Yatansin (BioDeep_00000000568)

   

PANOMIX_OTCML-2023


代谢物信息卡片


2H-3,11c-beta-(Epoxymethano)phenanthro(10,1-bc)pyran-3-alpha(3a-beta-H)-carboxylic acid, 1,4,5,6a-beta,7,7a-alpha,10,11,11a,11b-alpha-decahydro-8,11a-beta-dimethyl-5,10-dioxo-1-beta,2-alpha,4-beta,9-tetrahydroxy-, methyl ester, 4-(3-methylcrotonate)

化学式: C26H32O11 (520.1945)
中文名称: 鸦胆子苦醇, 鸦胆苦醇
谱图信息: 最多检出来源 Mentha canadensis(plant) 38.46%

分子结构信息

SMILES: CC([C@](C[C@@](O1)2[H])3[H])=C(O)C(C[C@]3(C)[C@]4([H])[C@]2(CO[C@@]5([C@@H](O)[C@@H]4O)C(OC)=O)[C@@]5([H])[C@@H](OC(/C=C(C)/C)=O)C1=O)=O
InChI: InChI=1S/C26H32O11/c1-10(2)6-15(28)37-18-20-25-9-35-26(20,23(33)34-5)21(31)17(30)19(25)24(4)8-13(27)16(29)11(3)12(24)7-14(25)36-22(18)32/h6,12,14,17-21,29-31H,7-9H2,1-5H3/t12-,14+,17+,18+,19+,20+,21-,24-,25+,26-/m0/s1

描述信息

Brusatol is a triterpenoid.
Brusatol is a natural product found in Brucea javanica and Brucea mollis with data available.
Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2].
Brusatol (NSC?172924) is a unique inhibitor of the Nrf2 pathway that sensitizes a broad spectrum of cancer cells to Cisplatin and other chemotherapeutic agents. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Brusatol can be developed into an adjuvant chemotherapeutic agent[1]. Brusatol increases cellular apoptosis[2].

同义名列表

20 个代谢物同义名

2H-3,11c-beta-(Epoxymethano)phenanthro(10,1-bc)pyran-3-alpha(3a-beta-H)-carboxylic acid, 1,4,5,6a-beta,7,7a-alpha,10,11,11a,11b-alpha-decahydro-8,11a-beta-dimethyl-5,10-dioxo-1-beta,2-alpha,4-beta,9-tetrahydroxy-, methyl ester, 4-(3-methylcrotonate); Crotonic acid, 3-methyl-, 4-ester with methyl 1,4,5,6abeta,7,7aalpha,10,11,11a,11balpha-decahydro-1beta,2alpha,4beta,9-tetrahydroxy-8,11abeta-dimethyl-5,10-dioxo-2H-3,11cbeta-(epoxymethano)phenanthro[10,1-bc]pyran-3alpha(3abetaH)-carboxylate; 2H-3,11cbeta-(Epoxymethano)phenanthro[10,1-bc]pyran-3alpha(3abetaH)-carboxylic acid, 1,4,5,6abeta,7,7aalpha,10,11,11a,11balpha-decahydro-1beta,2alpha,4beta,9-tetrahydroxy-8,11abeta-dimethyl-5,10-dioxo-, methyl ester, 4-(3-methylcrotonate); (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS,11bR)-Methyl 1,2,9-trihydroxy-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-(epoxymethano)dibenzo[de,g]chromene-3-carboxylate; (1R,2S,3S,3aS,3a1R,4R,6aR,7aR,11aS,11bR)-Methyl1,2,9-trihydroxy-8,11a-dimethyl-4-((3-methylbut-2-enoyl)oxy)-5,10-dioxo-2,3,3a,4,5,6a,7,7a,10,11,11a,11b-dodecahydro-1H-3,3a1-(epoxymethano)dibenzo[de,g]chromene-3-carboxylate; methyl (1R,2S,3R,6R,8R,13S,14R,15R,16S,17S)-10,15,16-trihydroxy-9,13-dimethyl-3-(3-methylbut-2-enoyloxy)-4,11-dioxo-5,18-dioxapentacyclo[12.5.0.01,6.02,17.08,13]nonadec-9-ene-17-carboxylate; Picras-3-en-21-oic acid, 13,20-epoxy-3,11,12-trihydroxy-15-[(3-methyl-1-oxo-2-buten-1-yl)oxy]-2,16-dioxo-, methyl ester, (11beta,12alpha,15beta)-; Picras-3-en-21-oic acid, 13,20-epoxy-3,11,12-trihydroxy-15-((3-methyl-1-oxo-2-butenyl)oxy)-2,16-dioxo-, methyl ester, (11beta,12alpha,15beta)-; (11beta,12alpha,15beta)-13,20-Epoxy-3,11,12-trihydroxy-15-((3-methyl-1-oxo-2-butenyl)oxy)-2,16-dioxopicras-3-en-21-oic acid, methyl ester; Picras-3-en-21-oicacid,13,20-epoxy-3,11,12-trihydroxy-15-[(3-methyl-1-oxo-2-buten-1-yl)oxy]-2,16-dioxo-,methyl ester, (11b,12a,15b)-; Methyl 13,20-epoxy-3,11,12-trihydroxy-15-((3-methyl-1-oxo-2-butenyl)oxy)-2,16-dioxopicras-3-en-21-oate (11beta,12alpha,15beta)-; methyl trihydroxy-dimethyl-(3-methylbut-2-enoyloxy)-dioxo-[?]carboxylate; Brusatol, >=95\\% (HPLC); (+)-Brusatol; 3ATY6SZ64B; Yatansin; Brusatol; MLS002702060; NSC 172924; Brusatol



