Fucoxanthin (BioDeep_00000000052)
Secondary id: BioDeep_00000405829
human metabolite PANOMIX_OTCML-2023 Endogenous Marine Natural Products Antitumor activity Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C42H58O6 (658.4233168)
中文名称: 岩藻黄质, 褐藻素, 墨角藻黄素
谱图信息:
最多检出来源 Macaca mulatta(otcml) 0.12%
Last reviewed on 2024-11-06.
Cite this Page
Fucoxanthin. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/fucoxanthin (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000000052). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C/C(=C\C=C\C=C(/C)\C=C\C=C(/C)\C(=O)C[C@]12C(C)(C)C[C@@H](C[C@@]1(C)O2)O)/C=C/C=C(\C)/C=C=C1C(C)(C)C[C@@H](C[C@@]1(C)O)OC(=O)C
InChI: InChI=1S/C42H58O6/c1-29(18-14-19-31(3)22-23-37-38(6,7)26-35(47-33(5)43)27-40(37,10)46)16-12-13-17-30(2)20-15-21-32(4)36(45)28-42-39(8,9)24-34(44)25-41(42,11)48-42/h12-22,34-35,44,46H,24-28H2,1-11H3/b13-12+,18-14+,20-15+,29-16+,30-17+,31-19+,32-21+
描述信息
Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes.
Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available.
Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB]
Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia.
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9].
Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.
Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9].
Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
同义名列表
41 个代谢物同义名
InChI=1/C42H58O6/c1-29(18-14-19-31(3)22-23-37-38(6,7)26-35(47-33(5)43)27-40(37,10)46)16-12-13-17-30(2)20-15-21-32(4)36(45)28-42-39(8,9)24-34(44)25-41(42,11)48-42/h12-22,34-35,44,46H,24-28H2,1-11H3/b13-12+,18-14+,20-15+,29-16+,30-17+,31-19+,32-21+/t23?,34-; (1S,3R)-3-hydroxy-4-((3E,5E,7E,9E,11E,13E,15E)-18-((1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate; (1S,3R)-3-hydroxy-4-((3E,5E,7E,9E,11E,13E,15E)-18-((1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl)-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaenylidene)-3,5,5-trimethylcyclohexyl acetate; 3-Hydroxy-4-[(3E,5E,7E,9E,11E,13E,15E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetic acid; 3-hydroxy-4-[(3E,5E,7E,9E,11E,13E,15E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate; [3-hydroxy-4-[(3E,5E,7E,9E,11E,13E,15E)-18-(3-hydroxy-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-6-yl)-3,7,12,16-tetramethyl-17-oxooctadeca-1,3,5,7,9,11,13,15-octaenylidene]-3,5,5-trimethylcyclohexyl] acetate; beta,beta-Carotene, 3-(acetyloxy)-6,7-didehydro-5,6-epoxy-5,5,6,6,7,8-hexahydro-3,5-dihydroxy-8-oxo-, (3S,3S,5R,5R,6S,6R)-; (3S,3S,5R,5R,6S,6R,8R)-3,5-dihydroxy-8-oxo-6,7-didehydro-5,5,6,6,7,8-hexahydro-5,6-epoxy-beta,beta-caroten-3-yl acetate; (3S,3S,5R,5R,6S,6R)-3-(acetyloxy)-6,7-didehydro-5,6-epoxy-5,5,6,6,7,8-hexahydro-3,5-dihydroxy-8-oxo-beta,beta-carotene; (3S,5R,6S,3S,5R,6R)-3,5-dihydroxy-8-oxo-6,7-didehydro-5,6-epoxy-5,6,7,8,5,6-hexahydro-beta,beta-caroten-3-yl acetate; .BETA.,.BETA.-CAROTEN-8(5H)-ONE, 6,7-DIDEHYDRO-5,6-EPOXY-4,5,6,7-TETRAHYDRO-3,3,5-TRIHYDROXY-, (3S,3S,5R,5R,6S,6R)-; (3S,3S,5R,5R,6S,6R)-6,7-DIDEHYDRO-5,6-EPOXY-4,5,6,7-TETRAHYDRO-3,3,5-TRIHYDROXY-.BETA.,.BETA.-CAROTEN-8(5H)-ONE; .alpha.-Carotene, 6,7-didehydro-5,6-epoxy-4,5,5,6,7,8-hexahydro-3,3,5-trihydroxy-8-oxo-, 3-acetate, all-trans-; (3S,3S,5R,5R,6S,6R,8R)-3,5-dihydroxy-8-oxo-6,7-didehydro-5,5,6,6,7,8-hexahydro-5,6-epoxy-beta,beta-caroten-3-; (3S,5R,6R)-3-acetoxy-5,6-epoxy-3,5-dihydroxy-6,7-didehydro-5,6,7,8,5,6-hexahydro-beta,beta-caroten-8-one; 3-acetate-(7CI)-6,7-didehydro-5,6-epoxy-4,5,5,6,7,8-hexahydro-3,3,5-trihydroxy-8-oxo-α-carotene; 3-Acetate-(7ci)-6,7-didehydro-5,6-epoxy-4,5,5,6,7,8-hexahydro-3,3,5-trihydroxy-8-oxo-alpha-carotene; .ALPHA.-CAROTENE, 6,7-DIDEHYDRO-5,6-EPOXY-4,5,5,6,7,8-HEXAHYDRO-3,3,5-TRIHYDROXY-8-OXO-, 3-ACETATE; 3-Acetate-(7ci)-6,7-didehydro-5,6-epoxy-4,5,5,6,7,8-hexahydro-3,3,5-trihydroxy-8-oxo-a-carotene; 6,7-DIDEHYDRO-5,6-EPOXY-4,5,5,6,7,8-HEXAHYDRO-3,3,5-TRIHYDROXY-8-OXO-.ALPHA.-CAROTENE 3-ACETATE; Fucoxanthin (from Wakame) (Brown Seaweed) (Undaria Pinnatifida); 5-18-04-00673 (Beilstein Handbook Reference); fucoxanthin, (3S,3S,5R,5R,6S,6R,cis)-isomer; all-trans-Fucoxanthinall-trans-Fucoxanthin; ALL-E-(3S,5R,6S,3S,5R,6R)-FUCOXANTHIN; Fucoxanthin, carotenoid antioxidant; Fucoxanthin, analytical standard; fucoxanthin, (6R,13-cis)-isomer; SJWWTRQNNRNTPU-ABBNZJFMSA-; fucoxanthin, (6S)-isomer; Fucoxanthin, all-trans-; all-trans-Fucoxanthin; FUCOXANTHIN [WHO-DD]; Fucoxanthine - 50\\%; FUCOXANTHIN [INCI]; FUCOXANTHIN [MI]; UNII-06O0TC0VSM; Fucoxanthol; Fucoxanthin; 06O0TC0VSM; Fucoxanthin
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:5186
- KEGG: C08596
- PubChem: 5281239
- HMDB: HMDB0002741
- Metlin: METLIN3685
- ChEMBL: CHEMBL1575074
- Wikipedia: Fucoxanthin
- MeSH: fucoxanthin
- ChemIDplus: 0003351868
- KNApSAcK: C00003773
- foodb: FDB023058
- chemspider: 4444651
- chemspider: 4516336
- CAS: 3351-86-8
- medchemexpress: HY-N2302
- PMhub: MS000008156
- LipidMAPS: LMPR01070300
- PDB-CCD: A86
- 3DMET: B05268
- NIKKAJI: J221.693K
- RefMet: Fucoxanthin
- PubChem: 10789
- KNApSAcK: 5186
- LOTUS: LTS0149370
- LOTUS: LTS0198604
- wikidata: Q104392152
- LOTUS: LTS0017856
分类词条
相关代谢途径
Reactome(0)
PlantCyc(0)
代谢反应
1 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- diadinoxanthin and fucoxanthin biosynthesis:
acetyl-CoA + fucoxanthinol ⟶ coenzyme A + fucoxanthin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
337 个相关的物种来源信息
- 55703 - Acanthochitona: LTS0149370
- 761903 - Acanthochitona defilippii: 10.1016/0305-0491(89)90393-3
- 761903 - Acanthochitona defilippii: LTS0149370
- 761904 - Acanthochitona rubrolineata: 10.1016/0305-0491(89)90393-3
- 6653 - Acanthochitonidae: LTS0149370
- 100775 - Aequipecten: LTS0149370
- 100776 - Aequipecten opercularis: 10.1016/S0021-9673(00)94508-4
- 100776 - Aequipecten opercularis: LTS0149370
- 201956 - Aplidium: LTS0149370
- 322837 - Aplidium pliciferum:
- 322837 - Aplidium pliciferum: 10.1016/0305-0491(85)90174-9
- 322837 - Aplidium pliciferum: 10.1021/NP50040A015
- 322837 - Aplidium pliciferum: LTS0149370
- 6498 - Aplysiidae: LTS0149370
- 6656 - Arthropoda: LTS0149370
- 30275 - Ascidia: LTS0149370
- 107392 - Ascidia zara: 10.1016/0305-0491(85)90174-9
- 107392 - Ascidia zara: LTS0149370
- 7713 - Ascidiacea: LTS0017856
- 7713 - Ascidiacea: LTS0149370
- 30274 - Ascidiidae: LTS0149370
- 52968 - Ascophyllum: LTS0149370
- 52969 - Ascophyllum nodosum:
- 52969 - Ascophyllum nodosum: 10.1016/0305-1978(94)90112-0
- 52969 - Ascophyllum nodosum: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 52969 - Ascophyllum nodosum: LTS0149370
