr; 85(2):e22174. doi:
10.1002/ddr.22174
. [PMID: 38494997] - Yunong Ma, Xi Zhao, Peilin Tian, Kexin Xu, Jiayang Luo, Honghui Li, Mingqing Yuan, Xu Liu, Yanping Zhong, Pingzhen Wei, Jiaxing Song, Liewei Wen, Cuixia Lu. Laser-Ignited Lipid Peroxidation Nanoamplifiers for Strengthening Tumor Photodynamic Therapy Through Aggravating Ferroptotic Propagation and Sustainable High Immunogenicity.
Small (Weinheim an der Bergstrasse, Germany).
2024 Apr; 20(14):e2306402. doi:
10.1002/smll.202306402
. [PMID: 37992239] - Amritha Jagannivasan, Sumithra Thangalazhy Gopakumar, Krupesha Sharma S R, Gayathri Suresh, Dhanutha Nikathil Raveendranathan, Reynold Peter, Ambarish Purackattu Gop, Gopalakrishnan Achamveetil. Profiling the antioxidant biomarkers in marine fish larvae: a comparative assessment of different storage conditions to select the optimal strategy.
Fish physiology and biochemistry.
2024 Apr; 50(2):557-574. doi:
10.1007/s10695-023-01290-6
. [PMID: 38193995] - Diego Ortiz da Silva, Jonathan Ratko, Ana Paula Nascimento Côrrea, Niumaique Gonçalves da Silva, Diego Mauro Carneiro Pereira, Ieda Cristina Schleger, Ananda Karla Alvez Neundorf, Maria Rosa Dmengeon Pedreiro de Souza, Tatiana Herrerias, Lucélia Donatti. Assessing physiological responses and oxidative stress effects in Rhamdia voulezi exposed to high temperatures.
Fish physiology and biochemistry.
2024 Apr; 50(2):617-633. doi:
10.1007/s10695-023-01294-2
. [PMID: 38175338] - Lynda Sabrina Ounaceur, Mahfoud Messarah, Abdelaziz Lankar, Djihane Touaibia, Hanene Ghadab, Zohir Garri, Sonia Boudjil, Khadidja Belkacem Djeffel, Latifa Atoui, Anis Ounaceur, Nesrine Djaber, Amel Boumendjel. In vivo determination of the anti-inflammatory and antioxidant effects of the aqueous extract of Syzygium aromaticum (clove) in an asthmatic rat model.
Cellular and molecular biology (Noisy-le-Grand, France).
2024 Mar; 70(3):29-39. doi:
10.14715/cmb/2024.70.3.5
. [PMID: 38650159] - Chunxiang Guo, Wei Zhao, Wei Wang, Zheng Yao, Wenhui Chen, Xiaoyi Feng. Study on the Antitumor Mechanism of Tanshinone IIA In Vivo and In Vitro through the Regulation of PERK-ATF4-HSPA5 Pathway-Mediated Ferroptosis.
Molecules (Basel, Switzerland).
2024 Mar; 29(7):. doi:
10.3390/molecules29071557
. [PMID: 38611836] - Wei Wu, Wenhao Bu, Yongxing Tan, Yongwang Wang. Effect of sulfasalazine on ferroptosis during intestinal injury in rats after liver transplantation.
Scientific reports.
2024 03; 14(1):7349. doi:
10.1038/s41598-024-58057-z
. [PMID: 38538748] - Ming-Chang Tsai, Chi-Chih Wang, I-Ning Tsai, Meng-Hsun Yu, Mon-Yuan Yang, Yi-Ju Lee, Kuei-Chuan Chan, Chau-Jong Wang. Improving the Effects of Mulberry Leaves and Neochlorogenic Acid on Glucotoxicity-Induced Hepatic Steatosis in High Fat Diet Treated db/db Mice.
Journal of agricultural and food chemistry.
2024 Mar; 72(12):6339-6346. doi:
10.1021/acs.jafc.3c09033
. [PMID: 38488910] - Begümhan Ömeroğlu Gülada, Muhammet Emin Cam, Meral Yüksel, Dilek Akakın, Turgut Taşkın, Gizem Emre, Göksel Şener, Berna Karakoyun. Gilaburu (Viburnum opulus L.) fruit extract has potential therapeutic and prophylactic role in a rat model of acetic acid-induced oxidant colonic damage.