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

4 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 13 AKT1, BCL2, CAT, CDH1, EGFR, KEAP1, MTOR, NFE2L2, NOS2, PIK3CA, STAT3, TNK1, VIM
Peripheral membrane protein 3 GORASP1, MTOR, TNK1
Endosome membrane 1 EGFR
Endoplasmic reticulum membrane 4 BCL2, EGFR, HMOX1, MTOR
Nucleus 11 AKT1, BCL2, CDH1, EGFR, HMOX1, KEAP1, MTOR, NFE2L2, NOS2, PARP1, STAT3
cytosol 13 AKT1, BCL2, CAT, CDH1, HMOX1, KEAP1, MTOR, NFE2L2, NOS2, PARP1, PIK3CA, STAT3, VIM
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 2 MTOR, VIM
trans-Golgi network 1 CDH1
centrosome 1 NFE2L2
nucleoplasm 9 AKT1, CDH1, HMOX1, KEAP1, MTOR, NFE2L2, NOS2, PARP1, STAT3
RNA polymerase II transcription regulator complex 2 NFE2L2, STAT3
Cell membrane 5 AKT1, CDH1, EGFR, TNF, VIM
Cytoplasmic side 3 GORASP1, HMOX1, MTOR
lamellipodium 3 AKT1, CDH1, PIK3CA
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 2 GORASP1, MTOR
cell cortex 1 AKT1
cell junction 2 CDH1, EGFR
cell surface 2 EGFR, TNF
glutamatergic synapse 3 AKT1, CDH1, EGFR
Golgi apparatus 3 CDH1, GORASP1, NFE2L2
Golgi membrane 4 EGFR, GORASP1, INS, MTOR
lysosomal membrane 1 MTOR
neuronal cell body 1 TNF
postsynapse 2 AKT1, CDH1
Cytoplasm, cytosol 3 NFE2L2, NOS2, PARP1
Lysosome 1 MTOR
endosome 2 CDH1, EGFR
plasma membrane 10 AKT1, CDH1, EGFR, NFE2L2, NOS2, PIK3CA, STAT3, TNF, TNK1, VIM
Membrane 10 AKT1, BCL2, CAT, CDH1, COL4A1, EGFR, HMOX1, MTOR, PARP1, TNK1
apical plasma membrane 1 EGFR
axon 1 VIM
basolateral plasma membrane 1 EGFR
extracellular exosome 3 CAT, CDH1, VIM
Lysosome membrane 1 MTOR
endoplasmic reticulum 3 BCL2, HMOX1, KEAP1
extracellular space 6 COL4A1, EGFR, HMOX1, IL6, INS, TNF
perinuclear region of cytoplasm 5 CDH1, EGFR, HMOX1, NOS2, PIK3CA
adherens junction 1 CDH1
intercalated disc 1 PIK3CA
mitochondrion 3 BCL2, CAT, PARP1
protein-containing complex 5 AKT1, BCL2, CAT, EGFR, PARP1
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 2 CDH1, EGFR
Secreted 2 IL6, INS
extracellular region 6 CAT, CDH1, COL4A1, IL6, INS, TNF
cytoplasmic side of plasma membrane 1 CDH1
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 3 BCL2, HMOX1, MTOR
mitochondrial matrix 1 CAT
transcription regulator complex 2 PARP1, STAT3
centriolar satellite 1 KEAP1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 3 BCL2, CDH1, EGFR
external side of plasma membrane 1 TNF
actin cytoskeleton 1 CDH1
microtubule cytoskeleton 1 AKT1
nucleolus 1 PARP1
midbody 1 KEAP1
Cytoplasm, P-body 1 NOS2
P-body 1 NOS2
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Cytoplasm, perinuclear region 1 NOS2
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 VIM
focal adhesion 3 CAT, EGFR, VIM
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Cell junction, adherens junction 1 CDH1
flotillin complex 1 CDH1
Peroxisome 3 CAT, NOS2, VIM
basement membrane 1 COL4A1
collagen trimer 1 COL4A1
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 2 CAT, NOS2
peroxisomal membrane 1 CAT
Nucleus, PML body 1 MTOR
PML body 1 MTOR
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
collagen-containing extracellular matrix 1 COL4A1
intermediate filament 1 VIM
lateral plasma membrane 1 CDH1
receptor complex 1 EGFR
neuron projection 1 VIM
ciliary basal body 1 AKT1
chromatin 3 NFE2L2, PARP1, STAT3
mediator complex 1 NFE2L2
cell leading edge 1 VIM