- 33852 - Bacillariaceae: LTS0149370
- 33849 - Bacillariophyceae: LTS0149370
- 2836 - Bacillariophyta: LTS0149370
- 6544 - Bivalvia: LTS0017856
- 6544 - Bivalvia: LTS0149370
- 30300 - Botryllus: LTS0149370
- 30301 - Botryllus schlosseri: 10.1016/0305-0491(85)90174-9
- 30301 - Botryllus schlosseri: LTS0149370
- 66919 - Capsalidae: LTS0149370
- 658124 - Chattonellaceae: LTS0149370
- 39684 - Chitonidae: LTS0149370
- 6569 - Chlamys: LTS0149370
- 7711 - Chordata: LTS0017856
- 7711 - Chordata: LTS0149370
- 2997 - Chromulina: LTS0149370
- 1034828 - Chromulina ochromonoides: 10.1016/0305-0491(81)90110-3
- 1034828 - Chromulina ochromonoides: LTS0149370
- 98651 - Chromulinaceae: LTS0149370
- 2825 - Chrysophyceae: LTS0017856
- 2825 - Chrysophyceae: LTS0149370
- 13221 - Chrysotila carterae: 10.1016/0305-1978(77)90034-5
- 7718 - Ciona: LTS0149370
- 7719 - Ciona intestinalis: 10.1016/0305-0491(85)90174-9
- 7719 - Ciona intestinalis: LTS0149370
- 7717 - Cionidae: LTS0149370
- 74469 - Cladostephaceae: LTS0149370
- 74470 - Cladostephus: LTS0149370
- 2661694 - Cladostephus spongiosus: LTS0149370
- 35169 - Corallina: LTS0017856
- 35169 - Corallina: LTS0149370
- 35170 - Corallina officinalis: 10.1016/S0031-9422(00)98236-0
- 35170 - Corallina officinalis: LTS0017856
- 35170 - Corallina officinalis: LTS0149370
- 31396 - Corallinaceae: LTS0017856
- 31396 - Corallinaceae: LTS0149370
- 45948 - Corbicula: 10.1021/JF058088T
- 45948 - Corbicula: LTS0017856
- 45948 - Corbicula: LTS0149370
- 141464 - Corbicula japonica:
- 141464 - Corbicula japonica: 10.1021/JF058088T
- 141464 - Corbicula japonica: 10.1021/NP058053N
- 141464 - Corbicula japonica: LTS0017856
- 141464 - Corbicula japonica: LTS0149370
- 141465 - Corbicula sandai: 10.1021/JF058088T
- 141465 - Corbicula sandai: LTS0149370
- 33836 - Coscinodiscophyceae: LTS0149370
- 6564 - Crassostrea: LTS0017856
- 6564 - Crassostrea: LTS0149370
- 29159 - Crassostrea gigas: 10.1021/NP000476W
- 29159 - Crassostrea gigas: LTS0017856
- 29159 - Crassostrea gigas: LTS0149370
- 6654 - Cryptochiton: LTS0149370
- 6655 - Cryptochiton stelleri: 10.1016/0305-0491(89)90393-3
- 6655 - Cryptochiton stelleri: LTS0149370
- 1176409 - Cyrenidae: LTS0017856
- 1176409 - Cyrenidae: LTS0149370
- 31412 - Cystocloniaceae: LTS0017856
- 31412 - Cystocloniaceae: LTS0149370
- 257570 - Cystoclonium: LTS0017856
- 257570 - Cystoclonium: LTS0149370
- 257571 - Cystoclonium purpureum: 10.1016/S0031-9422(00)85526-0
- 257571 - Cystoclonium purpureum: LTS0017856
- 257571 - Cystoclonium purpureum: LTS0149370
- 590725 - Cystoseira barbata: 10.1016/J.FCT.2017.04.001
- 6042 - Demospongiae: LTS0149370
- 31339 - Desmarestia: LTS0017856
- 31339 - Desmarestia: LTS0149370
- 62298 - Desmarestia aculeata: 10.1016/S0031-9422(00)83559-1
- 62298 - Desmarestia aculeata: LTS0017856
- 62298 - Desmarestia aculeata: LTS0149370
- 31338 - Desmarestiaceae: LTS0017856
- 31338 - Desmarestiaceae: LTS0149370
- 70451 - Diacronema: LTS0149370
- 2081491 - Diacronema lutheri: 10.1016/0305-1978(77)90034-5
- 2081491 - Diacronema lutheri: LTS0149370
- 39119 - Dictyochophyceae: LTS0017856
- 39119 - Dictyochophyceae: LTS0149370
- 2875 - Dictyota:
- 2875 - Dictyota: 10.1021/NP900102F
- 2875 - Dictyota: 10.1080/10286020701189203
- 2875 - Dictyota: LTS0149370
- 2874 - Dictyotaceae: LTS0017856
- 2874 - Dictyotaceae: LTS0149370
- 107393 - Didemnidae: LTS0149370
- 107394 - Didemnum: LTS0149370
- 6510 - Dolabella: LTS0149370
- 6511 - Dolabella auricularia: 10.2331/SUISAN.57.277
- 6511 - Dolabella auricularia: LTS0149370
- 7586 - Echinodermata: LTS0149370
- 7625 - Echinoidea: 10.1039/J39690001264
- 7625 - Echinoidea: LTS0149370
- 1982659 - Ellisolandia: LTS0017856
- 1982659 - Ellisolandia: LTS0149370
- 48944 - Ellisolandia elongata: 10.1016/S0031-9422(00)98236-0
- 48944 - Ellisolandia elongata: LTS0017856
- 48944 - Ellisolandia elongata: LTS0149370
- 2759 - Eukaryota: LTS0017856
- 2759 - Eukaryota: LTS0149370
- 94616 - Fibrocapsa: LTS0149370
- 94617 - Fibrocapsa japonica: 10.1016/0305-0491(84)90181-0
- 94617 - Fibrocapsa japonica: LTS0149370
- 2806 - Florideophyceae: LTS0017856
- 2806 - Florideophyceae: LTS0149370
- 33853 - Fragilariophyceae: LTS0149370
- 3010 - Fucaceae: LTS0149370
- 3011 - Fucus: LTS0149370
- 87148 - Fucus serratus:
- 87148 - Fucus serratus: 10.1016/0305-1978(94)90112-0
- 87148 - Fucus serratus: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 87148 - Fucus serratus: LTS0149370
- 49266 - Fucus vesiculosus:
- 49266 - Fucus vesiculosus: 10.1016/0305-1978(94)90112-0
- 49266 - Fucus vesiculosus: 10.1039/C19660000515
- 49266 - Fucus vesiculosus: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 49266 - Fucus vesiculosus: LTS0149370
- 87150 - Fucus virsoides: 10.1515/ZNB-1994-0923
- 87150 - Fucus virsoides: LTS0149370
- 6448 - Gastropoda: LTS0149370
- 469339 - Gelliodes: LTS0149370
- 1336858 - Gelliodes callista: 10.2331/SUISAN.53.1271
- 1336858 - Gelliodes callista: LTS0149370
- 210452 - Grammatophora: LTS0149370
- 210454 - Grammatophora oceanica: 10.1016/0305-1978(88)90067-1
- 210454 - Grammatophora oceanica: LTS0149370
- 1543679 - Grammatophoraceae: LTS0149370
- 7728 - Halocynthia: LTS0017856
- 7728 - Halocynthia: LTS0149370
- 7729 - Halocynthia roretzi:
- 7729 - Halocynthia roretzi: 10.1016/0305-0491(85)90174-9
- 7729 - Halocynthia roretzi: 10.1248/CPB.32.4309
- 7729 - Halocynthia roretzi: LTS0017856
- 7729 - Halocynthia roretzi: LTS0149370
- 2608109 - Haptista: LTS0149370
- 2830 - Haptophyta: LTS0149370
- 190922 - Hexabranchidae: LTS0149370
- 190923 - Hexabranchus: 10.2331/SUISAN.58.1549
- 190923 - Hexabranchus: LTS0149370
- 74478 - Himanthalia elongata: 10.1016/J.FOODRES.2016.09.023
- 9606 - Homo sapiens: -
- 418936 - Hymenomonas: LTS0149370
- 418951 - Isochrysidaceae: LTS0149370
- 37098 - Isochrysis: LTS0149370
- 37099 - Isochrysis galbana: 10.1016/0305-1978(77)90034-5
- 37099 - Isochrysis galbana: LTS0149370
- 31397 - Jania: 10.1016/S0031-9422(00)98236-0
- 31397 - Jania: LTS0149370
- 33637 - Laminaria: LTS0149370
- 80365 - Laminaria digitata:
- 80365 - Laminaria digitata: 10.1016/0305-1978(94)90112-0
- 80365 - Laminaria digitata: LTS0149370
- 33636 - Laminariaceae: LTS0149370
- 96855 - Ligia: LTS0149370
- 142080 - Ligia exotica: 10.1016/0305-0491(90)90313-I
- 142080 - Ligia exotica: LTS0149370
- 96854 - Ligiidae: LTS0149370
- 4677 - Liliaceae: LTS0149370
- 4447 - Liliopsida: LTS0149370
- 13598 - Liolophura: LTS0149370
- 13599 - Liolophura japonica: 10.1016/0305-0491(89)90393-3
- 13599 - Liolophura japonica: LTS0149370