Journal of ethnopharmacology.
2024 Mar; 322(?):117624. doi:
10.1016/j.jep.2023.117624
. [PMID: 38128893] - Xiao Wang, Feiyan Qi, Ziqi Sun, Hongfei Liu, Yue Wu, Xiaohui Wu, Jing Xu, Hua Liu, Li Qin, Zhenyu Wang, Suling Sang, Wenzhao Dong, Bingyan Huang, Zheng Zheng, Xinyou Zhang. Transcriptome sequencing and expression analysis in peanut reveal the potential mechanism response to Ralstonia solanacearum infection.
BMC plant biology.
2024 Mar; 24(1):207. doi:
10.1186/s12870-024-04877-0
. [PMID: 38515036] - Xiaosheng Lin, Hongwu Chen, Tingting Deng, Binghui Cai, Yubin Xia, Lei Xie, Huaiming Wang, Cong Huang. Improved Immune Response for Colorectal Cancer Therapy Triggered by Multifunctional Nanocomposites with Self-Amplifying Antitumor Ferroptosis.
ACS applied materials & interfaces.
2024 Mar; 16(11):13481-13495. doi:
10.1021/acsami.3c16813
. [PMID: 38456402] - A Kumar, J K Prasad, S Verma, A Gattani, G D Singh, V K Singh. Evaluation of uterine antioxidants in bitches suffering from cystic endometrial hyperplasia-pyometra complex.
Polish journal of veterinary sciences.
2024 Mar; 27(1):43-52. doi:
10.24425/pjvs.2024.149332
. [PMID: 38511595] - Xiaoqin Wang, Mengting He, Yinmin Zhao, Jie He, Jiansen Huang, Lei Zhang, Zhigang Xu, Yuejun Kang, Peng Xue. Bimetallic PtPd Atomic Clusters as Apoptosis/Ferroptosis Inducers for Antineoplastic Therapy through Heterogeneous Catalytic Processes.
ACS nano.
2024 Mar; 18(11):8083-8098. doi:
10.1021/acsnano.3c11610
. [PMID: 38456744] - Jinzhen Wei, Gang Wang, Min Lai, Yipin Zhang, Fengru Li, Yongwang Wang, Yongxing Tan. Faecal Microbiota Transplantation Alleviates Ferroptosis after Ischaemic Stroke.
Neuroscience.
2024 Mar; 541(?):91-100. doi:
10.1016/j.neuroscience.2024.01.021
. [PMID: 38296019] - Fabien Segui, Boutaina Daher, Célia Gotorbe, Jacques Pouyssegur, Vincent Picco, Milica Vucetic. Revealing the Ferroptotic Phenotype of Medulloblastoma.
Journal of visualized experiments : JoVE.
2024 Mar; ?(205):. doi:
10.3791/66645
. [PMID: 38557602] - Juntao Xu, Guoqiang Guan, Zhifei Ye, Cheng Zhang, Yibo Guo, Yuan Ma, Chang Lu, Lingling Lei, Xiao-Bing Zhang, Guosheng Song. Enhancing lipid peroxidation via radical chain transfer reaction for MRI guided and effective cancer therapy in mice.
Science bulletin.
2024 Mar; 69(5):636-647. doi:
10.1016/j.scib.2023.12.036
. [PMID: 38158292] - Angela Mungala Lengo, Ibrahim Mohamed, Jean-Claude Lavoie. Glutathione Supplementation Prevents Neonatal Parenteral Nutrition-Induced Short- and Long-Term Epigenetic and Transcriptional Disruptions of Hepatic H2O2 Metabolism in Guinea Pigs.
Nutrients.
2024 Mar; 16(6):. doi:
10.3390/nu16060849
. [PMID: 38542762] - Fozia Ghouri, Samreen Sarwar, Lixia Sun, Muhammad Riaz, Fasih Ullah Haider, Humera Ashraf, Mingyu Lai, Muhammad Imran, Jingwen Liu, Shafaqat Ali, Xiangdong Liu, Muhammad Qasim Shahid. Silicon and iron nanoparticles protect rice against lead (Pb) stress by improving oxidative tolerance and minimizing Pb uptake.