phagocytic cup 1 TNF
Chromosome 1 PARP1
cytoskeleton 1 VIM
Golgi apparatus, trans-Golgi network 1 CDH1
Nucleus, nucleolus 1 PARP1
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
actin filament 1 KEAP1
site of double-strand break 1 PARP1
Cul3-RING ubiquitin ligase complex 1 KEAP1
nuclear envelope 2 MTOR, PARP1
Endomembrane system 1 MTOR
endosome lumen 1 INS
microtubule organizing center 1 VIM
myelin sheath 1 BCL2
intermediate filament cytoskeleton 1 VIM
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
ficolin-1-rich granule lumen 1 CAT
secretory granule lumen 2 CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 COL4A1, IL6, INS
nuclear matrix 1 VIM
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
anaphase-promoting complex 1 CDH1
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
Nucleus matrix 1 VIM
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 2]: Nucleus 1 CDH1
protein-DNA complex 2 NFE2L2, PARP1
apical junction complex 1 CDH1
Cell junction, desmosome 1 CDH1
desmosome 1 CDH1
Cytoplasmic vesicle, phagosome 1 MTOR
catenin complex 1 CDH1
site of DNA damage 1 PARP1
Secreted, extracellular space, extracellular matrix, basement membrane 1 COL4A1
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
collagen type IV trimer 1 COL4A1
cortical cytoskeleton 1 NOS2
catalase complex 1 CAT
inclusion body 1 KEAP1
interleukin-6 receptor complex 1 IL6
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
BAD-BCL-2 complex 1 BCL2
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Xiaodong Li, Yuankuan Jiang, Ying Wang, Na Li, Shumeng Zhang, Kejia Lv, Renchuan Jia, Tianfu Wei, Xiaojie Li, Chuanchun Han, Jingrong Lin. KLF4 suppresses anticancer effects of brusatol via transcriptional upregulating NCK2 expression in melanoma. Biochemical pharmacology. 2024 May; 223(?):116197. doi: 10.1016/j.bcp.2024.116197. [PMID: 38583810]
  • Zhineng Kang, Qian Xiao, Linlin Wang, Lan Xiao, Biao Tang. The combination of astragaloside IV and Panax notoginseng saponins attenuates cerebral ischaemia-reperfusion injury in rats through ferroptosis and inflammation inhibition via activating Nrf2. The Journal of pharmacy and pharmacology. 2023 Mar; ?(?):. doi: 10.1093/jpp/rgad011. [PMID: 36952592]
  • Reham I Alagal, Nora A AlFaris, Ghedeir M Alshammari, Jozaa Z ALTamimi, Lujain A AlMousa, Mohammed Abdo Yahya. The protection afforded by Berberine against chemotherapy-mediated nephropathy in rats involves regulation of the antioxidant axis. Basic & clinical pharmacology & toxicology. 2023 Jan; 132(1):98-110. doi: 10.1111/bcpt.13807. [PMID: 36221996]
  • Tao Wang, Zhiyuan Chen, Hui Chen, Xi Yu, Lei Wang, Xiuheng Liu. Brusatol inhibits the growth of renal cell carcinoma by regulating the PTEN/PI3K/AKT pathway. Journal of ethnopharmacology. 2022 Apr; 288(?):115020. doi: 10.1016/j.jep.2022.115020. [PMID: 35066068]
  • Rui-Feng Fan, Kou-Kou Tang, Zhen-Yong Wang, Lin Wang. Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology. 2021 12; 464(?):152999. doi: 10.1016/j.tox.2021.152999. [PMID: 34695510]
  • Hejuntao Chen, Ting Jiang, Hui Chen, Jingjing Su, Xuncui Wang, Yin Cao, Qinglin Li. Brusatol reverses lipopolysaccharide-induced epithelial-mesenchymal transformation and induces apoptosis through PI3K/Akt/NF-кB pathway in human gastric cancer SGC-7901 cells. Anti-cancer drugs. 2021 04; 32(4):394-404. doi: 10.1097/cad.0000000000001022. [PMID: 33229902]