- 147004 - Magallana: LTS0017856
- 147004 - Magallana: LTS0149370
- 2171618 - Magallana gigas: 10.1021/NP000476W
- 2171618 - Magallana gigas: LTS0017856
- 2171618 - Magallana gigas: LTS0149370
- 6681 - Malacostraca: LTS0149370
- 420617 - Mallomonadaceae: LTS0149370
- 589449 - Mediophyceae: LTS0149370
- 74490 - Meretrix: LTS0017856
- 74490 - Meretrix: LTS0149370
- 311198 - Meretrix petechialis: 10.1021/JF1006243
- 311198 - Meretrix petechialis: LTS0017856
- 311198 - Meretrix petechialis: LTS0149370
- 33208 - Metazoa: LTS0017856
- 33208 - Metazoa: LTS0149370
- 6447 - Mollusca: LTS0017856
- 6447 - Mollusca: LTS0149370
- 37945 - Monogenea: LTS0149370
- 34585 - Mopaliidae: LTS0149370
- 50949 - Navicula: LTS0149370
- 67474 - Naviculaceae: LTS0149370
- 178475 - Niphatidae: LTS0149370
- 2857 - Nitzschia: LTS0149370
- 651811 - Nitzschia: 10.1016/0305-1978(88)90067-1
- 88165 - Ochromonadaceae: LTS0149370
- 2985 - Ochromonas: 10.1016/0305-0491(81)90110-3
- 2985 - Ochromonas: LTS0149370
- 2696291 - Ochrophyta: LTS0017856
- 2696291 - Ochrophyta: LTS0149370
- 82999 - Olisthodiscus: LTS0149370
- 83000 - Olisthodiscus luteus: 10.1016/0305-0491(81)90110-3
- 83000 - Olisthodiscus luteus: LTS0149370
- 6563 - Ostreidae: LTS0017856
- 6563 - Ostreidae: LTS0149370
- 1259760 - Parlibellus delognei: 10.1021/NP50035A010
- 2831 - Pavlova: LTS0149370
- 418969 - Pavlovaceae: LTS0149370
- 6566 - Pectinidae: LTS0149370
- 35678 - Pelagococcus: LTS0017856
- 35678 - Pelagococcus: LTS0149370
- 35679 - Pelagococcus subviridis: 10.1016/0031-9422(89)80345-0
- 35679 - Pelagococcus subviridis: LTS0017856
- 35679 - Pelagococcus subviridis: LTS0149370
- 35675 - Pelagophyceae: LTS0017856
- 35675 - Pelagophyceae: LTS0149370
- 48071 - Pelvetia: LTS0149370
- 74467 - Pelvetia canaliculata:
- 74467 - Pelvetia canaliculata: 10.1016/0305-1978(94)90112-0
- 74467 - Pelvetia canaliculata: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 74467 - Pelvetia canaliculata: LTS0149370
- 418920 - Phaeocystaceae: LTS0149370
- 33656 - Phaeocystis:
- 33656 - Phaeocystis: 10.1016/0305-1978(77)90034-5
- 33656 - Phaeocystis: 10.1016/0305-1978(88)90042-7
- 33656 - Phaeocystis: LTS0149370
- 38749 - Phaeodactylaceae: LTS0149370
- 2849 - Phaeodactylum: LTS0149370
- 2850 - Phaeodactylum tricornutum: 10.1016/0305-1978(88)90067-1
- 2850 - Phaeodactylum tricornutum: LTS0149370
- 2870 - Phaeophyceae: LTS0017856
- 2870 - Phaeophyceae: LTS0149370
- 291908 - Placiphorella: LTS0149370
- 2268599 - Placiphorella stimpsoni: 10.1016/0305-0491(89)90393-3
- 2268599 - Placiphorella stimpsoni: LTS0149370
- 33090 - Plants: -
- 6157 - Platyhelminthes: LTS0149370
- 286202 - Polycitor: LTS0149370
- 260822 - Polycitoridae: LTS0149370
- 201955 - Polyclinidae: LTS0149370
- 6650 - Polyplacophora: LTS0149370
- 6040 - Porifera: LTS0149370
- 88166 - Poterioochromonas: LTS0149370
- 88167 - Poterioochromonas malhamensis: 10.1016/0305-0491(81)90110-3
- 88167 - Poterioochromonas malhamensis: LTS0149370
- 418967 - Prymnesiaceae: LTS0149370
- 2608131 - Prymnesiophyceae: LTS0149370
- 35143 - Prymnesium: LTS0149370
- 97485 - Prymnesium parvum: 10.1016/0305-1978(77)90034-5
- 97485 - Prymnesium parvum: LTS0149370
- 41953 - Pseudo-nitzschia: LTS0149370
- 183589 - Pseudo-nitzschia multistriata: 10.3390/MD18060313
- 183589 - Pseudo-nitzschia multistriata: LTS0149370
- 7727 - Pyuridae: LTS0017856
- 7727 - Pyuridae: LTS0149370
- 38410 - Raphidophyceae: LTS0149370
- 2763 - Rhodophyta: LTS0017856
- 2763 - Rhodophyta: LTS0149370
- 309357 - Saccharina: LTS0149370
- 88149 - Saccharina japonica: 10.3390/MD15020039
- 309358 - Saccharina latissima:
- 309358 - Saccharina latissima: 10.1016/0305-1978(94)90112-0
- 309358 - Saccharina latissima: 10.3891/ACTA.CHEM.SCAND.28B-0485
- 309358 - Saccharina latissima: LTS0149370
- 1649285 - Sarcinochrysidaceae: LTS0149370
- 54406 - Sarcinochrysis: LTS0149370
- 54407 - Sarcinochrysis marina: 10.1016/0305-0491(81)90110-3
- 54407 - Sarcinochrysis marina: LTS0149370
- 3014 - Sargassaceae: LTS0149370
- 3015 - Sargassum: 10.4103/0974-8490.85000
- 3015 - Sargassum: LTS0149370
- 590727 - Sargassum fusiforme: 10.1271/BBB.63.605
- 1500693 - Sargassum incisifolium: 10.1515/ZNC-2008-11-1211
- 127572 - Sargassum siliquastrum: 10.1016/J.JPHOTOBIOL.2008.11.011
- 2842 - Skeletonema: LTS0149370
- 2843 - Skeletonema costatum: 10.1016/0305-1978(88)90067-1
- 2843 - Skeletonema costatum: LTS0149370
- 216823 - Skeletonema menzelii: 10.1016/0305-1978(88)90067-1
- 216823 - Skeletonema menzelii: LTS0149370
- 33848 - Skeletonemataceae: LTS0149370
- 105417 - Sporochnaceae: LTS0017856
- 105417 - Sporochnaceae: LTS0149370
- 45366 - Sporochnus: LTS0017856
- 45366 - Sporochnus: LTS0149370
- 45367 - Sporochnus comosus: 10.1021/NP1008009
- 45367 - Sporochnus comosus: LTS0017856
- 45367 - Sporochnus comosus: LTS0149370
- 210450 - Striatellaceae: LTS0149370
- 7724 - Styela: LTS0149370
- 7725 - Styela clava: 10.1016/0305-0491(85)90174-9
- 7725 - Styela clava: LTS0149370
- 7726 - Styela plicata: 10.1016/0305-0491(85)90174-9
- 7726 - Styela plicata: LTS0149370
- 7721 - Styelidae: LTS0149370
- 200427 - Stypopodium: LTS0017856
- 200427 - Stypopodium: LTS0149370
- 381694 - Stypopodium flabelliforme: 10.1021/NP050051F
- 381694 - Stypopodium flabelliforme: LTS0017856
- 381694 - Stypopodium flabelliforme: LTS0149370
- 2991 - Synura: LTS0149370
- 52555 - Synura petersenii: 10.1016/0305-0491(81)90110-3
- 52555 - Synura petersenii: LTS0149370
- 33859 - Synurophyceae: LTS0149370
- 418932 - Syracosphaeraceae: LTS0149370
- 35127 - Thalassiosira: LTS0149370
- 49261 - Thalassiosira eccentrica: 10.1016/0305-1978(88)90067-1
- 49261 - Thalassiosira eccentrica: LTS0149370
- 420259 - Thalassiosira gravida: 10.1016/0305-1978(88)90067-1
- 159749 - Thalassiosira oceanica: 10.1016/0305-1978(88)90067-1
- 159749 - Thalassiosira oceanica: LTS0149370
- 35128 - Thalassiosira pseudonana: 10.1016/0305-1978(88)90067-1
- 35128 - Thalassiosira pseudonana: LTS0149370
- 49265 - Thalassiosira rotula: 10.1016/0305-1978(88)90067-1
- 49265 - Thalassiosira rotula: LTS0149370
- 29202 - Thalassiosiraceae: LTS0149370
- 58023 - Tracheophyta: LTS0149370
- 74381 - Undaria pinnatifida: 10.1016/J.FOODCHEM.2016.05.064
- 6592 - Veneridae: LTS0017856
- 6592 - Veneridae: LTS0149370
- 2833 - Xanthophyceae: LTS0149370
- 29655 - Zostera marina: -
- 33090 - 昆布: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Huiying Kuang, Xuan Peng, Yixiang Liu, Dan Li. The pro-absorptive effect of glycosylated zein-fatty acid complexes on fucoxanthin via the lipid transporter protein delivery pathway.