Scientific reports.
2024 03; 14(1):5986. doi:
10.1038/s41598-024-55810-2
. [PMID: 38472251] - Fereshteh Badini, Abolfazl Bayrami, Mohammad Ali Mirshekar, Samira Shahraki, Hamed Fanaei. Levothyroxine attenuates behavioral impairment and improves oxidative stress and histological alteration 3-nitropropionic acid induced experimental Huntington's disease in rats.
Behavioural brain research.
2024 Mar; 461(?):114864. doi:
10.1016/j.bbr.2024.114864
. [PMID: 38220060] - Mervt M Almostafa, Maged E Mohamed, Nancy S Younis. Ameliorative effects of vanillin against pentylenetetrazole-induced epilepsy and associated memory loss in mice: The role of Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways.
International immunopharmacology.
2024 Mar; 129(?):111657. doi:
10.1016/j.intimp.2024.111657
. [PMID: 38335655] - Siqi Chen, Jie Fan, Ping Xie, Jihae Ahn, Michelle Fernandez, Leah K Billingham, Jason Miska, Jennifer D Wu, Derek A Wainwright, Deyu Fang, Jeffrey A Sosman, Yong Wan, Yi Zhang, Navdeep S Chandel, Bin Zhang. CD8+ T cells sustain antitumor response by mediating crosstalk between adenosine A2A receptor and glutathione/GPX4.
The Journal of clinical investigation.
2024 Mar; 134(8):. doi:
10.1172/jci170071
. [PMID: 38441967] - Ray Singh Rathore, Manjari Mishra, Ashwani Pareek, Sneh Lata Singla-Pareek. A glutathione-independent DJ-1/Pfp1 domain containing glyoxalase III, OsDJ-1C, functions in abiotic stress adaptation in rice.
Planta.
2024 Mar; 259(4):81. doi:
10.1007/s00425-023-04315-9
. [PMID: 38438662] - Ariane Coelho Ferraz, Marília Bueno da Silva Menegatto, Rafaela Lameira Souza Lima, Oluwashola Samuel Ola-Olub, Daniela Caldeira Costa, José Carlos de Magalhães, Izabela Maurício Rezende, Angelle Desiree LaBeaud, Thomas P Monath, Pedro Augusto Alves, Andréa Teixeira de Carvalho, Olindo Assis Martins-Filho, Betânia P Drumond, Cintia Lopes de Brito Magalhães. Yellow fever virus infection in human hepatocyte cells triggers an imbalance in redox homeostasis with increased reactive oxygen species production, oxidative stress, and decreased antioxidant enzymes.
Free radical biology & medicine.
2024 03; 213(?):266-273. doi:
10.1016/j.freeradbiomed.2024.01.042
. [PMID: 38278309] - Mikel V Eceiza, Clara Jimenez-Martinez, Miriam Gil-Monreal, María Barco-Antoñanzas, Maria Font-Farre, Michiel Huybrechts, RenierA L van der Hoorn, Ann Cuypers, Mercedes Royuela, Ana Zabalza. Role of glutathione S-transferases in the mode of action of herbicides that inhibit amino acid synthesis in Amaranthus palmeri.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108506. doi:
10.1016/j.plaphy.2024.108506
. [PMID: 38461753] - Yue Xin, Xueqing Li, Kaixin Ping, Yannan Xiang, Mengxin Li, Xing Li, Haitao Yang, Jingquan Dong. Pesticide avermectin-induced hepatotoxicity and growth inhibition in carp: Ameliorative capacity and potential mechanisms of quercetin as a dietary additive.
Aquatic toxicology (Amsterdam, Netherlands).
2024 Mar; 268(?):106859. doi:
10.1016/j.aquatox.2024.106859
. [PMID: 38342007] - Yalei Cao, Zirun Jin, Yu Xi, Jianxing Cheng, Zishui Fang, Qiancheng Zhao, Jiaming Weng, Jun Zhu, Yanlin Tang, Zhe Zhang, Hui Jiang. Roles of ferroptosis in type 1 diabetes induced spermatogenic dysfunction.