  • Jianhui Xie, Zhengquan Lai, Xinghan Zheng, Huijun Liao, Yanfang Xian, Qian Li, Jingjing Wu, Siupo Ip, Youliang Xie, Jiannan Chen, Ziren Su, Zhixiu Lin, Xiaobo Yang. Apoptotic activities of brusatol in human non-small cell lung cancer cells: Involvement of ROS-mediated mitochondrial-dependent pathway and inhibition of Nrf2-mediated antioxidant response. Toxicology. 2021 03; 451(?):152680. doi: 10.1016/j.tox.2021.152680. [PMID: 33465425]
  • Yuanyuan Wang, Hao Ma, Jiaxuan Huang, Zhengguang Yao, Jianqiang Yu, Wannian Zhang, Lichao Zhang, Zhibin Wang, Chunlin Zhuang. Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors. European journal of medicinal chemistry. 2021 Feb; 212(?):113030. doi: 10.1016/j.ejmech.2020.113030. [PMID: 33248849]
  • Tongtong Wang, Yaoxing Dou, Guoshu Lin, Qiaoping Li, Juan Nie, Baoyi Chen, Jianhui Xie, Ziren Su, Huifang Zeng, Jiannan Chen, Youliang Xie. The anti-hepatocellular carcinoma effect of Brucea javanica oil in ascitic tumor-bearing mice: The detection of brusatol and its role. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Feb; 134(?):111122. doi: 10.1016/j.biopha.2020.111122. [PMID: 33341052]
  • Xinghan Zheng, Liting Mai, Tongtong Wang, Ying Xu, Zireng Su, Jiannan Chen, Huifang Zeng, Youliang Xie. Brusatol-Enriched Brucea javanica Oil Ameliorated Dextran Sulfate Sodium-Induced Colitis in Mice: Involvement of NF-κB and RhoA/ROCK Signaling Pathways. BioMed research international. 2021; 2021(?):5561221. doi: 10.1155/2021/5561221. [PMID: 34414236]
  • Yulin Ren, A Douglas Kinghorn. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. Journal of medicinal chemistry. 2020 12; 63(24):15410-15448. doi: 10.1021/acs.jmedchem.0c01449. [PMID: 33289552]
  • Xin Chen, Tailang Yin, Baozhen Zhang, Beini Sun, Jie Chen, Tianxia Xiao, Baobei Wang, Mengxia Li, Jing Yang, Xiujun Fan. Inhibitory effects of brusatol delivered using glycosaminoglycan‑placental chondroitin sulfate A‑modified nanoparticles on the proliferation, migration and invasion of cancer cells. International journal of molecular medicine. 2020 Aug; 46(2):817-827. doi: 10.3892/ijmm.2020.4627. [PMID: 32626948]
  • Zhaohui Liu, Yan Li, Lili Yu, Yulin Chang, Jingui Yu. Penehyclidine hydrochloride inhibits renal ischemia/reperfusion-induced acute lung injury by activating the Nrf2 pathway. Aging. 2020 07; 12(13):13400-13421. doi: 10.18632/aging.103444. [PMID: 32652517]
  • Songbin Guo, Jinling Zhang, Cairong Wei, Zhiyong Lu, Rulong Cai, Danqi Pan, Hanbin Zhang, Baoxia Liang, Zhenfeng Zhang. Anticancer effects of brusatol in nasopharyngeal carcinoma through suppression of the Akt/mTOR signaling pathway. Cancer chemotherapy and pharmacology. 2020 06; 85(6):1097-1108. doi: 10.1007/s00280-020-04083-3. [PMID: 32449143]
  • Qiao Zhou, Xun Wu, Yingmin Liu, Xin Wang, Xiufeng Ling, Hongshan Ge, Junqiang Zhang. Curcumin improves asthenozoospermia by inhibiting reactive oxygen species reproduction through nuclear factor erythroid 2-related factor 2 activation. Andrologia. 2020 Mar; 52(2):e13491. doi: 10.1111/and.13491. [PMID: 31797403]
  • Nan Guo, Xin Xu, Guiyan Yuan, Xuwang Chen, Qing Wen, Ruichen Guo. Pharmacokinetic, metabolic profiling and elimination of brusatol in rats. Biomedical chromatography : BMC. 2018 Dec; 32(12):e4358. doi: 10.1002/bmc.4358. [PMID: 30089336]