Food chemistry.
2024 Jul; 446(?):138892. doi:
10.1016/j.foodchem.2024.138892
. [PMID: 38432136] - Xueying Tian, Jiaxuan Li, Kuiyou Wang, Siyuan Fei, Xiumin Zhang, Caiyun Wu, Mingqian Tan, Wentao Su. Microfluidic fabrication of core-shell fucoxanthin nanofibers with improved environmental stability for reducing lipid accumulation in vitro.
Food chemistry.
2024 Jun; 442(?):138474. doi:
10.1016/j.foodchem.2024.138474
. [PMID: 38245982] - Shouxing Yang, Jinhai Li, Liping Yan, Yu Wu, Lin Zhang, Boyang Li, Haibin Tong, Xiaochun Lin. Molecular Mechanisms of Fucoxanthin in Alleviating Lipid Deposition in Metabolic Associated Fatty Liver Disease.
Journal of agricultural and food chemistry.
2024 May; 72(18):10391-10405. doi:
10.1021/acs.jafc.4c00590
. [PMID: 38669300] - Bingbing Guo, Weihao Zhang, Yonghui Zhou, Jingyi Zhang, Chengchu Zeng, Peipei Sun, Bin Liu. Fucoxanthin restructures the gut microbiota and metabolic functions of non-obese individuals in an in vitro fermentation model.
Food & function.
2024 May; 15(9):4805-4817. doi:
10.1039/d3fo05671f
. [PMID: 38563411] - Broderick Dickerson, Jonathan Maury, Victoria Jenkins, Kay Nottingham, Dante Xing, Drew E Gonzalez, Megan Leonard, Jacob Kendra, Joungbo Ko, Choongsung Yoo, Sarah Johnson, Rémi Pradelles, Martin Purpura, Ralf Jäger, Ryan Sowinski, Christopher J Rasmussen, Richard B Kreider. Effects of Supplementation with Microalgae Extract from Phaeodactylum tricornutum (Mi136) to Support Benefits from a Weight Management Intervention in Overweight Women.
Nutrients.
2024 Mar; 16(7):. doi:
10.3390/nu16070990
. [PMID: 38613023] - Caiyun Wu, Siyuan Xiang, Haitao Wang, Xiumin Zhang, Xueying Tian, Mingqian Tan, Wentao Su. Orally Deliverable Sequence-Targeted Fucoxanthin-Loaded Biomimetic Extracellular Vesicles for Alleviation of Nonalcoholic Fatty Liver Disease.
ACS applied materials & interfaces.
2024 Feb; 16(8):9854-9867. doi:
10.1021/acsami.3c18029
. [PMID: 38375789] - Milad Amerifar, Hesamoddin Arabnozari, Mohammad Shokrzadeh, Emran Habibi. Evaluation of antioxidant properties and cytotoxicity of brown algae (nizamuddinia zanardinii) in uterine (hela) and pancreatic cancer cell lines (paca-2).
Human & experimental toxicology.
2024 Jan; 43(?):9603271241227228. doi:
10.1177/09603271241227228
. [PMID: 38238028] - Jing Yan, Zehua Li, Yu Liang, Chaobo Yang, Wen Ou, Huaqiang Mo, Min Tang, Deshu Chen, Chongbin Zhong, Dongdong Que, Liyun Feng, Hua Xiao, Xudong Song, Pingzhen Yang. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway.
Food & function.
2023 Nov; 14(22):10052-10068. doi:
10.1039/d3fo02633g
. [PMID: 37861458] - Ying Bai, Yihan Sun, Xiang Li, Jiaying Ren, Chenghang Sun, Xing Chen, Xiuping Dong, Hang Qi. Phycocyanin/lysozyme nanocomplexes to stabilize Pickering emulsions for fucoxanthin encapsulation.
Food research international (Ottawa, Ont.).
2023 11; 173(Pt 2):113386. doi:
10.1016/j.foodres.2023.113386
. [PMID: 37803725] - Junyu Hao, Jinxuan Zhang, Tao Wu. Fucoxanthin extract ameliorates obesity associated with modulation of bile acid metabolism and gut microbiota in high-fat-diet fed mice.
European journal of nutrition.
2023 Oct; ?(?):. doi:
10.1007/s00394-023-03256-z
. [PMID: 37831134] - Vanessa Fernandes, Bangera Sheshappa Mamatha. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability.
Current nutrition reports.
2023 Aug; ?(?):. doi:
10.1007/s13668-023-00492-x
. [PMID: 37642932] - Ching Chan. Brown is the new green: Discovery of an algal enzyme for the final step of fucoxanthin biosynthesis.
The Plant cell.
2023 Aug; 35(8):2716-2717. doi:
10.1093/plcell/koad138
. [PMID: 37195870] - Jia Wang, Xue Dong, Dandan Li, Zhiyao Fang, Xianyao Wan, Jing Liu. Fucoxanthin inhibits gastric cancer lymphangiogenesis and metastasis by regulating Ran expression.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jun; 118(?):154926. doi:
10.1016/j.phymed.2023.154926
. [PMID: 37392675] - Jianquan Song, Hejing Zhao, Linxin Zhang, Zheng Li, Jichang Han, Chengxu Zhou, Jilin Xu, Xiaohui Li, Xiaojun Yan. The Heat Shock Transcription Factor PtHSF1 Mediates Triacylglycerol and Fucoxanthin Synthesis by Regulating the Expression of GPAT3 and DXS in Phaeodactylum tricornutum.
Plant & cell physiology.
2023 Jun; 64(6):622-636. doi:
10.1093/pcp/pcad023
. [PMID: 36947404] - Adrián Macías-de la Rosa, Miguel Ángel González-Cardoso, María Del Carmen Cerón-García, Lorenzo López-Rosales, Juan José Gallardo-Rodríguez, Sergio Seoane, Asterio Sánchez-Mirón, Francisco García-Camacho. Bioactives Overproduction through Operational Strategies in the Ichthyotoxic Microalga Heterosigma akashiwo Culture.
Toxins.
2023 05; 15(5):. doi:
10.3390/toxins15050349
. [PMID: 37235383] - Jessica Winarto, Dae-Geun Song, Cheol-Ho Pan. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease.
International journal of molecular sciences.