Free radical biology & medicine.
2024 Mar; 214(?):193-205. doi:
10.1016/j.freeradbiomed.2024.02.006
. [PMID: 38369075] - Yuanyuan Liu, Erya Xu, Yijun Fan, Linlong Xu, Jie Ma, Xuebing Li, Hui Wang, Siyu He, Ting Li, Yujiao Qin, Jingtao Xiao, Aoxue Luo. Transcriptomics combined with physiological analysis provided new insights into the Zn enrichment capacity and tolerance mechanism of Dendrobium denneanum Kerr.
Plant science : an international journal of experimental plant biology.
2024 Mar; 340(?):111988. doi:
10.1016/j.plantsci.2024.111988
. [PMID: 38232820] - Sunjeet Kumar, Shihai Wang, Mengzhao Wang, Shah Zeb, Mohammad Nauman Khan, Yanli Chen, Guopeng Zhu, Zhixin Zhu. Enhancement of sweetpotato tolerance to chromium stress through melatonin and glutathione: Insights into photosynthetic efficiency, oxidative defense, and growth parameters.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108509. doi:
10.1016/j.plaphy.2024.108509
. [PMID: 38461751] - Amandeep Cheema, Neera Garg. Arbuscular mycorrhizae reduced arsenic induced oxidative stress by coordinating nutrient uptake and proline-glutathione levels in Cicer arietinum L. (chickpea).
Ecotoxicology (London, England).
2024 Mar; 33(2):205-225. doi:
10.1007/s10646-024-02739-x
. [PMID: 38409625] - Diem-Kieu Nguyen, Tri-Phuong Nguyen, Yi-Rong Li, Masaru Ohme-Takagi, Zin-Huang Liu, Thach-Thao Ly, Van-Anh Nguyen, Ngoc-Nam Trinh, Hao-Jen Huang. Comparative study of two indoor microbial volatile pollutants, 2-Methyl-1-butanol and 3-Methyl-1-butanol, on growth and antioxidant system of rice (Oryza sativa) seedlings.
Ecotoxicology and environmental safety.
2024 Mar; 272(?):116055. doi:
10.1016/j.ecoenv.2024.116055
. [PMID: 38340597] - Hao-Lan Yang, Jia-Min Yu, Fu Cao, Wu-Ye Li, Bin Li, Xiao Lei, Shi-Guang Li, Su Liu, Mao-Ye Li. Unclassified glutathione-S-transferase AiGSTu1 confers chlorantraniliprole tolerance in Agrotis ipsilon.
Pest management science.
2024 Mar; 80(3):1107-1117. doi:
10.1002/ps.7841
. [PMID: 37862262] - Ruijiao Lin, Zijie Jia, Hongbing Chen, Hongli Xiong, Cunhao Bian, Xin He, Bi Wei, Junfeng Fu, Minzhu Zhao, Jianbo Li. Ferrostatin‑1 alleviates liver injury via decreasing ferroptosis following ricin toxin poisoning in rat.
Toxicology.
2024 Mar; 503(?):153767. doi:
10.1016/j.tox.2024.153767
. [PMID: 38437911] - Fevzi Elbasan, Busra Arikan, Ceyda Ozfidan-Konakci, Aysenur Tofan, Evren Yildiztugay. Hesperidin and chlorogenic acid mitigate arsenic-induced oxidative stress via redox regulation, photosystems-related gene expression, and antioxidant efficiency in the chloroplasts of Zea mays.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108445. doi:
10.1016/j.plaphy.2024.108445
. [PMID: 38402801] - Ana Vuković Popović, Ivna Štolfa Čamagajevac, Rosemary Vuković, Magdalena Matić, Mirna Velki, Dharmendra K Gupta, Vlatko Galić, Zdenko Lončarić. Biochemical and molecular responses of the ascorbate-glutathione cycle in wheat seedlings exposed to different forms of selenium.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108460. doi:
10.1016/j.plaphy.2024.108460
. [PMID: 38447422]