  • Jiangtao Zhou, Tongtong Wang, Yaoxing Dou, Yanfeng Huang, Chang Qu, Jiansheng Gao, Zijian Huang, Youliang Xie, Ping Huang, Zhixiu Lin, Ziren Su. Brusatol ameliorates 2, 4, 6-trinitrobenzenesulfonic acid-induced experimental colitis in rats: Involvement of NF-κB pathway and NLRP3 inflammasome. International immunopharmacology. 2018 Nov; 64(?):264-274. doi: 10.1016/j.intimp.2018.09.008. [PMID: 30218953]
  • Ruifan Ye, Ninggao Dai, Qikuan He, Pengyi Guo, Yukai Xiang, Qiong Zhang, Zhong Hong, Qiyu Zhang. Comprehensive anti-tumor effect of Brusatol through inhibition of cell viability and promotion of apoptosis caused by autophagy via the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Sep; 105(?):962-973. doi: 10.1016/j.biopha.2018.06.065. [PMID: 30021391]
  • Ying Lin, Liu-Cai Sui, Rong-Hua Wu, Ru-Jun Ma, Hai-Yan Fu, Juan-Juan Xu, Xu-Hua Qiu, Li Chen. Nrf2 inhibition affects cell cycle progression during early mouse embryo development. The Journal of reproduction and development. 2018 Feb; 64(1):49-55. doi: 10.1262/jrd.2017-042. [PMID: 29249781]
  • Reem Hasaballah Alhasani, Lincoln Biswas, Ali Mohammad Tohari, Xinzhi Zhou, James Reilly, Jian-Feng He, Xinhua Shu. Gypenosides protect retinal pigment epithelium cells from oxidative stress. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2018 Feb; 112(?):76-85. doi: 10.1016/j.fct.2017.12.037. [PMID: 29274434]
  • Jiangtao Zhou, Lihua Tan, Jianhui Xie, Zhengquan Lai, Yanfeng Huang, Chang Qu, Dandan Luo, Zhixiu Lin, Ping Huang, Ziren Su, Youliang Xie. Characterization of brusatol self-microemulsifying drug delivery system and its therapeutic effect against dextran sodium sulfate-induced ulcerative colitis in mice. Drug delivery. 2017 Nov; 24(1):1667-1679. doi: 10.1080/10717544.2017.1384521. [PMID: 29078713]
  • Nan Guo, Xiaoran Zhang, Fanlong Bu, Lei Wang, Zhanqi Cao, Chunmei Geng, Ruichen Guo, Dongmei Ren, Qing Wen. Determination of brusatol in plasma and tissues by LC-MS method and its application to a pharmacokinetic and distribution study in mice. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2017 May; 1053(?):20-26. doi: 10.1016/j.jchromb.2017.04.012. [PMID: 28407533]
  • Lan Zhang, Xuehuan Feng, Dejun Ma, Jingjing Yang, Hongyun Jiang, Yanning Zhang, Weizhi He. Brusatol isolated from Brucea javanica (L.) Merr. induces apoptotic death of insect cell lines. Pesticide biochemistry and physiology. 2013 Sep; 107(1):18-24. doi: 10.1016/j.pestbp.2013.04.007. [PMID: 25149230]
  • Jie-Qing Liu, Cui-Fang Wang, Xing-Yao Li, Jian-Chao Chen, Yan Li, Ming-Hua Qiu. One new pregnane glycoside from the seeds of cultivated Brucea javanica. Archives of pharmacal research. 2011 Aug; 34(8):1297-300. doi: 10.1007/s12272-011-0809-5. [PMID: 21910051]
  • E Mata-Greenwood, M Cuendet, D Sher, D Gustin, W Stock, J M Pezzuto. Brusatol-mediated induction of leukemic cell differentiation and G(1) arrest is associated with down-regulation of c-myc. Leukemia. 2002 Nov; 16(11):2275-84. doi: 10.1038/sj.leu.2402696. [PMID: 12399973]
  • K H Lee, N Hayashi, M Okano, H Nozaki, M Ju-Ichi. Antitumor agents, 65. Brusatol and cleomiscosin-A, antileukemic principles from Brucea javanica. Journal of natural products. 1984 May; 47(3):550-1. doi: 10.1021/np50033a030. [PMID: 6481366]