2023 May; 24(9):. doi:
10.3390/ijms24098203
. [PMID: 37175909] - Najmeh Oliyaei, Nader Tanideh, Marzieh Moosavi-Nasab, Amir Reza Dehghanian, Aida Iraji. Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model.
International journal of biological macromolecules.
2023 Apr; 235(?):123867. doi:
10.1016/j.ijbiomac.2023.123867
. [PMID: 36870664] - Tianjun Cao, Yu Bai, Paul Buschbeck, Qiaozhu Tan, Michael B Cantrell, Yinjuan Chen, Yanyou Jiang, Run-Zhou Liu, Nana K Ries, Xiaohuo Shi, Yan Sun, Maxwell A Ware, Fenghua Yang, Huan Zhang, Jichang Han, Lihan Zhang, Jing Huang, Martin Lohr, Graham Peers, Xiaobo Li. An unexpected hydratase synthesizes the green light--absorbing pigment fucoxanthin.
The Plant cell.
2023 Apr; ?(?):. doi:
10.1093/plcell/koad116
. [PMID: 37100425] - Nor Hafiza Sayuti, Khairul Najmi Muhammad Nawawi, Jo Aan Goon, Norfilza Mohd Mokhtar, Suzana Makpol, Jen Kit Tan. A Review of the Effects of Fucoxanthin on NAFLD.
Nutrients.
2023 Apr; 15(8):. doi:
10.3390/nu15081954
. [PMID: 37111187] - Luana Calabrone, Valentina Carlini, Douglas M Noonan, Marco Festa, Cinzia Ferrario, Danilo Morelli, Debora Macis, Angelo Fontana, Luigi Pistelli, Christophe Brunet, Clementina Sansone, Adriana Albini. Skeletonema marinoi Extracts and Associated Carotenoid Fucoxanthin Downregulate Pro-Angiogenic Mediators on Prostate Cancer and Endothelial Cells.
Cells.
2023 03; 12(7):. doi:
10.3390/cells12071053
. [PMID: 37048126] - Yongkai Yuan, Mengjie Ma, Shuaizhong Zhang. Recent advances in delivery systems of fucoxanthin.
Food chemistry.
2023 Mar; 404(Pt B):134685. doi:
10.1016/j.foodchem.2022.134685
. [PMID: 36279786] - Yuxin Wang, Jia Wang, Ziqiang Gu, Shufang Yang, Yongjin He, Haijin Mou, Han Sun. Altering autotrophic carbon metabolism of Nitzschia closterium to mixotrophic mode for high-value product improvement.
Bioresource technology.
2023 Mar; 371(?):128596. doi:
10.1016/j.biortech.2023.128596
. [PMID: 36638896] - Agustina Dwi Retno Nurcahyanti, Natasha Satriawan, Farukh Sharopov. Free radical scavenging synergism of fucoxanthin with lipophilic plant products.
Natural product research.
2023 Mar; 37(5):782-787. doi:
10.1080/14786419.2022.2084737
. [PMID: 36796788] - Yunling Wang, Jinyue Yang, Yuming Wang, Yaoguang Chang, Changhu Xue, Tiantian Zhang. Preparation and properties of fucoxanthin-loaded liposomes stabilized by sea cucumber derived cholesterol sulfate instead of cholesterol.
Journal of bioscience and bioengineering.
2023 Feb; 135(2):160-166. doi:
10.1016/j.jbiosc.2022.11.004
. [PMID: 36494249] - Reimund Goss, Daniela Volke, Lina Emilia Werner, Ronja Kunz, Marcel Kansy, Ralf Hoffmann, Christian Wilhelm. Isolation of fucoxanthin chlorophyll protein complexes of the centric diatom Thalassiosira pseudonana associated with the xanthophyll cycle enzyme diadinoxanthin de-epoxidase.
IUBMB life.
2023 Jan; 75(1):66-76. doi:
10.1002/iub.2650
. [PMID: 35557488] - David Fierli, Maria Elena Barone, Valeria Graceffa, Nicolas Touzet. Cold stress combined with salt or abscisic acid supplementation enhances lipogenesis and carotenogenesis in Phaeodactylum tricornutum (Bacillariophyceae).
Bioprocess and biosystems engineering.
2022 Dec; 45(12):1967-1977. doi:
10.1007/s00449-022-02800-1
. [PMID: 36264371] - Xi Qiang, Chuanlong Guo, Wenhui Gu, Yuling Song, Yuhong Zhang, Xiangzhong Gong, Lijun Wang, Guangce Wang. The Complex of Phycobiliproteins, Fucoxanthin, and Krill Oil Ameliorates Obesity through Modulation of Lipid Metabolism and Antioxidants in Obese Rats.
Nutrients.
2022 Nov; 14(22):. doi:
10.3390/nu14224815
. [PMID: 36432501] - Alessandro Agostini, David Bína, Donatella Carbonera, Radek Litvín. Conservation of triplet-triplet energy transfer photoprotective pathways in fucoxanthin chlorophyll-binding proteins across algal lineages.
Biochimica et biophysica acta. Bioenergetics.
2022 Nov; 1864(2):148935. doi:
10.1016/j.bbabio.2022.148935
. [PMID: 36379269] - Dongxiao Zheng, Linlin Chen, Guoping Li, Lin Jin, Qihui Wei, Zilue Liu, Guanyu Yang, Yuanyuan Li, Xi Xie. Fucoxanthin ameliorated myocardial fibrosis in STZ-induced diabetic rats and cell hypertrophy in HG-induced H9c2 cells by alleviating oxidative stress and restoring mitophagy.
Food & function.
2022 Sep; 13(18):9559-9575. doi:
10.1039/d2fo01761j
. [PMID: 35997158] - Duo Chen, Xue Yuan, XueHai Zheng, Jingping Fang, Gang Lin, Rongmao Li, Jiannan Chen, Wenjin He, Zhen Huang, Wenfang Fan, Limin Liang, Chentao Lin, Jinmao Zhu, Youqiang Chen, Ting Xue. Multi-omics analyses provide insight into the biosynthesis pathways of fucoxanthin in Isochrysis galbana.
Genomics, proteomics & bioinformatics.
2022 Aug; ?(?):. doi:
10.1016/j.gpb.2022.05.010
. [PMID: 35970320] - Donghui Li, Yunjun Liu, Yu Ma, Yixiang Liu, Shengnan Wang, Zixin Guo, Jie Li, Yanbo Wang, Bin Tan, Ying Wei. Fabricating hydrophilic fatty acid-protein particles to encapsulate fucoxanthin: Fatty acid screening, structural characterization, and thermal stability analysis.
Food chemistry.
2022 Jul; 382(?):132311. doi:
10.1016/j.foodchem.2022.132311
. [PMID: 35149467] - Erkan Dalbaşı, Abidin Tüzün, Neval Berrin Arserim, Filiz Özcan, Elif Doğan, Alpay Çetin. Preventive effect of fucoxanthin administration on intra-abdominal adhesion: An experimental animal study.
Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery : TJTES.
2022 Jun; 28(6):743-750. doi:
10.14744/tjtes.2021.04134
. [PMID: 35652863] - Tsz-Ying Lau, Hiu-Yee Kwan. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer.
Marine drugs.
2022 May; 20(6):. doi:
10.3390/md20060370
. [PMID: 35736173] - Mi-Bo Kim, Minkyung Bae, Yoojin Lee, Hyunju Kang, Siqi Hu, Tho X Pham, Young-Ki Park, Ji-Young Lee. Consumption of Low Dose Fucoxanthin Does Not Prevent Hepatic and Adipose Inflammation and Fibrosis in Mouse Models of Diet-Induced Obesity.
Nutrients.
2022 May; 14(11):. doi:
10.3390/nu14112280
. [PMID: 35684079] - Md Mohibbullah, Md Nazmul Haque, Abdullah Al Mamun Sohag, Md Tahmeed Hossain, Md Sarwar Zahan, Md Jamal Uddin, Md Abdul Hannan, Il Soo Moon, Jae-Suk Choi. A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights.
Marine drugs.
2022 Apr; 20(5):. doi:
10.3390/md20050279
. [PMID: 35621930] - Yaxin Chen, Niaoniao He, Ting Yang, Shuyun Cai, Yi Zhang, Jinjing Lin, Mingqing Huang, Weizhu Chen, Yiping Zhang, Zhuan Hong. Fucoxanthin Loaded in Palm Stearin- and Cholesterol-Based Solid Lipid Nanoparticle-Microcapsules, with Improved Stability and Bioavailability In Vivo.
Marine drugs.
2022 Mar; 20(4):. doi:
10.3390/md20040237
. [PMID: 35447909] - Jiena Ye, Jiawen Zheng, Xiaoxiao Tian, Baogui Xu, Falei Yuan, Bin Wang, Zuisu Yang, Fangfang Huang. Fucoxanthin Attenuates Free Fatty Acid-Induced Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism/Oxidative Stress/Inflammation via the AMPK/Nrf2/TLR4 Signaling Pathway.
Marine drugs.
2022 Mar; 20(4):. doi:
10.3390/md20040225
. [PMID: 35447899] - Yixin Shi, Jiaying Ren, Baomin Zhao, Taihai Zhu, Hang Qi. Photoprotective Mechanism of Fucoxanthin in Ultraviolet B Irradiation-Induced Retinal Müller Cells Based on Lipidomics Analysis.
Journal of agricultural and food chemistry.
2022 Mar; 70(10):3181-3193. doi:
10.1021/acs.jafc.1c07980
. [PMID: 35199529] - Fengzheng Gao, Iago Teles Dominguez Cabanelas, René H Wijffels, Maria J Barbosa. Fucoxanthin and docosahexaenoic acid production by cold-adapted Tisochrysis lutea.
New biotechnology.
2022 Jan; 66(?):16-24. doi:
10.1016/j.nbt.2021.08.005
. [PMID: 34500104] - Zhi-Peng Wang, Pei-Kang Wang, Yan Ma, Jia-Xue Lin, Cheng-Long Wang, Yu-Xiang Zhao, Xin-Yue Zhang, Bei-Chen Huang, Shou-Geng Zhao, Lei Gao, Jing Jiang, Hai-Ying Wang, Wei Chen. Laminaria japonica hydrolysate promotes fucoxanthin accumulation in Phaeodactylum tricornutum.
Bioresource technology.
2022 Jan; 344(Pt A):126117. doi:
10.1016/j.biortech.2021.126117
. [PMID: 34653631] - Hu Mao, Lei Wang, Yufeng Xiong, Guanjun Jiang, Xiuheng Liu. Fucoxanthin Attenuates Oxidative Damage by Activating the Sirt1/Nrf2/HO-1 Signaling Pathway to Protect the Kidney from Ischemia-Reperfusion Injury.
Oxidative medicine and cellular longevity.
2022; 2022(?):7444430. doi:
10.1155/2022/7444430
. [PMID: 35126819] - Yunjun Liu, Zixin Guo, Shengnan Wang, Yixiang Liu, Ying Wei. Fucoxanthin Pretreatment Ameliorates Visible Light-Induced Phagocytosis Disruption of RPE Cells under a Lipid-Rich Environment via the Nrf2 Pathway.
Marine drugs.
2021 Dec; 20(1):. doi:
10.3390/md20010015
. [PMID: 35049870] - Guanyu Yang, Qingde Li, Jing Peng, Lin Jin, Xiaoyu Zhu, Dongxiao Zheng, Yingxia Zhang, Rong Wang, Yanting Song, Wenting Hu, Xi Xie. Fucoxanthin regulates Nrf2 signaling to decrease oxidative stress and improves renal fibrosis depending on Sirt1 in HG-induced GMCs and STZ-induced diabetic rats.
European journal of pharmacology.
2021 Dec; 913(?):174629. doi:
10.1016/j.ejphar.2021.174629
. [PMID: 34780751] - Haoyue Yang, Ronge Xing, Song Liu, Huahua Yu, Pengcheng Li. Role of Fucoxanthin towards Cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities.
Bioengineered.
2021 12; 12(1):7235-7247. doi:
10.1080/21655979.2021.1973875
. [PMID: 34569908] - Song Wang, Sha Wu, Guanpin Yang, Kehou Pan, Lulu Wang, Zhangli Hu. A review on the progress, challenges and prospects in commercializing microalgal fucoxanthin.
Biotechnology advances.
2021 12; 53(?):107865. doi:
10.1016/j.biotechadv.2021.107865
. [PMID: 34763051] - Rachel Parkes, Lorraine Archer, Dónal Mc Gee, Thomas J Smyth, Eoin Gillespie, Nicolas Touzet. Differential responses in EPA and fucoxanthin production by the marine diatom Stauroneis sp. under varying cultivation conditions.
Biotechnology progress.
2021 11; 37(6):e3197. doi:
10.1002/btpr.3197
. [PMID: 34337902] - Xuemei Mao, Mengdie Ge, Xia Wang, Jianfeng Yu, Xiaojie Li, Bin Liu, Feng Chen. Transcriptomics and Metabolomics Analyses Provide Novel Insights into Glucose-Induced Trophic Transition of the Marine Diatom Nitzschia laevis.
Marine drugs.
2021 Jul; 19(8):. doi:
10.3390/md19080426
. [PMID: 34436265] - Nermeen M El Bakary, Noura Magdy Thabet, Neama M El Fatih, Mohamed Khairy Abdel-Rafei, Ghada El Tawill, Khaled Shaaban Azab. Fucoxanthin alters the apelin-13/APJ pathway in certain organs of γ-irradiated mice.
Journal of radiation research.
2021 Jul; 62(4):600-617. doi:
10.1093/jrr/rraa141
. [PMID: 33929015] - Sung-Kun Yim, Inhee Kim, Boyd Warren, Jungwon Kim, Kyoojin Jung, Bosung Ku. Antiviral Activity of Two Marine Carotenoids against SARS-CoV-2 Virus Entry In Silico and In Vitro.
International journal of molecular sciences.
2021 Jun; 22(12):. doi:
10.3390/ijms22126481
. [PMID: 34204256] - Shu-Ju Wu, Chian-Jiun Liou, Ya-Ling Chen, Shu-Chen Cheng, Wen-Chung Huang. Fucoxanthin Ameliorates Oxidative Stress and Airway Inflammation in Tracheal Epithelial Cells and Asthmatic Mice.
Cells.
2021 05; 10(6):. doi:
10.3390/cells10061311
. [PMID: 34070405] - Maki Yoshikawa, Masashi Hosokawa, Kazuo Miyashita, Hoyoku Nishino, Takeshi Hashimoto. Effects of Fucoxanthin on the Inhibition of Dexamethasone-Induced Skeletal Muscle Loss in Mice.
Nutrients.
2021 Mar; 13(4):. doi:
10.3390/nu13041079
. [PMID: 33810214] - Rasika R Hudlikar, Davit Sargsyan, Wenji Li, Renyi Wu, Meinizi Zheng, Ah-Ng Kong. Epigenomic, Transcriptomic, and Protective Effect of Carotenoid Fucoxanthin in High Glucose-Induced Oxidative Stress in Mes13 Kidney Mesangial Cells.
Chemical research in toxicology.
2021 03; 34(3):713-722. doi:
10.1021/acs.chemrestox.0c00235
. [PMID: 33448797] - Ping-Hsiao Shih, Sheng-Jie Shiue, Chun-Nan Chen, Sheng-Wei Cheng, Hsin-Yi Lin, Li-Wei Wu, Ming-Shun Wu. Fucoidan and Fucoxanthin Attenuate Hepatic Steatosis and Inflammation of NAFLD through Modulation of Leptin/Adiponectin Axis.
Marine drugs.
2021 Mar; 19(3):. doi:
10.3390/md19030148
. [PMID: 33809062] - Masaru Terasaki, Osamu Uehara, Shinya Ogasa, Taishi Sano, Atsuhito Kubota, Hiroyuki Kojima, Takuji Tanaka, Hayato Maeda, Kazuo Miyashita, Michihiro Mutoh. Alteration of fecal microbiota by fucoxanthin results in prevention of colorectal cancer in AOM/DSS mice.
Carcinogenesis.
2021 02; 42(2):210-219. doi:
10.1093/carcin/bgaa100
. [PMID: 32940665] - Yen-Cheng Chen, Chung-Yi Cheng, Chung-Te Liu, Yuh-Mou Sue, Tso-Hsiao Chen, Yung-Ho Hsu, Nai-Jen Huang, Cheng-Hsien Chen. Combined protective effects of oligo-fucoidan, fucoxanthin, and L-carnitine on the kidneys of chronic kidney disease mice.
European journal of pharmacology.
2021 Feb; 892(?):173708. doi:
10.1016/j.ejphar.2020.173708
. [PMID: 33152336] - Jia Xiong Ming, Zhao Cong Wang, Yi Huang, Hifumi Ohishi, Rong Ji Wu, Yan Shao, Hui Wang, Ming Yang Qin, Ze Liang Wu, Yi Yong Li, Shun Chang Zhou, Hui Chen, Hui Liu, Rong Xu. Fucoxanthin extracted from Laminaria Japonica inhibits metastasis and enhances the sensitivity of lung cancer to Gefitinib.
Journal of ethnopharmacology.
2021 Jan; 265(?):113302. doi:
10.1016/j.jep.2020.113302
. [PMID: 32860893] - Li-Li Huang, Xiao-Qiang Huang, Xiao-Qin Zhang, Jian Liu, Yi-Ping Zhang, Hai-Yu Zhao, Ming-Qing Huang. [Effect of fucoxanthin on insulin resistance in obese mice induced by high fat diet].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2021 Jan; 46(1):171-176. doi:
10.19540/j.cnki.cjcmm.20200927.402
. [PMID: 33645067] - Xiang-Sheng Zhang, Yue Lu, Tao Tao, Han Wang, Guang-Jie Liu, Xun-Zhi Liu, Cang Liu, Da-Yong Xia, Chun-Hua Hang, Wei Li. Fucoxanthin Mitigates Subarachnoid Hemorrhage-Induced Oxidative Damage via Sirtuin 1-Dependent Pathway.
Molecular neurobiology.
2020 Dec; 57(12):5286-5298. doi:
10.1007/s12035-020-02095-x
. [PMID: 32876840] - Bernard Lepetit, Claudia Büchel. Comment on 'Acidic pH-Induced Modification of Energy Transfer in Diatom Fucoxanthin Chlorophyll a/c-Binding Proteins'.
The journal of physical chemistry. B.
2020 11; 124(46):10585-10587. doi:
10.1021/acs.jpcb.0c06717
. [PMID: 33146539] - Chunyan Wang, Xing Chen, Yoshimasa Nakamura, Chenxu Yu, Hang Qi. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review.
Food & function.
2020 Nov; 11(11):9338-9358. doi:
10.1039/d0fo02176h
. [PMID: 33151231] - Saraswati, Gita Giantina, Pusppo Edi Giriwono, Didah Nur Faridah, Diah Iskandriati, Nuri Andarwulan. Water and Lipid-Soluble Component Profile of Sargassum cristaefolium from Different Coastal Areas in Indonesia with Potential for Developing Functional Ingredient.
Journal of oleo science.
2020 Nov; 69(11):1517-1528. doi:
10.5650/jos.ess20079
. [PMID: 33055437] - Yuhong Yang, Lei Du, Masashi Hosokawa, Kazuo Miyashita. Total Lipids Content, Lipid Class and Fatty Acid Composition of Ten Species of Microalgae.
Journal of oleo science.
2020 Oct; 69(10):1181-1189. doi:
10.5650/jos.ess20140
. [PMID: 32908099] - Naoki Takatani, Yuka Kono, Fumiaki Beppu, Yuko Okamatsu-Ogura, Yumiko Yamano, Kazuo Miyashita, Masashi Hosokawa. Fucoxanthin inhibits hepatic oxidative stress, inflammation, and fibrosis in diet-induced nonalcoholic steatohepatitis model mice.
Biochemical and biophysical research communications.
2020 07; 528(2):305-310. doi:
10.1016/j.bbrc.2020.05.050
. [PMID: 32475638] - Zulfiia Guvatova, Alexandra Dalina, Elena Marusich, Elena Pudova, Anastasiya Snezhkina, George Krasnov, Anna Kudryavtseva, Sergey Leonov, Alexey Moskalev. Protective effects of carotenoid fucoxanthin in fibroblasts cellular senescence.
Mechanisms of ageing and development.
2020 07; 189(?):111260. doi:
10.1016/j.mad.2020.111260
. [PMID: 32461144] - Thomas Kiran Marella, Archana Tiwari. Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin.
Bioresource technology.
2020 Jul; 307(?):123245. doi:
10.1016/j.biortech.2020.123245
. [PMID: 32234591] - Xiaowen Sun, Hailong Zhao, Zonglin Liu, Xun Sun, Dandan Zhang, Shuhui Wang, Ying Xu, Guofang Zhang, Dongfeng Wang. Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice.
Journal of agricultural and food chemistry.
2020 May; 68(18):5118-5128. doi:
10.1021/acs.jafc.0c01467
. [PMID: 32309947] - Hristina Staleva-Musto, Valentyna Kuznetsova, David Bína, Radek Litvín, Tomáš Polívka. Intramolecular charge-transfer state of carotenoids siphonaxanthin and siphonein: function of non-conjugated acyl-oxy group.
Photosynthesis research.
2020 May; 144(2):127-135. doi:
10.1007/s11120-019-00694-x
. [PMID: 31802367] - Siyu Li, Xiaomeng Ren, Yuandong Wang, Jiangning Hu, Haitao Wu, Shuang Song, Chunhong Yan. Fucoxanthin alleviates palmitate-induced inflammation in RAW 264.7 cells through improving lipid metabolism and attenuating mitochondrial dysfunction.
Food & function.
2020 Apr; 11(4):3361-3370. doi:
10.1039/d0fo00442a
. [PMID: 32232236] - O Dautermann, D Lyska, J Andersen-Ranberg, M Becker, J Fröhlich-Nowoisky, H Gartmann, L C Krämer, K Mayr, D Pieper, L M Rij, H M-L Wipf, K K Niyogi, M Lohr. An algal enzyme required for biosynthesis of the most abundant marine carotenoids.
Science advances.
2020 03; 6(10):eaaw9183. doi:
10.1126/sciadv.aaw9183
. [PMID: 32181334] - Bingbing Guo, Teresa Oliviero, Vincenzo Fogliano, Yuwei Ma, Feng Chen, Edoardo Capuano. Gastrointestinal Bioaccessibility and Colonic Fermentation of Fucoxanthin from the Extract of the Microalga Nitzschia laevis.
Journal of agricultural and food chemistry.
2020 Feb; 68(7):1844-1850. doi:
10.1021/acs.jafc.9b02496
. [PMID: 31081326] - Lavinia-Lorena Pruteanu, Liliya Kopanitsa, Dezső Módos, Edgars Kletnieks, Elena Samarova, Andreas Bender, Leonardo Dario Gomez, David Stanley Bailey. Transcriptomics predicts compound synergy in drug and natural product treated glioblastoma cells.
PloS one.
2020; 15(9):e0239551. doi:
10.1371/journal.pone.0239551
. [PMID: 32946518] - Leticia Malgarim Cordenonsi, Andressa Santer, Rafaela Martins Sponchiado, Nathalie Ribeiro Wingert, Renata Platcheck Raffin, Elfrides Eva Scherman Schapoval. Amazonia Products in Novel Lipid Nanoparticles for Fucoxanthin Encapsulation.
AAPS PharmSciTech.
2019 Dec; 21(1):32. doi:
10.1208/s12249-019-1601-y
. [PMID: 31863211] - Manon Le Goff, Eric Le Ferrec, Claire Mayer, Virginie Mimouni, Dominique Lagadic-Gossmann, Benoît Schoefs, Lionel Ulmann. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention.
Biochimie.
2019 Dec; 167(?):106-118. doi:
10.1016/j.biochi.2019.09.012
. [PMID: 31545993] - Zwe-Ling Kong, Sabri Sudirman, Yu-Chun Hsu, Chieh-Yu Su, Hsiang-Ping Kuo. Fucoxanthin-Rich Brown Algae Extract Improves Male Reproductive Function on Streptozotocin-Nicotinamide-Induced Diabetic Rat Model.
International journal of molecular sciences.
2019 Sep; 20(18):. doi:
10.3390/ijms20184485
. [PMID: 31514311] - Pradeep Paudel, Su Hui Seong, Hyun Ah Jung, Jae Sue Choi. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist: Relevance to Parkinson's disease.
Chemico-biological interactions.
2019 Sep; 310(?):108757. doi:
10.1016/j.cbi.2019.108757
. [PMID: 31323226] - Dong Zhao, Daeung Yu, Moojoong Kim, Ming-Yao Gu, Sang-Min Kim, Cheol-Ho Pan, Gun-Hee Kim, Donghwa Chung. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion.
Food chemistry.
2019 Sep; 291(?):87-93. doi:
10.1016/j.foodchem.2019.04.002
. [PMID: 31006475] - Bingbing Guo, Bo Yang, Xiaoyang Pang, Tianpeng Chen, Feng Chen, Ka-Wing Cheng. Fucoxanthin modulates cecal and fecal microbiota differently based on diet.
Food & function.
2019 Sep; 10(9):5644-5655. doi:
10.1039/c9fo01018a
. [PMID: 31433413] - Leticia Malgarim Cordenonsi, Angela Faccendini, Michele Catanzaro, Maria Cristina Bonferoni, Silvia Rossi, Lorenzo Malavasi, Renata Platcheck Raffin, Elfrides Eva Scherman Schapoval, Cristina Lanni, Giuseppina Sandri, Franca Ferrari. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin.
International journal of pharmaceutics.
2019 Aug; 567(?):118487. doi:
10.1016/j.ijpharm.2019.118487
. [PMID: 31271813] - Yixiang Liu, Zichun Qiao, Wenqiang Liu, Zhanqun Hou, Di Zhang, Ling Huang, Yaping Zhang. Oleic acid as a protein ligand improving intestinal absorption and ocular benefit of fucoxanthin in water through protein-based encapsulation.
Food & function.
2019 Jul; 10(7):4381-4395. doi:
10.1039/c9fo00814d
. [PMID: 31282516] - Hristina Staleva-Musto, Robert West, Marco Trathnigg, David Bína, Radek Litvín, Tomáš Polívka. Carotenoid-chlorophyll energy transfer in the fucoxanthin-chlorophyll complex binding a fucoxanthin acyloxy derivative.
Faraday discussions.
2019 07; 216(0):460-475. doi:
10.1039/c8fd00193f
. [PMID: 31012452] - Yung-Tsung Chau, Hsin-Yuan Chen, Po-Han Lin, Shih-Min Hsia. Preventive Effects of Fucoidan and Fucoxanthin on Hyperuricemic Rats Induced by Potassium Oxonate.
Marine drugs.
2019 06; 17(6):. doi:
10.3390/md17060343
. [PMID: 31185695] - Mi-Bo Kim, Minkyung Bae, Siqi Hu, Hyunju Kang, Young-Ki Park, Ji-Young Lee. Fucoxanthin exerts anti-fibrogenic effects in hepatic stellate cells.
Biochemical and biophysical research communications.
2019 06; 513(3):657-662. doi:
10.1016/j.bbrc.2019.04.052
. [PMID: 30982574] - Yanyan Su. The effect of different light regimes on pigments in Coscinodiscus granii.
Photosynthesis research.
2019 Jun; 140(3):301-310. doi:
10.1007/s11120-018-0608-7
. [PMID: 30478709] - Yuelian Li, Han Sun, Tao Wu, Yunlei Fu, Yongjin He, Xuemei Mao, Feng Chen. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid.
Bioresource technology.
2019 Jun; 282(?):94-102. doi:
10.1016/j.biortech.2019.02.127
. [PMID: 30852337] - Song Yi Koo, Ji-Hyun Hwang, Seung-Hoon Yang, Jae-In Um, Kwang Won Hong, Kyungsu Kang, Cheol-Ho Pan, Keum Taek Hwang, Sang Min Kim. Anti-Obesity Effect of Standardized Extract of Microalga Phaeodactylum tricornutum Containing Fucoxanthin.
Marine drugs.
2019 May; 17(5):. doi:
10.3390/md17050311
. [PMID: 31137922] - Andrea Gille, Bojan Stojnic, Felix Derwenskus, Andreas Trautmann, Ulrike Schmid-Staiger, Clemens Posten, Karlis Briviba, Andreu Palou, M Luisa Bonet, Joan Ribot. A Lipophilic Fucoxanthin-Rich Phaeodactylum tricornutum Extract Ameliorates Effects of Diet-Induced Obesity in C57BL/6J Mice.
Nutrients.
2019 Apr; 11(4):. doi:
10.3390/nu11040796
. [PMID: 30959933] - Xin Jin, TingTing Zhao, Dan Shi, Ming Bao Ye, Qiying Yi. Protective role of fucoxanthin in diethylnitrosamine-induced hepatocarcinogenesis in experimental adult rats.
Drug development research.
2019 03; 80(2):209-217. doi:
10.1002/ddr.21451
. [PMID: 30379338] - Hua-Lian Wu, Xiao-Yan Fu, Wen-Qiang Cao, Wen-Zhou Xiang, Ya-Jun Hou, Jin-Kui Ma, Ying Wang, Cun-Dong Fan. Induction of Apoptosis in Human Glioma Cells by Fucoxanthin via Triggering of ROS-Mediated Oxidative Damage and Regulation of MAPKs and PI3K-AKT Pathways.
Journal of agricultural and food chemistry.
2019 Feb; 67(8):2212-2219. doi:
10.1021/acs.jafc.8b07126
. [PMID: 30688446] - Pamela J Walsh, Susan McGrath, Steven McKelvey, Lauren Ford, Gary Sheldrake, Susan A Clarke. The Osteogenic Potential of Brown Seaweed Extracts.
Marine drugs.
2019 Feb; 17(3):. doi:
10.3390/md17030141
. [PMID: 30823356] - Yiping Zhang, Jinjing Lin, Guangyu Yan, Wenhui Jin, Weizhu Chen, Jipeng Sun, Longhe Yang, Mingqing Huang, Zhuan Hong. Determination of fucoxanthinol in rat plasma by liquid chromatography-tandem mass spectrometry.
Journal of pharmaceutical and biomedical analysis.
2019 Feb; 164(?):155-163. doi:
10.1016/j.jpba.2018.10.033
. [PMID: 30390557] - Andreia F R Silva, Helena Abreu, Artur M S Silva, Susana M Cardoso. Effect of Oven-Drying on the Recovery of Valuable Compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus.
Marine drugs.
2019 Feb; 17(2):. doi:
10.3390/md17020090
. [PMID: 30717174] - Po-Ming Chang, Kuan-Lun Li, Yen-Chang Lin. Fucoidan⁻Fucoxanthin Ameliorated Cardiac Function via IRS1/GRB2/ SOS1, GSK3β/CREB Pathways and Metabolic Pathways in Senescent Mice.
Marine drugs.
2019 Jan; 17(1):. doi:
10.3390/md17010069
. [PMID: 30669571] - Shuling Li, Yuan Zhang, Vishnu Priya Veeraraghavan, Surapaneni Krishna Mohan, Yunhai Ma. Restorative Effect of Fucoxanthin in an Ovalbumin-Induced Allergic Rhinitis Animal Model through NF-κB p65 and STAT3 Signaling.
Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.
2019; 38(4):365-375. doi:
10.1615/jenvironpatholtoxicoloncol.2019030997
. [PMID: 32464007] - Nazikussabah Zaharudin, Dan Staerk, Lars Ove Dragsted. Inhibition of α-glucosidase activity by selected edible seaweeds and fucoxanthin.
Food chemistry.
2019 Jan; 270(?):481-486. doi:
10.1016/j.foodchem.2018.07.142
. [PMID: 30174076] - Yen-Cheng Chen, Chung-Yi Cheng, Chung-Te Liu, Yuh-Mou Sue, Tso-Hsiao Chen, Yung-Ho Hsu, Pai-An Hwang, Cheng-Hsien Chen. Alleviative effect of fucoxanthin-containing extract from brown seaweed Laminaria japonica on renal tubular cell apoptosis through upregulating Na+/H+ exchanger NHE1 in chronic kidney disease mice.
Journal of ethnopharmacology.
2018 Oct; 224(?):391-399. doi:
10.1016/j.jep.2018.06.023
. [PMID: 29920359] - Hui Wang, Yan Zhang, Lin Chen, Wentao Cheng, Tianzhong Liu. Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures.
Bioprocess and biosystems engineering.
2018 Jul; 41(7):1061-1071. doi:
10.1007/s00449-018-1935-y
. [PMID: 29619547] - Fátima Fernandes, Mariana Barbosa, David M Pereira, Isabel Sousa-Pinto, Patrícia Valentão, Isabel C Azevedo, Paula B Andrade. Chemical profiling of edible seaweed (Ochrophyta) extracts and assessment of their in vitro effects on cell-free enzyme systems and on the viability of glutamate-injured SH-SY5Y cells.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2018 Jun; 116(Pt B):196-206. doi:
10.1016/j.fct.2018.04.033
. [PMID: 29673862] - Robert G West, David Bína, Marcel Fuciman, Valentyna Kuznetsova, Radek Litvín, Tomáš Polívka. Ultrafast multi-pulse transient absorption spectroscopy of fucoxanthin chlorophyll a protein from Phaeodactylum tricornutum.
Biochimica et biophysica acta. Bioenergetics.
2018 May; 1859(5):357-365. doi:
10.1016/j.bbabio.2018.02.011
. [PMID: 29499185] - Hristina Staleva-Musto, Valentyna Kuznetsova, Robert G West, Gürkan Keşan, Babak Minofar, Marcel Fuciman, David Bína, Radek Litvín, Tomáš Polívka. Nonconjugated Acyloxy Group Deactivates the Intramolecular Charge-Transfer State in the Carotenoid Fucoxanthin.
The journal of physical chemistry. B.
2018 03; 122(11):2922-2930. doi:
10.1021/acs.jpcb.8b00743
. [PMID: 29469573]